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Abstract: Recent advances in semiconductor technology provide us with the resources to explore
alternative methods for fabricating transistors with the goal of further reducing their sizes to increase
transistor density and enhance performance. Conventional transistors use semiconductor junctions;
they are formed by doping atoms on the silicon substrate that makes p-type and n-type regions.
Decreasing the size of such transistors means that the junctions will get closer, which becomes very
challenging when the size is reduced to the lower end of the nanometer scale due to the requirement of
extremely high gradients in doping concentration. One of the most promising solutions to overcome
this issue is realizing junctionless transistors. The first junctionless device was fabricated in 2010 and,
since then, many other transistors of this kind (such as FinFET, Gate-All-Around, Thin Film) have
been proposed and investigated. All of these semiconductor devices are characterized by junctionless
structures, but they differ from each other when considering the influence of technological parameters
on their performance. The aim of this review paper is to provide a simple but complete analysis
of junctionless transistors, which have been proposed in the last decade. In this work, junctionless
transistors are classified based on their geometrical structures, analytical model, and electrical
characteristics. Finally, we used figure of merits, such as Ion/Io f f , DIBL, and SS, to highlight the
advantages and disadvantages of each junctionless transistor category.

Keywords: junctionless; transistor; nanowire; double gate; planar; gate-all-around; FinFET; thin film;
tunnel

1. Introduction

The concept of junctionless transistor (JLT) was introduced by J. E. Lilienfeld in the 1920s [1].
The main feature of this device is the absence of any pn junction; hence, the requirement of doping
concentration gradients is avoided. It simplifies the fabrication process of the transistors with sizes
below 10 nm. There are two main requirements to realize JLTs. First, the transistor channel must
be highly doped (∼1 × 1019 cm−3). Second, the channel thickness has to be in the nanometer scale
(∼10 nm). Due to the limitations in the microfabrication technology, it took more than 80 years to
realize the first junctionless transistor. The first successfully fabricated JLT was a junctionless nanowire
(NW), which was realized at the Tyndall Institute by Colinge et al. [2]. This device turned out to be the
first one of a new generation of transistors. In the last decades, many other junctionless devices were
proposed, which includes FinFET [3–23], Gate-All-Around (GAA) [24–37], Single Gate (SGJLT) [38–50],
Double Gate (DGJLT) [51–75], Thin Film (TFT) [76–86], and Tunnel FET (TFET) [87–97]. Because most
of the review papers on JLTs were published in 2010–2014 [98–102], a complete overview on the basis
of the latest developments is missing. Therefore, in this paper, we provide a critical analysis of JLTs in
terms of structure and performance comparison.
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2. Classification

Junctionless transistors can be divided in two main categories: depletion-based and tunnel-based
JLTs. In depletion-based devices, the amount of electrical current flowing through the device
depends on the dimension of the depletion region, which is controlled by the applied gate voltage.
In tunnel-based devices, the electrical current is governed by band-to-band tunneling (BTBT). JLT
categories can be then classified based on the geometrical shape, material composition of the channel,
as well as the gate structure. When a single gate on the top of the channel controls the current
through the device, it is known as Single Gate junctionless transistor. If an additional gate is present
below the channel, then it is called Double Gate junctionless transistor. If the transistor channel
thickness is very thin (≤10 nm) and the channel material is not monocrystalline silicon, then it
is known as Thin Film junctionless transistor. Gate-All-Around JLTs are characterized by a gate
electrode that entirely surrounds the channel of the transistor; the channel can be either cylindrical
or rectangular. When the transistor channel is a tube-shaped nanostructure, it is called junctionless
Nanowire. If the electronic device is a fin-shaped transistor, it is called junctionless FinFET. This
simple classification is coherent with the analyzed literature, whose distribution is shown in Figure
1. Although most of the reported junctionless transistors are inorganic electronic devices, organic
solutions were also proposed [103–108]. In this work, we focus on inorganic junctionless transistors,
where the following parameters as considered as the main figures of merit: the Drain-Induced Barrier
Lowering (DIBL), which represents the drain voltage influence on the threshold voltage, defined as
DIBL = |∆Vth|/|∆Vds| [109]; the Subthreshold Swing (SS), which can be defined as the change in
the gate voltage required to decrease the drain current by one decade (SS = dVgs/dlog(Id)) [110];
the Ion/Io f f ratio, which is the ratio between the maximum available drain current, Ion (Vgs = Vdd,
Vds = Vdd), and the current in the off state, Io f f (Vgs = 0V, Vds = Vdd).

