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Abstract: The proliferation of various connected platforms, including Internet of things, industrial
control systems (ICSs), connected cars, and in-vehicle networks, has resulted in the simultaneous
use of multiple protocols and devices. Chaotic situations caused by the usage of different protocols
and various types of devices, such as heterogeneous networks, implemented differently by vendors
renders the adoption of a flexible security solution difficult, such as recent deep learning-based
intrusion detection system (IDS) studies. These studies optimized the deep learning model for their
environment to improve performance, but the basic principle of the deep learning model used was not
changed, so this can be called a next-generation IDS with a model that has little or no requirements.
Some studies proposed IDS based on unsupervised learning technology that does not require labeled
data. However, not using available assets, such as network packet data, is a waste of resources. If the
security solution considers the role and importance of the devices constituting the network and the
security area of the protocol standard by experts, the assets can be well used, but it will no longer
be flexible. Most deep learning model-based IDS studies used recurrent neural network (RNN),
which is a supervised learning model, because the characteristics of the RNN model, especially when
the long-short term memory (LSTM) is incorporated, are better configured to reflect the flow of the
packet data stream over time, and thus perform better than other supervised learning models such
as convolutional neural network (CNN). However, if the input data induce the CNN’s kernel to
sufficiently reflect the network characteristics through proper preprocessing, it could perform better
than other deep learning models in the network IDS. Hence, we propose the first preprocessing
method, called “direct”, for network IDS that can use the characteristics of the kernel by using the
minimum protocol information, field size, and offset. In addition to direct, we propose two more
preprocessing techniques called “weighted” and “compressed”. Each requires additional network
information; therefore, direct conversion was compared with related studies. Including direct,
the proposed preprocessing methods are based on field-to-pixel philosophy, which can reflect the
advantages of CNN by extracting the convolutional features of each pixel. Direct is the most intuitive
method of applying field-to-pixel conversion to reflect an image’s convolutional characteristics in
the CNN. Weighted and compressed are conversion methods used to evaluate the direct method.
Consequently, the IDS constructed using a CNN with the proposed direct preprocessing method
demonstrated meaningful performance in the NSL-KDD dataset.
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1. Introduction

Since the advent of the Internet of things (IoT), various platforms have been proposed. For example,
Industrial Control System (ICSs) are gradually evolving into intelligent and autonomous systems.
In the ICS field, the concept of Industrial IoT (IIoT) was proposed based on IoT. The IIoT communicates
with various sensors and manages critical infrastructure and has a larger network scale than existing
systems. For Industry 4.0, Germany proposed a smart environment to accelerate the development
of ICSs; currently, concepts such as smart cities and smart factories are becoming more specific and
realistic. Wireless Sensor Networks (WSNs) are sometimes treated as part of the IoT as a mesh network.
Regardless of whether or not WSNs belong to IoT, they are treated as part of the IoT because various
sensor devices are combined within WSNs to construct a network. The ecosystem in which networks
are built with IoT devices around Artificial Intelligence (AI) speakers also has similar characteristics.
AI speaker ecosystems are also being studied for security technologies such as digital forensics [1].
The features of many recently introduced devices, such as the strong connectivity, require flexible
preprocessing techniques. Other studies demonstrated that a correct preprocessing method is required
to apply intrusion detection systems (IDSs) to communication data in a WSN [2]. Software-defined
networks (SDNs) continue to be developed; as a connecting platform, a network constructed using
applications generates a variety of communication data due to the communication between applications.
A network attack detection study was conducted in a data-driven SDN [3]. Automotive networks
are transitioning from mixing Ethernet and legacy protocols. Therefore, autonomous vehicles should
use learning-based applications such as convolutional neural networks (CNNs) through processing
units such as field programmable gate array (FPGA) to apply novel detection technologies [4]. FPGAs,
which are at least 10 times more energy efficient than graphics processing units (GPUs), are widely
used for object recognition in hard conditions such as advanced driver assistance system [5].

