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Abstract: Particulate matter (PM) has become a problem worldwide, with many deleterious health
effects such as worsened asthma, affected lungs, and various toxin-induced cancers. The International
Agency for Research on Cancer (IARC) under the World Health Organization (WHO) has designated
PM as a group 1 carcinogen. Although Korea Environment Corporation forecasts the status of outdoor
PM four times a day, whichever is higher among PM10 and PM2.5. Korea Environment Corporation
forecasts for the stages of PM. It remains difficult to predict the value of PM when going out. We
correlate air quality and solar terms, address format, and weather data, and PM in the Korea. We
analyzed the correlation between address format, air quality data, and weather data, and PM. We
evaluated performance according to the sequence length and batch size and found the best outcome
with a sequence length of 7 days, and a batch size of 96. We performed PM prediction using the
Long Short-Term Recurrent Unit (LSTM), the Convolutional Neural Network (CNN), and the Gated
Recurrent Unit (GRU) models. The CNN model suffered the limitation of only predicting from the
training data, not from the test data. The LSTM and GRU models generated similar prediction results.
We confirmed that the LSTM model has higher accuracy than the other two models.
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1. Introduction

Recently, PM has become a problem worldwide. The causes of PM are industries, etc [1]. PM10

and PM2.5 mean that the length of the diameter is 10 µm or less and 2.5 µm or less, respectively. Air
pollution causes 7 million deaths annually worldwide, including children [2]. Air pollution affects
the respiratory symptoms, causes breathing problems, and decreases respiratory function [3–12]. In
particular, PM worsens asthma and affect lung [13–16]. In 2013, the IARC under the WHO designated
PM as a group 1 carcinogen. In 2018, to prevent the deterioration of health caused by PM, the Korea
strengthened the definition for the level of PM to that of advanced countries (Table 1). PM is generated
during the process of power plants and vehicles [17]. PM10 reduced through the filter of the power
plant, but PM2.5 is not reduced through the filter of power plant [17]. The causes of PM in the Korea
are domestic, and international from neighboring countries such as China [17–19]. The Government of
South Korea estimates that it is 30 to 50% of ultrafine dust from China as a cause of air pollution [20].
Deputy Mayor for Climate & Environment in the Korea estimates that the ratio of ultrafine dust
generated in Korea is 50–70% [21]. According to a report by the Korea Environmental Industry &
Technology Institute (KEITI) [22], it is estimated that 51% of ultra-fine dust in Seoul is generated. A
high concentration of PM occurs every day in the Korea [21].
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Table 1. Air Quality Standard.

Countries 1hour Average
on PM10

24hour
Average on

PM10

An annual
Average on

PM10

24hour
Average on

PM2.5

An Annual
Average on

PM2.5

The Korea - 100 µg/m3 50 µg/m3 35 µg/m3 15 µg/m3

USA - 150 µg/m3 - 35 µg/m3 15 µg/m3

Japan 200 µg/m3 100 µg/m3 - 35 µg/m3 15 µg/m3

China - 150 µg/m3 70 µg/m3 75 µg/m3 35 µg/m3

WHO - 50 µg/m3 20 µg/m3 25 µg/m3 10 µg/m3

EU - 50 µg/m3 40 µg/m3 - 25 µg/m3

In addition, Korea Environment Corporation forecasts the status of PM, whichever is higher
among PM10 and PM2.5, for times a day (5 AM, 11 AM, 5 PM, and 11 PM) according to four stages:
Good, Normal, Bad, and Very bad (Table 2). Korea Environment Corporation forecasts for the stages of
PM. Therefore, it is difficult to predict the value of PM when going out. Recently, the prediction of PM
in the Korea has been studied [23–25].

Table 2. Stages of PM in the Korea.