TFET: 10%

DGJLT: 22%

NW: 17%

TFT: 10%

GAAFET: 12%

FinFET: 18%

SGJLT: 11%

TFET:11 DGJLT:25 NW:19 TFT:11 GAAFET:14 FinFET:21 SGJLT:13

Junctionless Transistor Literature Distribution (114 papers)

Figure 1. Junctionless transistor literature distribution analyzed in this work.
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3. Analysis

3.1. The First Junctionless Transistor

In 2010, J. P. Colinge et al., fabricated the first junctionless transistor (Figure 2) in the form of a
nanowire characterized by a silicon thickness of 10 nm and a channel length of 1 µm [2]. The process
requires uniform and heavy doping (≥1 × 1019 cm−3) of the nanowire in order to ensure the correct
operation of the device [111]. The nanowire transistor was realized over a SOI (Silicon on Insulator)
wafer and patterned by electron-beam lithography.

GATE

OXIDE 

JUNCTIONLESS
NANOWIRE

Figure 2. Structure of the junctionless nanowire.

Junctionless NWs do not work in inversion mode (IM) like conventional MOSFETs. The
threshold voltage is defined as the gate voltage that fully depletes (OFF state) the device layer
(Figure 3c) [112,113]. Thus, the OFF state definition is more similar to that of accumulation mode (AM)
devices (Figure 3b); also from an analytical point of view, they can be modelled from AM device
descriptions, since the current flowing in the device can be decomposed into two components: a bulk
and an accumulation current [114,115]. When the gate voltage is greater (in absolute value) than the
threshold voltage, partial depletion takes place creating a path in the substrate for the bulk current.
When the gate voltage reaches the flat band voltage, the whole channel becomes conductive (ON state),
and an accumulation current starts to form at the semiconductor/insulator interface [112].

Figure 3. Current behavior in (a) inversion mode (IM), (b) accumulation mode (AM), and (c)
junctionless transistors.

The threshold and flat band voltages are of critical importance, since they determine the operating
range of the device [2]. The threshold voltage can be extracted as the gate voltage at which the curve
gm/ID (where gm is the transconductance) drops to half of its maximum value [116]. It increases
(in absolute value) with increasing doping, while decreasing with increasing gate oxide thickness,
nanowire width, and length [117]. An analysis of the doping concentration influence on the threshold
voltage is also reported in [118]: by increasing the doping concentration from 1 × 1014 cm−3 to
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1 × 1018 cm−3, the threshold voltage decreases from 0.455 V to 0.37 V; this could be attributed to the
fact that, for high doping concentration, more carriers are available for the same gate voltage. An
interesting characteristic of the flat band voltage is the dependency on the temperature. A detailed
analysis of this parameter is presented in [119,120], in which it is shown that the flat band voltage
decreases as the temperature increases. For low temperature (4.2 K) and high doping concentration (1
× 1019 cm−3), the thermal energy is not strong enough to ionize all of the dopants. This results in an
incomplete ionization that causes the series resistance to increases (Figure 4) and the drain current to
decrease.

Figure 4. Junctionless nanowire resistance model representation.

As reported in [121], junctionless nanowire transistors present a reduction of short channel
effects as compared to inversion mode devices, but they are highly sensitive to the series resistance.
The simulation of junctionless NWs with channel length of 100 nm and doping concentration of
1 × 1019 cm−3 provided an intrinsic source/drain resistance of 5.5 kΩ. By decreasing the doping to
5 × 1018 cm−3, the resistance reached a value of 11 kΩ. The performance of junctionless nanowire
transistors can also be affected by current leakages that are associated to gate tunneling. The latter
phenomenon is directly proportional to the length and width of the transistor (so to the gate surface
area), and to the temperature [122,123].

Because the current in junctionless transistors flows far from the gate oxide/channel interface, the
mobility degradation is minimized. This is one of the main advantages of depletion-based junctionless
transistors with respect to the conventional ones [124]. Enhanced mobility in junctionless NWs was also
attributed to the reduction of the scattered impurities that are caused by an overall smaller charge of
ionized impurities [125]. Junctionless NWs were also investigated in terms of crystal orientations and
material channel (germanium and silicon) and compared to inversion mode devices; the junctionless
NW found to be less sensitive to short channel effects, presenting smaller SS, reduced DIBL, and
higher Ion/Io f f than inversion mode transistors. As compared to silicon JLTs, germanium junctionless
NWs were observed to be slightly more sensitive to short channel effects, but more competitive from
an electrostatic control point of view [126–128].