In the past, only critical infrastructure such as the ICS required heterogeneous communication.
However, since the advent of the IoT, networks requiring massive connectivity, such as IIoT and Smart
Factory, have increased. Now, it is generally accepted that various types of devices communicate with
each other in common network environments as well as in ICS environments. This communication
scheme is expected to increase in the near future. The increasing number and type of connected devices
are advantageous to automated systems, which has allowed massive connected heterogeneous networks
to be created. The heterogeneity and connectivity, characteristics of IoT and ICS networks composed
of various devices, provide convenience and allow different protocols to be used simultaneously.
The constraints due to the use of different protocols have posed challenges for developing, applying,
and updating security solutions. A typical security solution that aims at only a single protocol will
not be able to provide macroscopic security. If multiple applications are applied, heterogeneous
redundancy is difficult to maintain, thus resulting in vulnerabilities. The heterogeneity of ICS networks
is an essential feature that should be considered when building a flexible security solution [6].

The ICS was initially operated in a closed network and required only basic level security. However,
security requirements are increasing with security threats. An example of a security requirement
enforcement is that in 2018, the North American Electric Reliability Corporation fined Duke Energy
USD $10 million for a cybersecurity failure related to critical infrastructure protection [7]. Another
example is a hacking group called Xenotime, formerly known as TRISIS malware, that targeted ICSs [8],
which again attempted to attack the US grid in June 2019 [9]. Security threats are not the only risks
facing ICSs. If a staff’s premature operation can cause danger, an alert should be sent as an anomaly.
Cases of manual shutdown of nuclear reactors have been reported [10]. In these incidents, the situation
was identified and a manual shutdown was performed due to abnormal temperature. However,
the system should have found the command that caused the error to be an anomaly.

There are various other IoT platforms such as consumer IoT and commercial IoT, and all IoT
platforms are based on wireless communication. However, compared to the rapidly developing
wireless communication technology level from 4G to 5G and 6G, the security of IoT devices has not kept
pace. The main differences between traditional IT and IoT are the increased complexity and connectivity.
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For example, massive machine-type communications (mMTC) means that the heterogeneity of the
current IoT network will become increasingly complex. In the communication method, the orthogonal
frequency division multiplexing (OFDM) used in 4G and the non-orthogonal multiple access (NOMA)
proposed to satisfy the performance requirements of 5G have increased connectivity and will continue
to do so in the future. Ideally, each IoT device should have optimized security solutions, but the
vendor’s inadequate technical expertise and insufficient performance of each device is not enough to
provide security. To overcome the above limitations, a suitable method to apply security to IoT is the
use of a router or cloud that is the center of distributed devices. Commercial IoT security products are
sold with security solutions installed on router devices, and studies showed that the devices with the
highest quality links will be appropriate for security when IoT is applied [11]. Routers and clusters are
examples of these; since they communicate with many IoT and even IIoT devices [12], they require
flexible security technologies.

We define a flexible security solution as a universally applicable security solution based on
minimum requirements. The minimum requirements mean basic information that can be easily
provided or obtained, such as a communication protocol. Examples of basic information are those that
do not require a security expertise, such as size and offset information of protocol fields defined by
the standard. If the communication-protocol-related items defined by the communication standard
are not properly followed, communication between products will not work and the communication
will operate poorly. Therefore, minimum requirements are the most accessible and basic information
with which all devices in the network must comply. However, security standards that are defined
and regularly updated by many researchers and organizations, such as international standards
organizations, NERC-CIP, and CERT, are usually not properly maintained [13,14]. As security-related
matters are difficult to confirm until an accident occurs, this is more fatal in a massive-connected
network environment such as the IoT and ICS. In other words, an attacker can adversely affect
the network even if only one vulnerable attack point is secured [15]. We defined the flexible IDS
conditions for connected/heterogeneous networks as follows: if a solution needs a security expertise
to apply a security to network, it is not flexible. However, if the characteristics of the network are
not properly reflected, the performance of the security solution deteriorates. As a countermeasure,
many security technologies have been proposed, from simple rule/signature-based whitelist/blacklist
to anomaly detection (AD) or IDSs. However, applying the proposed novel security technologies
to ICS is challenging [16]. Unlike general network environment, the IoT, ICSs, and even in-vehicle
networks (IVNs) must have security techniques that comply with rules such as hard-real time, reliability,
and availability.