Status PM10 PM2.5

Good 0~30 µg/m3 0~15 µg/m3

Normal 31~80 µg/m3 16~35 µg/m3

Bad 81~150 µg/m3 36~75 µg/m3

Very bad 150 µg/m3 over 76 µg/m3 over

Yi at al [26] used air quality information and PM, and included air quality data, PM data, and
location information in the image, and used location information using a grid pattern through the
ConvLSTM model. However, it was applied to only one city, and only air quality data and PM data
were used. The PM was correlated with weather data, but Yi et al. did not consider the weather data.
Their study also suffered the limitation of needing to perform pre-processing to create a grid image
based on time series data. Vong et al. [27] used SVM and MLM models to predict PM in Macau, China.
Vong et al. used air quality data and weather data. When using 11 variables, the accuracy of the
ELM model is approximately 81%, and the accuracy of the SVM model is approximately 79%. When
using 52 variables, the accuracy of the ELM model is approximately 75%, and the accuracy of the
SVM model is approximately 78%. PM2.5 had more adverse effects on health, but Vong predicted only
PM10. Xayasouk et al [25] studied PM with Deep AutoEncoder (DAE) and LSTM model in Seoul, the
Korea. The LSTM model was more accurate than the DAE model. Accordingly, we consider location
information and air quality data and predict PM2.5 as well as PM10. We consider the Recurrent Neural
Network (RNN) model such as the LSTM model. We analyze the correlation between address format,
air quality data, and weather data, and PM and develop the PM prediction model.

2. Materials

2.1. Air Pollution Stations

In the Korea, air pollution stations are installed in eight cities and nine provinces (Table 3). The
Korea has seven metropolitan cities, one self-governing city, eight provinces, and one self-governing
province. We use air quality data from 2015 to 2019. Air quality data were collected by AirKorea [28].
The collected air quality data include PM10, PM2.5, O3, CO, SO2, and NO2 and were measured every
hour; however, some data were missing due to communication problems in the air pollution stations.
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Table 3. The number of air pollution stations in each city and province.

City Name The Number of
Stations Province Name The Number of

Stations

Seoul 40 Gyeonggi-do 108
Incheon 25 Gangwon-do 25
Daejeon 12 Chungcheongsam-do 34
Daegu 15 Chungcheongbuk-do 29
Ulsan 17 Gyeongsangnuk-do 42
Busan 29 Gyeongsangnam-do 38

Gwangju 11 Jeollabuk-do 32
Sejong 4 Jeollanam-do 38

Jeju Island 88

2.2. Weather Stations

In the Korea, weather stations are installed in eight cities and nine provinces (Table 4). We used
only the weather data measured at stations with the Automated Surface Observing System (ASOS)
installed. The Korea has seven metropolitan cities, one self-governing city, eight provinces, and
one self-governing province. We use weather data from 2015 to 2019. Weather data were collected
by the Korea Meteorological Administration [29]. The collected weather data were temperature,
humidity, wind speed, wind direction, snowfall, precipitation, and atmospheric pressure, and were
measured every hour; however, some data were missing due to communication problems in the air
pollution stations.

Table 4. The number of weather stations in each city and province.

City name The Number of
Stations Province Name The Number of

Stations

Seoul 2 Gyeonggi-do 5
Incheon 3 Gangwon-do 15
Daejeon 1 Chungcheongsam-do 6
Daegu 2 Chungcheongbuk-do 5
Ulsan 1 Gyeongsangnuk-do 14
Busan 1 Gyeongsangnam-do 10

Gwangju 1 Jeollabuk-do 16
Sejong 1 Jeollanam-do 14

Jeju Island 4

2.3. Data Description

Air quality data and weather data are important for predicting PM. We used Korea’s air quality
data and weather data from 1 January 2015 to 30 November 2019, because air quality data provided
by Air Korea did not have final measurement data as of December 2019. We added weather data for
each region to air quality data. In some locations, air quality data were available, but weather data
were not, so these locations were deleted. In addition, we deleted data in areas where air quality data
were measured, but weather data were not. We combined weather data and air quality data based on
address and time.

2.3.1. Weather Data

Weather data is meaningful data in predicting PM. Temperature affects air quality data [30]. Low
humidity and low temperature are related to the PM2.5 concentration [31]. Also, the wind carries PM
and affects the PM concentration [30,31]. In addition, rain removes air pollution [32,33].
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2.3.2. Air Quality Data

NO2 and CO are related to automobile emissions [33], and SO2 and PM are related to factory
emissions. O2 is produced when there are NO2 and NO in the atmosphere [34]. SO2, NO2, and O3

have a high correlation with PM [34], and a low correlation between CO and PM [35].