3.2. Gate-All-Around

Figure 5 shows a schematic of a cylindrical junctionless Gate-All-Around transistor. The device,
as the name suggests, is characterized by a channel entirely surrounded by the gate. The channel
geometry determines the complexity of the equations that are needed to model the device behavior. In
this case, the solutions to the Poisson equations are more complex, since cylindrical coordinates have
to be introduced [26,31]. Additionally, GAAFETs with rectangular channels are reported, but they
suffer from performance degradation due to corners effects [25]. An important parameter in the design
of GAAFETs is the channel length. For a channel length reduction from 40 nm to 16 nm, the DIBL
increases from 12 mV/V to 123 mV/V, while the SS increases from 62 mV/dec to 82 mV/dec [29].
The channel radius determines the device speed; lower radius corresponds to faster operation [26].
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Figure 5. Three-dimensional (3D) structure of a cylindrical junctionless GAAFET.

With respect to inversion mode devices, junctionless GAAFETs generally present higher Ion/Io f f
ratio and less short channel effects [25,30]. Regarding the low-frequency noise (LFN) behavior,
junctionless GAAFET is almost not sensitive to gate bias and doping concentration variations [28].
Instead, the intrinsic gain and cutoff frequency were observed to be degraded by the hot carrier effect;
a relative degradation of 15.44% for both of the analog parameters was reported [32]. The designer
could improve the analog performance (small signal parameters and drain current drivability) by
adding source and drain extensions, as shown in Figure 6 [24]. The structure that is depicted in Figure
5 can be further modified in order to increase the device performance. For example, a gate insulator
made of hafnium oxide (H f O2) instead of silicon oxide (SiO2) can enhance the DIBL and the SS [27].

Figure 6. Cross-sectional view of improved cylindrical GAAFET through addition of source and drain extensions.

Apart from engineering the gate oxide structures, the designer could also increase the number
of gates. If two gates are present, the structure is defined as a twin gate transistor (Figure 7).
Such a structure allows implementing logic gates easily since two inputs are present [34]. The twin
gate structure can also be applied to a double channel GAAFET, as shown in Figure 7b. A fabricated
twin gate double channel GAAFET showed an Ion/Io f f ratio of 7 × 108, a DIBL of 83 mV/V, and a SS
of 105 mV/dec [33]. Besides silicon and polysilicon channel junctionless GAAFETs, devices composed
of other materials were also reported: a gallium arsenide junctionless GAAFET was simulated, leading
a SS value near to the theoretical limit (58.2 mV/dec at 293.15 K) [27]. A germanium junctionless
GAAFETs was compared to a silicon one, and it provided lower DIBL, SS and Ion/Io f f ratio (data
in Table 1) [35]. The channel material composition also influences the threshold voltage sensitivity
to the temperature: considering silicon, gallium arsenide, indium arsenide, and indium phosphide,
the minimum and maximum threshold voltage variations were observed for indium arsenide and
silicon, respectively [37].
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Figure 7. 3D Structure of (a) twin gate single channel GAAFET, (b) twin gate double channel GAAFET.

It is possible to use strain technology in order to further increase the device performance; a layer
of SiN is deposited and, depending on the deposition conditions, the strain could be compressive or
tensile [36]. The figures of merit of reported junctionless GAAFETs are presented in Table 1.

Table 1. Reported figure of merits of junctionless GAAFETs. Lch and Wch are the channel length and
width, respectively.

GAAFET Lch
(nm)

Wch
(nm)

ND
(cm−3)

SS
(mV/dec)

DIBL
(mV/V) Ion/Ioff Ref. Year

Si - 21 1.5 × 1019 70 35 >106 [25] 2013

Si 20 10 2 × 1019 70.94 60.40 4.3 × 105 [35] 2014

Ge 20 10 2 × 1019 67.88 39.6 5 × 105 [35] 2014

PolySi 20 45 - 105 83 7 × 108 [33] 2015

Si (tensile) - 20 - 65 - >109 [36] 2016

3.3. FinFET

Figure 8a shows a schematic of a bulk junctionless FinFET. The device can also be fabricated
on the top of an insulator layer, as shown in Figure 8b. In that case we define it as an SOI FinFET.
Dimensions of these transistors strongly affect their performance. Considering bulk junctionless
FinFETs, increasing the fin width (W) from 6 nm to 15 nm can lead to a variation of approximately
60% and 42% for DIBL and SS, respectively; changing the gate length (LG) from 12 nm to 21 nm can
lead to a variation of approximately 52% for DIBL and 14% for SS [12]. Variations in the fin height
(H) are more critical in terms of analog performance [19]. With respect to the inversion mode device,
the junctionless FinFET presents lower Io f f . This is attributed to the low carrier concentration and
high electric field in the middle of the channel in the OFF state. As compared to SOI FinFETs, the bulk
structure presents an additional degree of freedom in the design: by varying the doping concentration
of the substrate from 1 × 1018 cm−3 to 1 × 1019 cm−3, a change of 30% in the threshold voltage can be
obtained [4]. Furthermore, it also provides lower SS and DIBL. From an analytical point of view, it
can be modeled from conventional triple gate (TG) structures [3,20]. An alternative structure is the
so-called SON (Silicon On Nothing). In this structure, the silicon layer is isolated from the substrate
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through a selective etching. This design choice implies a more complex fabrication process with respect
to the bulk structure [5].