To overcome these challenges faced by IDS, we propose preprocessing methods for CNN-based
IDSs using only minimum communication protocol information, and size and offset of the fields.
The remainder of this paper is structured as follows: Related studies are analyzed in Section 2. Studies
using NNs for network anomaly detection have constructed several models that are appropriate in
terms of performance such as CNN, recurrent neural network (RNN), long short-term memory (LSTM),
and autoencoder. Section 3 outlines the process of selecting a deep learning model that can reflect
the characteristics of the IoT environment and the preprocessing processes suitable for the model.
In Section 4, the performance of different methods is compared through various studies to demonstrate
the efficacy of the proposed methodology. The experiment used NSL-KDD [17], which is a network
packet dataset containing an attack. Finally, discussions and conclusions are provided in Section 5.

2. Materials and Methods

Recently, anomaly detection technology was developed due to the introduction of deep learning and
neural network (NN) concepts. These developments have been actively studied in ICS networks [18,19].
More research is being conducted on the IoT-related networks, but cases using supervised learning
models such as CNN are much less effective than hybrid (including semi-supervised) models or
unsupervised models because the supervised models require difficult resources such as accurate labels
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and anomalous data. However, NNs studied with sufficient data resources to provide, such as labels
and balance, generally have the highest accuracy when supervised [20]. CNN has rarely been used
in IDS among supervised models in a few cases. Some cases used CNN for feature extraction or
autoencoder encoding rather than as the main classifier because CNN is excellent for outlier detection
and spatiotemporal feature extraction from data [21]. Some studies built IDSs mainly using CNN,
but the resulting performance was worse than in other studies [22]. To effectively optimize a CNN for
IDS, the input data must be designed to sufficiently reflect the importance of the kernel. Since CNNs
work effectively on convolutional features like images, applying network packets as the data stream
does not have much significance.

IDS-targeting networks, such as IoT, IVN, and ICS, are also called network intrusion detection
systems (NIDSs) [23]. Proven datasets that contain attacks such as NSL-KDD and research to detect them
have contributed to NIDS research [24]. Initially, the KDD Cup 99 dataset was used in IDS technology
proposals [25]; however, the performance results are less reliable than those of the improved NSL-KDD
version. Currently, IDSs based on various machine-learning techniques compare performance using the
NSL-KDD dataset. When the NSL-KDD dataset was proposed, multiple detection methods were used
for its testing. The results indicated that support vector machine (SVM), with the lowest accuracy, was
the most robust to the dataset change from KDD Test to Test + as a result of the biased dispersion of the
dataset [26]. The results of this study indicated that the experimental results should be analyzed in
depth. A deep learning approach for IDSs was studied recently, but the applied model is still biased.
A method using an autoencoder has been widely used in IDSs from simple applications to an application
reflecting the characteristics of the network [18,19]. In RNN, LSTM is often used, which solves the
vanishing problem and improves the LSTM performance for network traffic [27,28]. However, although
CNNs are widely used for deep learning, they are rarely used in IDSs [29]. The performance has been
improved by combining different models to utilize each of the deep-running models [30]. However,
using multiple deep learning models is difficult in the IoT where real-time is more important than in any
other network. The biased trend of selecting a deep-running model indirectly indicates the appropriate
model for the network. However, the deep learning model used in IDSs, which targets typical networks,
cannot be equally applied to next-generation networks such as IIoT and IVN. Because they have unique
characteristics that distinguish them from general networks, the appropriate model must be selected.

Some IDS research has detected based on binaries. Malware has a specific execution structure
because it is an executable binary file. Additionally, the header, body, and footer of malware can be
distinguished by its specific structural characteristics. Malware classification is associated with IDSs
because using specific structures and patterns in binary executables is similar to using specific fields
and values in packets. However, comparing a particular structure to a field is highly general. Therefore,
studies using CNN, which is universally applicable, should be performed. A CNN-based malware
classifier uses images to visualize and distinguish malware [31]. The specific structure of malware
can be used to increase the detection rate [32]. However, relying on the variable areas of malware
can seriously damage a system. If the same attacking malware has a different structure through the
development of different methods, a CNN-based IDS will classify them as different malware and even
classify them as normal. However, ICS and IVN protocols can expect high use because the size of the
fields is mostly fixed.