2.3.3. Address Format

PM is affected by the surrounding cities because it moves in the wind [34,36]. The address format
used a total of three methods. The first method was divided into (1) city name, (2) district name or
county name or ward name, and (3) dong name or eup name or myeon name. The second method
was divided into (1) province name, (2) city name or county name or and (3) dong name or eup name
or, and myeon name. The third method is the address of the station. We removed the building name
from the address of the air quality station. Accordingly, we used the address format using the first
method or the second method and the third method. We converted the address format using the
one-hot encoding library.

2.3.4. Twenty-Four Solar Terms

The 24 solar terms are divided into seasons. Twenty-four solar terms are significant in time
series data affected by weather [37]. We divided the 24 solar terms by dates provided by the Korea
Meteorological Administration [38]. We converted the 24 solar terms using the one-hot encoding library.

2.3.5. Wind_x, Wind_y

The wind is expressed in terms of wind speed and wind direction. The wind direction represents
the direction from 0 to 360 degrees, and the wind speed represents the distance per second of the wind.
The accuracy is higher when calculating wind_x and wind_y than when using wind speed and wind
direction [39].

wind_x = winddirection × cos
(
windspeed

)
(1)

wind_y = −winddirection × sin (windspeed) (2)

2.3.6. Data Parameters

We predict PM10 and PM2.5 using air quality data and weather data. Air quality data include SO2,
O3, CO, and NO2. Weather data include temperature, atmospheric pressure, humidity, precipitation,
snowfall, precipitation, and snowfall. We performed deep learning using four air quality data, seven
weather data, wind_x, wind_y, and 24 solar terms, and address format. The following shows the input
data, measurement unit, and range (Table 5). We used data from 2015 to 2019. In the dataset, 70%
were used as training data, 24% were used as verification data, and 6% were used as test data. We
corrected the missing values for precipitation and snowfall to zero. CO and NO2 were corrected using
the average. Resampling was performed for SO2 and O3, temperature, air pressure, wind speed, wind
direction, and humidity. SO2 has 631319 missing values, CO has 636586, O3 has 474455, and NO2

has 492315. Temperatures have 470 missing values, wind speeds have 5242, wind directions have
19926, humidities have 6052, and atmospheric pressures have 1554. If the value of IsRain is 0, it means
that it does not rain, and if it is 1, it means rain. If the value of IsSnow is 0, it means no snow, and 1
means snow.
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Table 5. Input data.

Variable Unit Range Variable Unit Range

Address1 Integer ≥ 0 PM10 µg/m3 0–400
Address2 Integer ≥ 0 temperature °C −25–45
Address3 Integer ≥ 0 precipitation mm ≥ 0

Full Address Integer ≥ 0 wind_x Float −12–12
Solar Terms Integer 0–23 wind_y Float −12–12

SO2 ppm ≥ 0 humidity % 0–100

CO ppm ≥ 0
atmospheric

pressure hPa ≥ 0

O3 ppm ≥ 0 snowfall cm ≥0
NO2 ppm ≥ 0 IsRain Integer 0 or 1

PM2.5 µg/m3 0–180 IsSnow Integer 0 or 1

We correlated the input data (Figure 1). Correlation analysis excludes Address1, Address2,
Address3, Full Address, IsRain, and IsSnow, which are values expressed as integers, because only
continuous time-series data has meaning.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 19 

 

Table 5. Input data. 

Variable Unit Range Variable Unit Range 

Address1 Integer ≥ 0 PM10  μg/m   0–400 
Address2 Integer  ≥ 0 temperature  ℃  −25–45 

Address3 Integer ≥ 0 precipitation mm ≥ 0 

Full Address Integer ≥ 0 wind_x Float −12–12 

Solar Terms Integer 0–23 wind_y Float −12–12 
SO2 ppm ≥ 0 humidity % 0–100 

CO ppm ≥ 0 atmospheric pressure hPa ≥ 0 

O3 ppm ≥ 0 snowfall cm ≥0 

NO2 ppm ≥ 0 IsRain Integer 0 or 1 

PM2.5  μg/m   0–180 IsSnow Integer 0 or 1 
 
We correlated the input data (Figure 1). Correlation analysis excludes Address1, Address2, 

Address3, Full Address, IsRain, and IsSnow, which are values expressed as integers, because only 
continuous time-series data has meaning. 