GATE

SOURCE

DRAIN

OXIDE 

H

W

L G

(a)

SUBSTRATE INSULATOR

(b)

SUBSTRATE

OXIDE 

SOURCE

GATE

DRAIN

Figure 8. 3D FinFET structure: (a) bulk, (b) SOI.

The designer could follow different approaches in order to optimize junctionless FinFETs: work
function engineering of the gate to reduce Io f f (by changing the gate work function from 4.5 eV
to 5.4 eV, Io f f can be reduced by five order of magnitudes) [7]; spacer engineering to improve
performance (e.g., dual-k spacers architecture can provide an improvement in Ion by 72.5% and
in DIBL by 37.8%) [9]; doping engineering by using a Gaussian doped channel, which can lead to an
increase in Ion by 21.1% [10,13], or a lightly doped channel, which allows for better gate control on the
device [11]; gate oxide engineering to provide higher performance (in terms of Ion/Io f f and DIBL) by
the implementation of complex hetero gate oxide structures [8]. For example, the double hetero gate
oxide (DHGO) presented in Figure 9 can obtain a higher Ion/Io f f with respect to conventional and
triple/quadruple hetero gate oxide (THGO/QHGO) structures.

GATE

OXIDE 1 

OXIDE 2 

DRAIN

SOURCE

Figure 9. 3D double hetero gate oxide FinFET structure.

Besides the number of hetero gate oxides regions, it is also important to consider their dielectric
constant value: for high values (k = 40) the DIBL is reduced and the analog performance is
degraded [14]. Instead, dual-k structures with intermediate values of the dielectric constant (k = 22,
H f O2) provide better performance with respect to those with low dielectric constant (k = 3.9, SiO2)
when considering random dopant fluctuation in the fin [16]. The latter is a critical phenomenon,
especially for junctionless FinFETs, since they are more likely to be affected by random dopant
variability [17]. Moreover, random dopant fluctuations and work function variability are considered to
be more dominant with device dimension scaling [18]. It is important to note that the results reported
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for the junctionless FinFETs do not necessarily hold for the other junctionless transistors: for instance,
the threshold voltage of junctionless FinFETs is more sensitive against work function variations as
compared to that of junctionless GAAFETs [15].

FinFETs were analyzed by considering different materials for the device layer. A FinFET made
of polycrystalline silicon is reported as a cost-effective solution with respect to silicon devices [22]. A
GaAs FinFET with Io f f of 1 × 10−15 A compared to a silicon FinFET with an Io f f of 1 × 10−8 A was
proposed. The better performance was attributed to the higher depletion of carriers when the device
is in the OFF state [21]. More complex structures were reported: InGaAs junctionless FinFET with
alloyed Ni-InGaAs source and drain [23]. Table 2 presents the main figure of merits of the reported
FinFETs.

Table 2. Reported figure of merits of junctionless FinFETs. EOT is the equivalent gate oxide thickness,
while k is the gate oxide dielectric constant.

FinFET LG
(nm)

H
(nm)

EOT
(nm)

ND
(cm−3)

SS
(mV/dec)