3. Methodology

Protocols used in actual IoT networks are implemented according to standards; however,
the communication software differs from one another depending on the implementation methods.
The variety of available communication software makes it difficult to apply predefined security
methods. Building a secure application considering heterogeneity and variety requires a learning-based
application. Learning-based security applications should be based on appropriate learning models.
In this study, we implemented learning-based security applications that can consider heterogeneity
and variety.
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In this study, the CNN was selected for the following reasons: autoencoders, RNNs, and many
other add-on models, such as LSTM, can learn large amounts of data over a long period of time.
However, they cannot handle multiple protocols simultaneously. Various functions exist within a
single protocol but are rarely used in most cases. These characteristics of IoTs can be misleading when
constructing IDSs based on deep learning, and errors such as misunderstanding rarely used behaviors
as abnormal behaviors can easily occur. Even a CNN model does not have the specific strength to
handle a normal behavior that rarely occurs; such behavior is expected to be solved by combining the
CNN with the proposed preprocessing method. The CNN, i.e., a NN that can be learned by converting
an image or a binary enables re-scaling a specific feature in the preprocessing. This means that a
CNN’s input is regarded as binary with a specific pattern, rather than an image, when performing
artificial preprocessing. In the IoT environment, various types of devices are used and, accordingly,
the protocols used in a single station are subdivided into several levels. Not only do the position
and size of the field vary depending on the protocol, variable length within the same protocol is
also common. Therefore, the preprocessing method proposed herein is an independent method that
depends less on the protocol.

The preprocessing techniques are divided into three parts, but their basic frameworks are the
same. The proposed preprocessing method minimizes the field dependency. Consequently, we derived
a scheme that can distinguish each field but is independent of the subdivided meaning of the field.
However, even if each field is preprocessed without distinction, the resulting model should be able to
detect abnormal behaviors. The preprocessing scheme converts a packet data to an image, and the
pixels of the preprocessed image are designed so that they can fully affect the NN of each field.
Each field converted to an image occupies one pixel, and the pixels are converted to a convolutional
layer through a pooling layer. At this time, each pixel of the convolutional layer represents the
intersection of the fields. As the field is represented by one pixel, the convolutional layer denotes a
combination of various fields.

The NSL-KDD dataset used in this study has 41 fields as packet data in a csv file, and they are
preprocessed according to predefined rules such as the csv file. There are two types of fields, and they
are converted into two-dimensional images as follows:

1. Continuous: A field having a real value such as a “src/dst bytes”. This field type measures the
range of possible values. The maximum and minimum values of the range are normalized into
the range 0–255 because a grayscale two-dimensional image is used, which may be different if
there are multiple values in one pixel, such as RGB.

2. Symbolic: A field having a specific string value such as a “service” or “protocol type”. This also
applies to “src/dst IP”, which is a target for building access lists used in security solutions such
as whitelist. This field type measures the total number of possible symbols and assigns pixel
values in the range 0–255. For example, if the target field can have three kinds of symbolic values,
the field values will be normalized as 0, 128, and 255.

This leads to symbolic variables having the maximum gap from each other. Each of the fields
clearly separated through the gap automatically derives a feature map similar to building an access list
through the convolutional kernel.

Figure 1 shows the method to extract 41 fields from a single packet data and convert them back
into 28 × 28 images. On the left, 41 fields are pretreated with 28 × 28-sized images, and its initial 5 × 5
area is expanded. The enlarged 5 × 5 image area shows the field that will be preprocessed for each
pixel. An example of a 5 × 5 kernel with highlighted areas is shown on the right of the figure. These
highlighted areas are also displayed in the enlarged area, representing a combination of these fields
[F1, F3, F4, F5, F6, F17, F30, F31, F32, F33, F34] that will affect learning. This conversion method is
“direct” and is converted into the rule of one field to one pixel. If the CNN has a 5 × 5 kernel as shown
in Figure 1, the following convolved feature will be reflected in the following fields, where the number
after F (field) is the order of each field. Each pixel (field) will have one numeric value of 0–255 when
converted to a grayscale image.
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Subsequently, the pool size and stride allow the CNN to automatically consider almost any
combination of fields. The field can be set to various values such as general IP address, port number,
protocol type, and byte. The method shown above is a direct conversion, and two other preprocessing
methods are proposed. Through the proposed three preprocessing methods, various results can be
obtained even if only one CNN model is used. The independence of the preprocessing method and the
deep running enables splitting of the tasks. Splitting tasks is more effective in distributed network
such as ICSs and IVNs. Attaching security devices to specific routers or gateways for IDSs may be
subject to restrictions when there are one or more stations. The devices afford flexibility to the IDS
because they can change their performance by updating only the preprocessing method, except for
the deep learning model. This method can be considered as the one that can be excluded by fewer
operations through model modifications, such as modifying the kernel map.