 
Figure 1. The correlation analysis result. 

3. Methods 

In previous studies [40], the CNN-LSTM hybrid model showed better performance than the 
CNN and LSTM models. However, we excluded the hybrid models due to its low accuracy. We used 
the GRU model that is similar to the LSTM model, as well as the CNN model and LSTM model. We 
applied the CNN-LSTM and CNN-GRU hybrid models. 

3.1. Long Short-Term Recurrent Unit 

The LSTM model is one of the RNN models. The RNN model takes the previous results as input, 
causing long-term dependency problems (Figure 2). 

Figure 1. The correlation analysis result.

3. Methods

In previous studies [40], the CNN-LSTM hybrid model showed better performance than the CNN
and LSTM models. However, we excluded the hybrid models due to its low accuracy. We used the
GRU model that is similar to the LSTM model, as well as the CNN model and LSTM model. We
applied the CNN-LSTM and CNN-GRU hybrid models.

3.1. Long Short-Term Recurrent Unit

The LSTM model is one of the RNN models. The RNN model takes the previous results as input,
causing long-term dependency problems (Figure 2).
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The LSTM model is one of the models that solves the long-term dependency problem in the RNN
model. Below is the structure of the LSTM model (Figure 3). The LSTM model has high accuracy for
the prediction of time-series data.
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Table 6 show the variables used in LSTM model. The LSTM model implements the logistic
sigmoid function through Equation (3).

σ =
1

1 + e−1
(3)

Table 6. Variables of the LSTM model.

Variable Description

σ Logistic sigmoid function
t current state. t - 1 means the previous state.
i unit of input gate. it means a unit of input gate of the current state.
f unit of forget gate. ft means a unit of forgetting gate of the current state.
o unit of output gate. ot means a unit of output gate of the current state.
x Input value. xt means the input value of the current state.
b Bias value. b f means bias of forget gate.
W Weight matrix. W f means weight matrix of forget gate.

c Cell for long term memory.
ct means cell for long term memory of the current state.

h hidden state for short term memory
ht means hidden state for short term memory of the current state.

The LSTM model uses Equation (4) to determine which data to keep and which to delete.

ft = σ(Wf[ht−1, xt] + bf) (4)

The LSTM model determines the data to be updated with long-term memory through Equations
(5) and (6). The LSTM model updates long-term memory through Equation (7).

it = σ(Wi[ht−1, xt] + bi) (5)
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c′t = tanh (Wc[ht−1, xt] + bc) (6)

ct = ft × ct−1 + it × c′t (7)

The LSTM model calculates the results through Equations (8) and (9).

ot = σ(Wo[ht−1, xt] + bo) (8)

ht = ot × tan h(ot) (9)

3.2. Gated Recurrent Unit

The GRU model is an improved model of complex equations in the LSTM model. The following
is the structure of the GRU model (Figure 4). The GRU model consists of the reset gate and the update
gate. The GRU model is a model that improves the computation speed of the LSTM model.
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Table 7 show the variables used in GRU model. In the GRU model, the logistic sigmoid function
was implemented through Equation (3). The GRU model does not update or update h̃ depending on
the rt the value obtained through Equation (10). Through this, the long-term memory modification in
the LSTM was improved.

rt
j = σ

(
[Wrx]j + [Urht−1]j

)
(10)

Table 7. Variables of the GRU model.

Variable Description

σ Logistic sigmoid function
t current state. t - 1 means the previous state.
j Index of hidden unit

r Unit of reset gate. rt
j means unit of reset gate of current state when calculating

the j-th hidden unit. It decides whether the previous hidden state is ignored.

z
Unit of update gate. zt

j means a unit of update gate of current state when
calculating the j-th hidden unit. It selects whether the hidden state is to be

updated with a new hidden state.
U Weight matrix. Ur means weight matrix of reset gate.
W Weight matrix. Wr means weight matrix of the reset gate.

h̃ A new hidden state. h̃
t
j means a new hidden state of current state when

calculating the j-th hidden unit.

h The hidden state. ht
j means the hidden state of the current state when

calculating the j-th hidden unit. The output is the hidden state.