DIBL
(mV/V) Ion/Ioff Ref. Year

Bulk (H f O2, k = 22) 15 10 1 1.5 × 1019 73.1 40.4 1 × 105 [6] 2013

SOI (H f O2, k = 22) 15 10 1 1.5 × 1019 84.1 119.2 - [6] 2013

Bulk 15 10 1 1.5 × 1019 - - 2.9 × 107 [7] 2014

Bulk (H f O2, k = 22) 15 10 1 1 × 1018 78.27 95.48 - [5] 2017

SOI (H f O2, k = 22) 15 10 1 1 × 1018 87.3 121.65 - [5] 2017

SON (H f O2, k = 22) 15 10 1 1 × 1018 63.2 82.68 1 × 105 [5] 2017

SOI (SiO2, k = 3.9) 5 6 1 1 × 1019 61.5 20 - [14] 2017

SOI (TiO2, k = 40) 5 6 1 1 × 1019 63.3 12.5 - [14] 2017

Single (SiO2, k = 3.9) 13 6.4 0.64 1 × 1019 66.659 23 ∼1.3 × 108 [16] 2017

Dual (k = [3.9, 22]) 13 6.4 0.64 1 × 1019 64.959 11 ∼2.7 × 108 [16] 2017

InGaAs 60 28 2.1 1 × 1019 96 106 5 × 105 [23] 2018

w/o HGO (k = 3.9) 14 5 1.5 5 × 1019 70 52 1 × 109 [8] 2019

DHGO (k = 22) 14 5 1.5 5 × 1019 64 20 4.13 × 1012 [8] 2019

THGO (k = 9) 14 5 1.5 5 × 1019 64 20 2.08 × 1012 [8] 2019

QHGO (k = 7.5) 14 5 1.5 5 × 1019 64 20 2.7 × 1011 [8] 2019

3.4. Single Gate

The single gate junctionless transistor presents two types of structures, i.e. bulk and SOI, as shown
in Figure 10. The bulk structure provides more control on the device characteristics because of the
possibility to dope and bias the bulk well [38]. When considering an n-type JLT with p-type bulk, it is
possible to improve the hot carrier effect, thus reducing the Io f f current by positively biasing the well.
On the other hand, by increasing the bulk bias, the threshold voltage can be decreased while increasing
DIBL and SS. The degradation is even more relevant if the channel length is below 20 nm [40]. If
the substrate doping concentration is high, then the Io f f current is minimized [44]. Moreover, it has
to be considered that bulk junctionless transistors present reduced effective thickness, as compared
to SOI; if a bulk SGJLT has a physical thickness of 10 nm, the effective thickness is 5 nm, because
of the built-in junction potential [38]. With respect to the SOI structure, the bulk SGJLT presents
improved analog performance: improved output transconductance, output resistance, Early voltage,
and intrinsic gain [39]. When compared to junction transistors, the junctionless ones were observed
to be more sensitive to the TSi/WSi ratio, and to provide a lower Ion. This is attributed to the highly
doped channel, which increases the scattering effect, thus lowering the mobility [42].
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Figure 10. Cross-sectional view of a single gate junctionless transistor: (a) bulk, (b) SOI.

More options are available to the designers in order to optimize the SGJLT; gate work function
engineering can lead to an improvement of 29% in the Ion/Io f f ratio [41], while a non-uniform
(Gaussian) doping concentration through the device layer can reduce the Io f f [43].

As for FinFETs and GAAFETs, an improvement of the electrostatic characteristics of the transistor
can be obtained by implementing high-k spacers, as shown in Figure 11a. The high-k spacers enhance
the fringing electric fields; as a result the device is depleted not only below the gate but also laterally.
This implies an increment of the effective channel length, which, in terms, improves the SS [45].
Designers can also enhance the transistor mobility and currents through S/D engineering and dual-k
spacers structures [46,47].

SOURCE DRAIN

GATE
OXIDE 

DEVICE LAYER
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BOX

(a)

HIGH-K SPACER HIGH-K SPACER

SOURCE DRAIN

GATE
OXIDE 

DEVICE LAYER

SUBSTRATE
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(b)

SELBOX

Figure 11. Cross-sectional view of: (a) Single Gate junctionless transistor (SGJLT) with high-k spacers.
(b) SGJLT with SELBOX.

A variant of the conventional SOI structure is the SELBOX (selective buried oxide), as shown
in Figure 11b. This oxide configuration improves the transistor thermal isolation, allowing for an
increment for the Ion/Io f f of 6 orders of magnitude (from 2.31 × 103 to 1.5 × 109) [48]. Moreover, the
SELBOX architecture increases the gate control on the device, since a pn junction is formed between the
highly doped channel and the substrate. The junction enhances the device layer depletion. Designers
could also add a metal layer on the top of the BOX layer. This enables the formation of a Schottky
junction that could help to fully deplete the transistor in the OFF state [50]. Regarding leakages in
junctionless transistors, one of the most critical cause is associated to the parasitic BJT (bipolar junction
transistor), as depicted in Figure 12. As electrons tunnel from the valence band to the conduction band
(band-to-band-tunneling), they leave holes in the channel that can raise its potential. This phenomenon
triggers a parasitic BJT between the source, the channel, and the drain in the OFF state [49].

The holes that accumulated in the floating body of the channel can cause a forward bias of the
junction associated to the source/channel regions; if this bias turns on the parasitic BJT, then a large
leakage current is observed. A possible solution is to employ thin film transistors (Section 3.6), which
can reduce the band-to-band-tunneling and, therefore the associated leakage.
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Figure 12. Parasitic bipolar junction transistor (BJT) in single gate junctionless transistor.