The protocol field in the pixel preprocessing method can be divided into three parts. The typical
parts of the preprocessing method are described in the direct conversion method, and the subsequent
methods focus on the differences.

3.1. Direct Conversion

Direct conversion is the most basic preprocessing method for the protocol field to preprocess
pixels, as shown in Figure 2a. After separating the packet data into fields, each field is converted into
an 8-bit vector. Subsequently, the input data are sequentially inserted into a pixel of an appropriate
size. This normalization by category generally yields interlaced images because the number of fields is
smaller than the number of pixels contained in an image. Each pixel in the image represents one field.
The method of converting a field to a pixel depends on the value of each field. It also requires prior
knowledge such as the range of values possible in each field of the protocol.

3.2. Weighted Conversion

Weighted conversion is a weighting method that forces the kernel to select a few types of fields
redundantly when the convolutional layer is created. Weighting can be applied from a simplified
vertical or horizontal method, as shown in Figure 2b, or by applying only a specific field redundantly.
The final shape shown in Figure 2b is an example of dividing an image into two regions of 28 × 14 and
vertically enlarging the pixels. When weighing to increase the number of pixels, the field convolved
by the 5 × 5 kernel is limited to a maximum of 10 fields. The example above is for extreme pixel
increments; in normal cases, it would be better to increment them slightly depending on the results.

The CNN API provided by most deep learning platforms, including TensorFlow, automatically
provides the user with randomly generated kernels. Even if the kernel can be manually entered, overfitting
may occur due to the lack of diversity through randomness. To overcome the development constraints of
the deep running development, weighted conversion is proposed as the preprocessing method.
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In the case of NSL-KDD with 41 features, duplicate fields can be listed because they are not
divided into 28 lines, which is the number of pixels in one line. To prevent overfitting by a specific
field, padding may be applied.

3.3. Compressed Conversion

The two preprocessing methods introduced thus far convert a single packet into one image.
However, the compressed conversion method converts multiple packets into one image, as shown
in Figure 2c. The number of packets can be divided using one of two methods: naïve and adjective.
The naïve method binds multiple packets based on protocol transactions. At this point, the device
must be able to recognize the protocol. The adjective method binds multiple packets based on a
predefined unit. The adjective method is based on time and numbers. The numbers translate packets
according to a certain number defined by the user. In the case of time, incoming packets are converted
during a certain time period. Compressed conversion methods are harder to develop when using time
units, but they can easily detect traffic-related attacks such as distributed denial of service (DDoS).
In networks such as ICS and IVN, commands such as read are continuously and repeatedly transmitted.
When most of the traffic share is filled with packets with the same time interval to execute the same
command, the proposed method will be effective for detection when anomalous packets occur. This
method is recommended for use as a warning, as the method based on repetitive patterns could be
sensitive to functions that are rarely used.
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4. Performance Measurements