The GRU model uses ht−1 or h̃ according to the zt value through Equation (11). It updates h̃
through Equation (12). The predicted value is output through Equation (13).

zt
j = σ

(
[Wzx]j + [Uzht−1]j

)
(11)
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h̃
t
j = tan h([Wx]j + [U(rt � ht−1)])j

(12)

ht
j = zt

jht−1
j +

(
1− zt

j

)̃
h

t
j (13)

3.3. Convolutional Neural Network

The CNN model is used to extract hidden patterns through the convolution and pooling stages.

4. Experiments and Result

4.1. Evaluation Methods

We evaluated the performance using Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE). In deep learning, regression is verified via errors. MAE and RMSE are expressions of errors,
and the lower the value, the better the performance. MAE and RMSE are calculated using Equations
(14) and (15), respectively. MAE and RMSE use the difference between actual and predicted values to
determine how many errors have occurred. The lower the values of MAE and RMSE, the higher the
accuracy. Table 8 are variables used in MAE and RMSE.

MAE =
1
n

n∑
i=1

∣∣∣yi − y′i
∣∣∣ (14)

RMSE =

√√
1
n

n∑
i=1

(
yi − y′i

)2
(15)

Table 8. Variables.

Variable Description

n The number of data
i The index of elements

yi . Real value
y′i Predicted value

4.2. Data Prepare

We corrected outliers and missing values in the collected data. When the ranges of PM2.5 and
PM10, humidity, temperature, precipitation, and snowfall were outside the range of Table 5, the average
was corrected. The missing value of precipitation and snowfall was corrected to zero because it means
that there was no rain or snow at that time. We resampled the missing values using the LSTM model
to process the missing values of air quality data and weather data. When resampling air pollution
information, we corrected the missing value using the average value (Table 9). The small values of the
units of air quality data value made it difficult to understand whether it is appropriately predicted
only by MAE and RMSE.

Table 9. Results of MAE and RMSE of air quality data.

Evaluation
Method SO2 CO NO2 O3

MAE 0.00197677597746572130.13297266375870512 0.004597223937342291 0.00520195667252871
RMSE 0.002783199108899503 0.19131779740725147 0.006546173996365833 0.007070109851593688

Accordingly, we evaluated the air pollution information by referring to a comparison graph
between the actual (blue line) and predicted values (orange line; Figure 5). As a result of the comparison,
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NO2 and O3 are predicted similarly, but SO2 and CO are not. We resampled the missing values of
NO2 and O3 using the predicted values. Because SO2 and CO are not predicted accurately, the missing
values were corrected using the average.
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When resampling the weather data, missing values were corrected using the average value. We
predicted weather data for evaluation (Table 10) and compared the graph between the predicted (orange
line) value and the actual (blue line) value (Figure 6). As a result of the comparison, atmospheric
pressure, temperature, wind speed, wind direction, and humidity were predicted similarly. We have
resampled the missing values of weather data using predicted values.

Table 10. Results of MAE and RMSE of air quality data.

Evaluation
Method

Atmospheric
Pressure Temperature Wind Speed Wind

Direction Humidity

MAE 9.709005228526323 2.452505929222188 0.949774864725389469.97904782589953 4.971006381407262
RMSE 12.06379300207477 3.124994324296823 1.123879479814399694.41206318590864 6.291656963869701
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4.3. Comparison of PM Prediction Accuracy According to SO2 

We performed PM prediction using only weather data to compare by air quality data (Table 11). 
Based on the results in Table 11, we analyzed the correlation by air quality data. Forecasts were made 
for PM10 and PM2.5 using only weather data (Figure 7). The orange line is the predicted value, and the 
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Figure 6. A comparison graph of actual and predicted values for atmospheric pressure, temperature,
wind speed, wind direction, and humidity. (a) Predicted and actual values of humidity; (b) predicted
and actual values of wind speed, (c) predicted and actual values of atmospheric pressure; (d) predicted
and actual values of wind direction; (e) predicted and actual values of temperature.