3.5. Double Gate

Figure 13 shows the structure of a double gate junctionless transistor. Many models were proposed,
and the difference among them depends on the approximations that are involved in the derivation
and the considered effects. For instance, many models do not consider short channel and quantum
effects [53,55,58,66], while others are only valid for certain doping concentrations and device layer
thickness ranges [59,61]. Quantum effects are critically important, because they can affect the threshold
voltage [74]. The main issue is modeling the transition between the depletion and the accumulation
regions, since the physical behavior is not the same in the two operating regions [56]. A technique
involving high doping concentration in the device layer can be considered to reduce the model
complexity. This assumption allows for simplifying the depletion width modeling or using the
separation of variable in the Poisson equation [62,67].

SOURCE DRAIN

GATE OXIDE 

DEVICE LAYER

GATE
OXIDE 

Figure 13. Cross-sectional view of a double gate junctionless transistor.

A model that describes the current in all of the conduction regimes was proposed in [51]. It was
validated for symmetrical long channel DG JLTs and describes the device behavior with a continuous
current model. Regarding p-type devices, a threshold voltage model was proposed by [52]. They
observed that the threshold voltage increases in absolute value as the device layer thickness, the doping
concentration and the oxide thickness are increased. Extracting the threshold voltage and the current
is therefore important in order to decide the doping concentration, and the gate oxide and device layer
thicknesses [54]. Regarding the device performance, it could be negatively affected by the BTBT, which
increases the leakage current. A design choice that improves the performance is the implementation of
a thicker gate oxide near the gate edges (Figure 14). It was observed that by modifying the gate oxide
structure, the energy bands of the carriers under the gate are modified as well, resulting in a reduction
of the leakage current [69].
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Figure 14. Modified Double Gate junctionless transistor (DG JLT). The gate oxide is thicker near to the
gate edges.

The leakage current is lower in double gate junctionless transistors than in SGJLTs [43]. As reported
in Table 3, the DGJLT presents better performance both for uniform and non-uniform (Gaussian) doping
concentrations.

Table 3. Comparison between SGJLT and Double Gate (DGJLT) in terms of Io f f for uniform (1 × 1019

cm−3) and non-uniform (Gaussian) doping concentration [43]. TSi is the device layer thickness.

Structure Lch
(nm)

TSi
(nm)

ND
(cm−3)

σ
(nm)

Ioff
(A/µm)

Single Gate 20 10 uniform 0 2.16× 10−4

Double Gate 20 10 uniform 0 1.49× 10−11

Single Gate 20 10 non-uniform 6 1.31× 10−9

Double Gate 20 10 non-uniform 6 1.48× 10−15

Designers could also implement stacked-oxide structures. When compared to the conventional
architecture, they present higher Ion/Io f f , lower SS and DIBL [57,65]. By choosing a high dielectric
constant material (e.g., H f O2), a reduction of the leakage current as well as an improvement of the
analog parameters could be observed [63,70]. Besides gate oxide engineering, spacer engineering
could lead to a performance improvement. Spacers have an influence on the lateral extension of the
depletion width and, therefore, on the effective channel length [72,73]. A simpler approach is doping
concentration engineering. It was reported that a concentration of 1 × 1018 cm−3 can significantly
reduce the threshold voltage sensitivity by 70–90% with respect to the device layer and gate oxide
thickness [68]. Graded doping profile can reduce Io f f by six orders of magnitude [71]. To correctly
model JLTs, it is important to also model the carrier mobilities. The main issue is that the bulk mobility
is lower than the accumulation one, because of screening effects. The accumulation mobility can be
extracted by taking the second derivative of the 1/Iacc curve. The bulk mobility can be computed by
knowing the flat band voltage [64]. The mobility values can be degraded in case high voltages are
applied [60]. Moreover, the implementation of complex equations (Schrödinger) is required, as well as
the knowledge of parameters, such as impurities and surface roughness scattering mechanisms [75].

3.6. Thin Film

Thin film junctionless transistors are characterized by an ultra-thin channel thickness (≤10 nm)
and very high doping concentration (≥1 × 1019 cm−3). The thin film is better for obtaining the full
depletion in the OFF state, while the high doping concentration ensures high current to flow in the
device [77]. An important characteristics of these transistors is their device layer material composition;
the majority of reported thin film transistors has polycrystalline silicon as channel material [79,82,84,85].
Therefore, they are identified based on the channel thickness (ultra-thin) and material composition
(polysilicon). When considering polysilicon instead of silicon, an important difference arises: the
polycrystalline silicon is composed of many crystallites connected by grain boundaries, as shown in
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Figure 15a. When electrons get trapped in these boundaries (Figure 15b), a space charge potential ΦB
is formed. The stability of this potential depends on the applied drain voltage. If the latter is too high,
trapped electrons could become unstable. The electrons instability influences the grain boundaries
potential, which causes oscillation in the drain conductance. This phenomenon is more critical in TFTs
with double gates, since the higher mobility allows for the electrons to easily destroy the trapped
ones, and increase the oscillation [81]. Designers can limit this phenomenon by increasing the doping
concentration [76].