In this section, the measured performance of the proposed techniques based on the NSL-KDD
dataset is presented. The NSL-KDD dataset is an improved version of the KDD Cup 99 dataset [31];
it has been investigated by many IDS researchers to prove its performance. The NSL-KDD training
dataset contains more than 100,000 packets, and these packets are processed to extract 41 features and
then stored in csv format. The test dataset contains over 20,000 packets and 17 additional attacks that
are not included in the training data. These NSL-KDD features allowed the precise measurement of
the performance of the proposed techniques and the performance of various IDS studies. In addition,
various use cases enabled the performance comparison between the techniques proposed in previous
studies. However, problems could arise as other researchers did not use the NSL-KDD dataset in the
same way and did not describe it clearly and concisely [3,27,32,33]. In the paper that analyzed the
NSL-KDD dataset in detail, the number of “ps” belonging to “user to root (U2R)” was expressed as 5
even though 15 existed [33]. These confusing dataset uses prevent comparison with each study and
measurement of the exact comparative advantage. The extremely small set of attacks in NSL-KDD are
difficult to detect. Therefore, in this study, the performance was measured by adjusting the dataset to
be the same as the dataset used in previous studies.

4.1. NSL-KDD Dataset

In this study, the NSL-KDD datasets used for performance measurement and comparison included
three datasets: Train+, Test+, and Test-21 [17]. The Train+ dataset includes 23 packet types, including
“normal”, and 22 attacks are classified into four attack types: denial of service (DoS), probe, user-to-root
(U2R), and remote-to-local (R2L) [24]. Test-21 is a subset of Test+, and Test+ contains 17 additional
attacks that do not exist in Train+. The characteristics of these NSL-KDD train/test datasets allowed
us to measure the sensitivity of a learning-based IDS in response to unknown attacks. However,
both the Train+ and Test+ datasets have biased data distributions, making them difficult to learn and
detect [26]. Although this biased distribution may be considered as reflecting the actual environment
as much as possible, its dispersion is poor because researchers focus on the balance of the dataset to
detect the attack optimally even when learning the actual IDS. Hence, most studies did not use the
dataset naturally [25], and detailed information regarding the datasets without modification is shown
in Table 1.

As shown in Table 1, the Test+ dataset contains significantly more R2L attacks than Train+. There
are few U2R attacks in two of the datasets (Test-21 is a subset of Test+; therefore, they are treated as
two datasets), making learning more difficult.
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Table 1. NSL-KDD dataset.

Type Train+ Test+ Test-21

Normal 67,343 9710 2152
R2L 995 2885 2885

Probe 11,656 2421 2402
DoS 45,927 7460 4344
U2R 52 67 67
Total 125,973 22,543 11,850

Table 2 shows the number of additional attacks that are included in Test+. The ratio shows
the number of additional attacks occupying the dataset. U2R is an extreme example, accounting for
less than 0.1% in Train+ and less than 1% in Test+. Of U2R attacks, 44.78% are additional attacks.
A serious imbalance of these datasets can degrade their reliability. Test-21, extracted from a subset
of Test+ primarily from difficult-to-detect data, has only approximately half the number of the total
packets. However, the additional attacks have only 10 fewer probe types compared to Test+, while
the remainder of the measures are the same. Thus, 39% of the total 11,850 instances of the dataset are
additional attacks, i.e., 3740 instances.

Table 2. NSL-KDD Test+ dataset comparison.

Type Train+ Test+ Test-21

R2L 2885 686 23.78%
Probe 2421 1315 54.32%
DoS 7460 1719 23.04%
U2R 67 30 44.78%
Total 12,833 3750 29.22%

4.2. Accuracy Metrics

In multiclass classification problems, the meaning is difficult to decipher if each indicator (true,
positive, false, negative) is not clarified when expressing the performance index (i.e., precision and
recall) [18]. Therefore, IDS research typically treats true positives as an attack and a true positive is
considered a successfully detected attack [18,25]. Otherwise, it directly describes the performance by
referring to intuitive indicators such as “detected attacks” [34].

Herein, we use the metrics defined in Table 3:

Table 3. NSL-KDD dataset.

Predicted
Actual Positive

(Attack Packet: 1–4)
Negative

(Normal Packet: 0)

Positive True Positive-Attack
Correctly classified

False Positive-Attack
Incorrectly classified

Negative False Negative-Normal
Incorrectly classified

True Negative-Normal
Correctly classified

In Table 3, positive/negative is classified as an attack/normal packet. In the implementation, attack
packets have labels of 1–4 (true) and normal packets have labels of 0 (false).