4.3. Comparison of PM Prediction Accuracy According to SO2

We performed PM prediction using only weather data to compare by air quality data (Table 11).
Based on the results in Table 11, we analyzed the correlation by air quality data. Forecasts were made
for PM10 and PM2.5 using only weather data (Figure 7). The orange line is the predicted value, and the
blue line is the actual value.

Table 11. Evaluation of the predicted PM using weather data.

PM2.5 RMSE PM2.5 MAE PM10 RMSE PM10 MAE

11.424509950830299 7.386990585039382 7.810868049063216 5.192483483811323
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4.4. Comparison of PM Prediction Accuracy According to CO 

We analyzed the correlation between CO and PM by comparing weather data and weather data 
with CO. As a result, it was confirmed that RMSE and MAE of PM2.5 and PM10 were lowered (Table 
13), and hence CO is related to PM2.5 and PM10. The actual and predicted values of PM10 and PM2.5 
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Figure 7. A graph of the actual and predicted values of PM10 and PM2.5. (a) Predicted and actual
values of PM2.5; (b) predicted and actual values of PM10.

We analyzed the correlation between SO2 and PM by comparing weather data and weather
data with SO2. As a result, it was confirmed that RMSE and MAE of PM2.5 and PM10 were lowered
(Table 12), and hence SO2 are related to PM2.5 and PM10. The actual and predicted values of PM10 and
PM2.5 were compared (Figure 8). The orange line is the predicted value, and the blue line is the actual
value. We confirmed that the accuracy of PM prediction is improved via SO2.

Table 12. Evaluation of the predicted PM using weather data with SO2.

PM2.5 RMSE. PM2.5 MAE PM10 RMSE PM10 MAE

11.150591658178262 7.212869946039611 7.266045101108083 5.150813651956774
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Figure 8. A graph of the actual and predicted values of PM10 and PM2.5 using weather data with SO2.
(a) The predicted and actual values of PM2.5; (b) predicted and actual values of PM10.

4.4. Comparison of PM Prediction Accuracy According to CO

We analyzed the correlation between CO and PM by comparing weather data and weather data
with CO. As a result, it was confirmed that RMSE and MAE of PM2.5 and PM10 were lowered (Table 13),
and hence CO is related to PM2.5 and PM10. The actual and predicted values of PM10 and PM2.5 were
compared (Figure 9). The orange line is the predicted value, and the blue line is the actual value. We
confirmed that the accuracy of PM prediction is improved via CO.

Table 13. Evaluation of the predicted PM using weather data with CO.

PM2.5 RMSE PM2.5 MAE PM10 RMSE PM10 MAE

10.876065670272803 6.952868615163375 6.646710365161875 4.482592977233096
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4.6. Comparison of PM Prediction Accuracy According to O3 

We analyzed the correlation between O3 and PM by comparing weather data and weather data 
with O3, and found that RMSE and MAE of PM10 were lowered (Table 15), MAE of PM2.5 was higher 
(Table 15), and hence O3 is related to PM10. The actual and predicted values of PM10 and PM2.5 were 
compared (Figure 11). The orange line is the predicted value, and the blue line is the actual value. We 
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Figure 9. A graph of the actual and predicted values of PM10 and PM2.5 using weather data with CO.
(a) Predicted and actual values of PM2.5; (b) predicted and actual values of PM10.

4.5. Comparison of PM Prediction Accuracy According to NO2

We analyzed the correlation between NO2 and PM by comparing weather data and weather
data with NO2. As a result, it was confirmed that RMSE and MAE of PM2.5 and PM10 were lowered
(Table 14), and hence NO2 is related to PM2.5 and PM10. The actual and predicted values of PM10 and
PM2.5 were compared (Figure 10). The orange line is the predicted value, and the blue line is the actual
value. We confirmed that the accuracy of PM prediction is improved via NO2.

Table 14. Evaluation of the predicted PM using weather data with NO2.