When compared to junction TFTs, the junctionless ones present smaller transconductance gm

and drain conductance gd. This implies larger Early voltage, improved low frequency noise and
higher signal-to-noise ratio (SNR) [78,83]. The performance of thin film junctionless transistors mainly
depends on the film thickness and the doping concentration. A high doping concentration ensures
high Ion, but it also lowers the SS since high carriers concentrations could screen the electric field
induced by the gate. The SS also decreases with reduction in device layer thickness [86]. In addition,
the temperature can significantly affect the device performance; when the temperature increases,
the threshold voltage decreases (in absolute value) and the SS increases. This is attributed to the fact
that the energy band gap Eg decreases with temperature, thus increasing the carrier concentration [80].
Table 4 presents the figure of merits of the reported thin film junctionless transistors.

Figure 15. (a) Crystallites organization in polycrystalline films. (b) Energy band diagram showing the
trapped electrons in the grain boundaries.
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Table 4. Reported figure of merits of junctionless thin film transistors.

Thin Film Lch
(nm)

TSi
(nm)

ND
(cm−3)

SS
(mV/dec)

DIBL
(mV/V) Ion/Ioff Ref. Year

Single Gate 400 10 ≥1 × 1019 240 - >1 × 107 [76] 2011

NW GAA 1000 12 - 199 - 5.2 × 106 [82] 2011

NW GAA (IM) 1000 12 - 184 - - [82] 2011

Single Gate 400 9 - 309 161 8 × 107 [83] 2012

Single Gate (IM) 400 50 - 326 277 3.2 × 104 [83] 2012

NW GAA 60 2 3 × 1019 61 6 1 × 108 [84] 2013

Single Gate 1000 10 - 329 - 1.4 × 105 [79] 2014

Double Gate 1000 10 - 160 - 1.1 × 107 [79] 2014

NW GAA 200 0.65 8 × 1018 (NA) 43 <0.4 >1 × 108 [85] 2017

3.7. Tunnel FET

Figure 16 shows the structure of a junctionless tunnel field effect transistor. The device is uniformly
and highly doped. The middle gate acts as a control gate, while fixed voltages are applied at the side
gates. When considering an n-type device, the tunneling effect can be triggered by correctly fixing
the voltages on the side gates, where the source, channel, and drain regions (n-n-n) are converted
into a (p-i-n) structure. When a certain control voltage is applied, the barrier between the source
and the channel becomes narrower. As a result, current flows because of tunneling. Therefore, the
conduction mechanism is different with respect to the other JLTs, since it is not based on depletion.
The high-k dielectric below the gate (Si3N4, k = 7.5) improves the internal electric field, and, thus,
the gate control [94]. The low-k spacers (SiO2, k = 3.9) are used to isolate the gates; by increasing
the dielectric constant of the low-k spacers, it is possible to reduce Io f f [87]. Increasing the device
layer doping concentration leads to an increment of both Ion and Io f f , with the latter being more
sensitive to doping variations. Decreasing the doping concentration leads to an improvement of the
SS, since its value decreases from 290 mV/dec to 47 mV/dec as the doping concentration decreases
from 2 × 1019 cm−3 to 1 × 1019 cm−3. Therefore, one of the main advantages of junctionless TFETs is
the possibility to achieve sub 60 mV/dec SS. Channel length reductions cause an increment of DIBL,
and so of the Io f f [87].

Figure 16. Cross-sectional view of a junctionless tunnel field effect transistor.

Regarding double gate junctionless TFETs (Figure 17), the increment of the dielectric constant k
leads to an improvement of Ion. Increasing the insulation layer thickness causes an improvement in
both Ion and SS. However, this design choice leads to an increment of the parasitic capacitances [88,92].
To improve the robustness of junctionless TFETs, it is possible to selectively introduce dielectric
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materials in the gate oxide, which can reduce the variations in the coupling capacitance, allowing
for higher immunity in terms of sensitivity [93]. The performance can be further increased by
implementing dual-material gate (Figure 17a) or heterojunctionless structures (Figure 17b). The
energy bandgap of these structures leads to higher Ion and Ion/Io f f , and lower SS [89–91]. Besides
silicon, other materials were used for the device layer: a junctionless TFET made of indium arsenide
was proposed [96]. The figure of merits of the reported junctionless transistors are collected in Table 5.