4.3. Performance Comparison

Similar to most deep learning studies, the CNN model was developed based on TensorFlow
(v1.8.0) and we used the MNIST code provided by the TensorFlow tutorial. All experiments were
performed using a GPU GTX 1080Ti 11 GB and CPU i7-8600K based on Windows 10. The developed
IDS was tested with fixed values: 100 for batch size and 10% dropout rate. The only variable that
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changed was “step.” However, the performance change with the increase and decrease in “step” was
slight. When “step” had an extremely low value of 100, a performance degradation of ~4% occurred.
This performance change flow was expected because multiple fields existed in an image, thus enabling
a large number of fields to be learned with a small number of steps. The learning model differs from
the case where the performance suddenly improved due to overfitting by factors such as dropout.

Studies using a CNN in IDSs have been reported [16,24]. However, using a CNN as a classifier
to solve the classification problem of IDSs is rare [24]. An autoencoder was used as a preprocessing
method for feature extraction [16]. Although the CNN is generally fast, building an IDS using a CNN
as preprocessing and learning it again using other learning techniques can weaken the real-time feature
of the system, thus rendering it less practical.

Although NSL-KDD has been used in various studies, the total number of packets is rarely exactly
the same as the number of packets per subcategory. Hence, different datasets may be downloaded and
used according to the updates or edits for research purposes. However, if the performance is measured
with a modified dataset, acceptable reasons and detailed changes must be specified [3]; otherwise,
comparison will be difficult [25]. Figure 3 shows the performance using NSL-KDD Train+ for learning
and NSL-KDD Test+ for testing.
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Tables 4 and 5 show the confusion matrix for the NSL-KDD Test+ dataset. U2r had the lowest
amount of data because it had the fewest data point, and R2L had the worst result. In the modified
dataset, R2L was 0% accurate, which is typical in deep-learning-based detections due to its structure
that is highly similar to a normal structure [32]. Figures 3 and 4 compare the performance of the
methods reported in relevant studies through bar graphs. The modified dataset is described below
along with performance comparisons.

Table 4. Confusion matrix for non-modified NSL-KDD Test+.

Actual
Predicted

Normal R2L Probe DoS U2R

Normal 9463 7 172 65 3
R2L 2689 70 120 2 4

Probe 737 1 1530 153 0
DoS 1064 0 178 6218 0
U2R 55 2 0 1 9
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Table 5. Confusion matrix for modified NSL-KDD Test+.

Actual
Predicted

Normal R2L Probe DoS U2R

Normal 9469 0 165 76 1
R2L 1219 0 12 0 0

Probe 255 0 845 6 0
DoS 212 0 25 5497 0
U2R 20 0 0 0 0
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The proposed techniques were expressed in the CNN (AVG/MAX) using average pooling (AVG)
and max pooling (MAX), as their performances are highly affected by the kernel. Soft-max regression
(SMR) and self-taught learning (STL) were measured [18], and Figure 3 shows that the proposed
technique yielded slightly better precision and F-measure scores.

Figure 4 compares the performance using the modified NSL-KDD Test+ dataset. Because the
modified dataset excludes 17 types of additional attacks, it was compared separately [19]. Stacked
nonsymmetric deep auto-encoder (S-NDAE) performed better with 100% precision and 85.42% recall.
However, the proposed method, with 88.82% accuracy and 90.67% F-measure, exhibited better
performance. For the deep belief network (DBN), all performance indicators except recall were higher.

The performance of methods in existing studies using CNN as the main classifier is shown
in Figure 5. The F-measure indicator was used for performance measurement and showed 99%
performance with the KDD-Cup 99 dataset. However, when the NSL-KDD dataset was used, the
performance was similar as Figure 5. The study graphically presented the results obtained but did
not describe the exact performance result. Therefore, Figure 5 depicts an approximation of the degree
indicated in the graph. The proposed method received an F-measure of 90.67%, which is a 15%
performance improvement over the existing CNN study (approximately 79%) [22].