PM2.5 RMSE PM2.5 MAE PM10 RMSE PM10 MAE

10.997660334582932 7.11836606573322 6.981789199218698 4.811013752937683
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We analyzed the correlation between O3 and PM by comparing weather data and weather data 
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Figure 10. A graph of the actual and predicted values of PM10 and PM2.5 using weather data with NO2:
(a) predicted and actual values of PM2.5, and (b) predicted and actual values of PM10.

4.6. Comparison of PM Prediction Accuracy According to O3

We analyzed the correlation between O3 and PM by comparing weather data and weather data
with O3, and found that RMSE and MAE of PM10 were lowered (Table 15), MAE of PM2.5 was higher
(Table 15), and hence O3 is related to PM10. The actual and predicted values of PM10 and PM2.5 were
compared (Figure 11). The orange line is the predicted value, and the blue line is the actual value. We
confirmed that the accuracy of PM10 prediction is improved via O3.

Table 15. Evaluation of the predicted PM using weather data with O3.

PM2.5 RMSE PM2.5 MAE PM10 RMSE PM10 MAE

11.609210552459992 7.574959231025852 6.802652715247799 4.745732709395488
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4.8. Comparison of PM Prediction Accuracy According to Wind_x, Wind_y 

We confirmed that the accuracy was improved through Equations (1) and (2) discussed in 
Section 2.3.5. After removing wind speed and wind direction, we evaluated the performance by 
adding wind_x and wind_y (Table 17). We confirmed that the accuracy of PM prediction is improved 
via wind_x and wind_y (Figure 13). 

Table 17. Evaluation of the predicted PM using weather data with wind_x and wind_y. 
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Figure 11. A graph of the actual and predicted values of PM10 and PM2.5 using weather data with O3.
(a) predicted and actual values of PM2.5; (b) predicted and actual values of PM10.

4.7. Comparison of PM Prediction Accuracy According to Atmospheric Pressure

We analyzed the correlation between atmospheric pressure and PM by comparing weather data
and weather data with atmospheric pressure. As a result, it was confirmed that RMSE and MAE of
PM10 were lowered (Table 16), RMSE and MAE of PM2.5 were higher (Table 16), and hence atmospheric
pressure is related to PM10. The actual and predicted values of PM10 and PM2.5 were compared
(Figure 12). The orange line is the predicted value, and the blue line is the actual value. We confirmed
that the accuracy of PM10 prediction is improved via atmospheric pressure.

Table 16. Evaluation of the predicted PM using weather data with atmospheric pressure.

PM2.5 RMSE PM2.5 MAE PM10 RMSE PM10 MAE

11.418551994654374 7.6519155502608305 7.099408392719633 5.154189156530305
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We confirmed that the accuracy was improved through Equations (1) and (2) discussed in 
Section 2.3.5. After removing wind speed and wind direction, we evaluated the performance by 
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Figure 12. A graph of the actual and predicted values of PM10 and PM2.5 using weather data with
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4.8. Comparison of PM Prediction Accuracy According to Wind_x, Wind_y

We confirmed that the accuracy was improved through Equations (1) and (2) discussed in
Section 2.3.5. After removing wind speed and wind direction, we evaluated the performance by adding
wind_x and wind_y (Table 17). We confirmed that the accuracy of PM prediction is improved via
wind_x and wind_y (Figure 13).

Table 17. Evaluation of the predicted PM using weather data with wind_x and wind_y.

PM2.5 RMSE PM2.5 MAE PM10 RMSE PM10 MAE

11.2317932705464 7.316346260707396 6.877921416196969 4.751750217462248



Electronics 2020, 9, 1146 14 of 19
Electronics 2020, 9, x FOR PEER REVIEW 14 of 19 

 

  
(a) Result of PM2.5 (b) Result of PM10 

Figure 13. This figure is a graph of the actual and predicted values of PM10 and PM2.5 using weather 
data with wind_x and wind_y: (a) predicted and actual values of PM2.5, and (b) predicted and actual 
values of PM10. 