SOURCEDRAIN DEVICE LAYER

GATE 2
HIGH-K
DIELECTRIC

HIGH-K
DIELECTRIC

GATE 2

GATE 1
MATERIAL 1

GATE 1
MATERIAL 2

GATE 1
MATERIAL 1

GATE 1
MATERIAL 2

SOURCEDRAIN

GATE 2
HIGH-K
DIELECTRIC

HIGH-K
DIELECTRIC

GATE 2GATE 1

GATE 1

MATERIAL 1 MATERIAL 2

(a) (b)

Figure 17. Cross-sectional view of: (a) JLT Tunnel FET (JLT TFET) with dual-material gate. (b) JLT TFET
heterojunctionless.

Table 5. Reported figure of merits of junctionless tunnel field effect transistors.

Tunnel FET Lch
(nm)

TSi
(nm)

N
(cm−3)

SS
(mV/dec)

DIBL
(mV/V) Ion/Ioff Ref. Year

DG 25 5 2 × 1019 24 38 4.08 × 109 [95] 2013

DG (La2O3, k = 30) 20 5 1 × 1019 ∼87 − ∼3.5 × 108 [88] 2013

DG (H f O2, k = 25) 20 5 1 × 1019 ∼91 − ∼3 × 108 [88] 2013

DG (TiO2, k = 80) 20 5 1 × 1019 ∼70 − ∼6 × 108 [88] 2013

DG (AlGaAs : Si) 20 5 1 × 1019 ∼41 − ∼1 × 108 [90] 2014

DG 20 5 1 × 1019 ∼23 − ∼1 × 1010 [92] 2014

DG 20 5 1 × 1019 84 − 8 × 107 [89] 2014

DG (Ge) 20 5 1 × 1019 26 − 2 × 1010 [89] 2014

DG (GaAs : Si) 20 5 1 × 1019 74 − 2 × 108 [89] 2014

DG (Si : Si.3Ge.7) 20 5 1 × 1019 32 − 8 × 106 [89] 2014

DG (Si : InAs) 20 5 1 × 1019 44 − 8 × 105 [89] 2014

DG (GaAs : Ge) 20 5 1 × 1019 16 − 2 × 1012 [89] 2014

SG (InAs) 20 10 1 × 1019 7 86 ∼2 × 1010 [96] 2016

DG (AlGaAs : Si) (H f O2) 20 5 1 × 1019 48.2 − ∼1 × 108 [94] 2017

DG (AlGaAs : Si) (La2O3) 20 5 1 × 1019 47.2 − ∼1 × 108 [94] 2017

DG (AlGaAs : Si) (TiO2) 20 5 1 × 1019 43.9 − ∼1 × 108 [94] 2017

Dual-Material DG 20 5 1 × 1019 60 − − [97] 2019

4. Conclusions

In this work, junctionless transistors that were proposed over the last decade were studied. In
particular, the influence of the technological parameters on the main figure of merits (Ion/Io f f , DIBL,
and SS) were analyzed. Design techniques, such as oxide/doping/spacers engineering, have been
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reported. Depending on the design choices, all of the typologies of junctionless transistors can present a
high Ion/Io f f ratio, as well as quasi-ideal subthreshold swing and optimal values of DIBL. Therefore, it
is not possible to determine the best junctionless transistor solely based on the performance parameters.
In general, a flexible optimization is associated to the more complex structures. The TFET is difficult
to design, since the gate voltages need to be set carefully, and the work function differences must
guarantee the tunnel behavior. The DGJLT has a less complex structure compared to TFET, and it
presents an additional degree of freedom and enhanced gate control with respect to SGJLT and TFT.
The SGJLT has a simple structure, but its performance is not comparable with the other junctionless
transistors because of its reduced flexibility in terms of structure engineering. The TFT only presents
high performance parameters if the device layer is highly doped and made of very thin polysilicon.
FinFETs provide more flexibility in terms of structure engineering as compared to nanowires. The
electrostatic control of both nanowires and FinFETs can be increased by surrounding the entire channel
with the gate (GAA configuration). Regardless of the structure, junctionless transistors present
easier fabrication process and competitive performance when compared to the junction transistors.
As junctionless transistors are capable of reaching quasi-ideal subthreshold swing, optimal DIBL
values, and high Ion/Io f f ratio, it is expected that they will replace junction-based electronic devices
in the following decade. Junctionless transistors are, therefore, the main candidates to become the
conventional field effect transistors of the future.
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FET Field Effect Transistor
GAA Gate-All-Around
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LFN Low Frequency Noise
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TFET Tunnel Field Effect Transistor
TFT Thin Film Transistor
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