Although the time was not comparable to that of the GPU used in the related studies,
the performance was similar: less than 30 s of learning time. In the largest number of steps, i.e.,
80,000 entered attempts, 300 s were required from learning to classification. The step entered for
performance comparison was 60,000, which consumed 225 s. Even with the GTX 1060 as a GPU,
only 294 s were consumed.
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5. Discussion

The tested NSL-KDD dataset was provided separately from the training and testing datasets.
The Test+ dataset includes additional attacks that are not included in training data, and Test- (also
called Test-21) removes all duplicate attacks and includes only new attack types. This characteristic
of NSL-KDD restricts the performance of overfitted learning-based IDS studies. When developing,
we experimented to see if performance degradation occurred due to overtraining by setting the
drop-ratio. Even then, the change in performance was less than 3%.

In most cases, when defining symbolic fields in protocol standards, similar types are often assigned
sequentially. For example, in the function code of distributed network protocol 3 (DNP3), one of
the ICS protocols, similar functions such as Read(1)/Write(2) or Solicited(129)/Unsolicited(130) have
sequentially defined values. The characteristics of symbolic field values that are defined as having
sequential values related to each other can be found in any field in an intuitive definition manner.
Since the proposed pre-processing techniques maximize the characteristics of the field by maximizing
the gaps to one another, the classifier can be better distinguished. This has more advantages compared
to models that are unsupervised or use the simple data stream as the input. This is because the
actual value of the symbolic field changes little, but the change in meaning is much larger than the
change in value. In addition to the distinction of symbolic variables, the distinction between packets
is also important. Each packet has its own function or purpose, and fields such as the function code
mentioned above represent it. Therefore, when the process is repeated, such as ICS, patterns of the
traffic are repeated, and frequently used services have a robust and periodic pattern. For example,
in the case of DNP3, the function code may be weighted to help classification results, frequent
functions may be “read”, and infrequent functions may be “unsolicited”, These frequent and infrequent
elements are expected to yield effective performance using the third proposed preprocessing method,
i.e., compressed conversion as a unit of time because, in most cases, frequent services such as read/write
are periodically transmitted and received.

The CNN’s kernel handles multiple pixels together, and multiple fields are combined during this
process. The randomly generated kernels can be induced to reflect hidden correlation information,
including symbolic fields whose characteristics are maximized. For example, in ICSs or IVNs, packets
such as read/write periodically transmitted by devices located in the leaf produce large amounts of
traffic. At this time, the IP used to build the access list can be combined with periodic values or function
codes and reflected to the CNN model to obtain an effect similar to automatic generation of various
types of access lists.
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The CNN is a supervised learning that is severely affected by train data set. For this reason, most
NIDSs do not use CNN, which cannot perform well due to the lack of datasets. CNN is a proven DL
model, and in practical terms, it can help network administrators apply security in the most efficient
way to use their own network resources possible. Therefore, to properly apply the proposed technique,
it is necessary to learn not only about normal network data, but also to include randomly generated
attack data such as system shutdown or manipulation of critical data.

6. Conclusions

We proposed three preprocessing techniques for a CNN. One of the three proposed techniques,
called direct conversion, was tested, and the other two techniques were not as they have more
requirements than those applied in the tested technique. All three techniques are based on the same
principle. They were designed to reflect the convolved characteristics of a CNN’s input into the
network packet data rather than image data traditionally received as the input.

We verified through the performance comparison that the proposed preprocessing method and the
CNN model are sufficiently practical. We did not compare the performance with the deep-learning-based
IDS study mainly using CNN including the shallow, moderate, and deep mentioned above. The study
did not report the exact performance measures such as accuracy ratio, preventing accurate comparison.
The only performance measure they provided, the result figure, showed that all proposed techniques
did not exceed 80% accuracy using a graph. Therefore, the proposed preprocessing technique,
which has over 88% accuracy, improved performance by more than 10% in the same environment
(Train+/Test+) with a less-configured CNN [22]. Therefore, if an appropriate preprocessing method
that can simultaneously activate the characteristics of the network and the CNN will perform better
than other deep learning models.

For future works, the two untested preprocessing methods can be validated in a restricted
environment like the IVN, and the proposed preprocessing methods can be used in combination.
The proposed preprocessing methods focus on the meaning of one pixel. Unlike related studies
that converted packet data into binary, adding one field to one pixel through preprocessing is
highly advantageous for convolved learning. Therefore, a new method of preprocessing should be
studied accordingly.
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