4.9. Comparison of PM Prediction Accuracy According to Address Format 

We used the address format as discussed in the 2.3.3 section. The results were compared with 
Table 9 and confirmed to be improved (Table 18), and hence, the city and road are separated and 
affected by adjacent cities and provinces. These are the actual and predicted values of PM10 and PM2.5 
(Figure 14). The orange line is the predicted value, and the blue line is the actual value. We confirmed 
that the accuracy of PM prediction is improved via address format. 

Table 18. Evaluation of the predicted PM using weather data with the address format. 

PM2.5 RMSE PM2.5 MAE PM10 RMSE PM10 MAE 
11.188162098223694 7.312010079856926 7.047761546009768 4.76084091141095 

 

  
(a) Result of PM2.5 (b) Result of PM10 

Figure 14. A graph of the actual and predicted values of PM10 and PM2.5. (a) Predicted and actual 
values of PM2.5; (b) predicted and actual values of PM10. 

4.10. Comparison of PM Prediction Accuracy According to 24 solar terms 

We used the 24 solar terms as discussed in Section 2.3.4. The results were compared with Table 
7 and confirmed to be improved (Table 19). We confirmed that the accuracy of PM prediction is 
improved via 24 solar terms (Figure 15). 

Table 19. Evaluation of the predicted PM using weather data with 24 solar terms. 
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Figure 13. This figure is a graph of the actual and predicted values of PM10 and PM2.5 using weather
data with wind_x and wind_y: (a) predicted and actual values of PM2.5, and (b) predicted and actual
values of PM10.

4.9. Comparison of PM Prediction Accuracy According to Address Format

We used the address format as discussed in the Section 2.3.3. The results were compared with
Table 9 and confirmed to be improved (Table 18), and hence, the city and road are separated and
affected by adjacent cities and provinces. These are the actual and predicted values of PM10 and PM2.5

(Figure 14). The orange line is the predicted value, and the blue line is the actual value. We confirmed
that the accuracy of PM prediction is improved via address format.

Table 18. Evaluation of the predicted PM using weather data with the address format.

PM2.5 RMSE PM2.5 MAE PM10 RMSE PM10 MAE

11.188162098223694 7.312010079856926 7.047761546009768 4.76084091141095
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4.10. Comparison of PM Prediction Accuracy According to 24 solar terms 

We used the 24 solar terms as discussed in Section 2.3.4. The results were compared with Table 
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4.10. Comparison of PM Prediction Accuracy According to 24 Solar Terms

We used the 24 solar terms as discussed in Section 2.3.4. The results were compared with Table 7
and confirmed to be improved (Table 19). We confirmed that the accuracy of PM prediction is improved
via 24 solar terms (Figure 15).

Table 19. Evaluation of the predicted PM using weather data with 24 solar terms.

PM2.5 RMSE PM2.5 MAE PM10 RMSE PM10 MAE

11.378345949349278 7.2755643802599455 6.75767487545403 4.663318307737441
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4.11. Comparison of PM Prediction Accuracy According to Sequence Length 

We evaluated the performance according to the sequence length with the data parameters in 
Table 5. The sequence length is 24 per day. The comparison confirmed that the best result was a 
sequence length of 7 days (Table 20), which generated the lowest values for PM2.5 MAE, PM2.5 RMSE, 
PM10 MAE, and PM10 RMSE. We highlighted that MAE and RMSE were reduced. 

Table 20. Performance evaluation results according to the sequence length. 

Sequence 
Length 

PM2.5 MAE PM2.5 RMSE PM10 MAE PM10 RMSE 

1 Day 6.8723638736498796 10.872907681846236 4.889641018450285 7.023668509637945 
2 Days 7.07283570669722 10.922789343087404 4.752256456662703 6.864557932586567 
3 Days 8.010269844202515 11.565469091024756 5.419169106578719 7.81227016304491 
4 Days 7.193962617691575 11.139297312830582 5.014263292572295 7.125953867868762 
5 Days 7.0712063786053045 10.885098257926721 4.683081878761333 6.8245960495513325 
6 Days 6.950957594294552 10.877398546601832 4.8897148765323655 7.075202116985077 
7 Days 6.748574488524663 10.666811784105274 4.576222601673498 6.706854128280908 
8 Days 8.311487394638375 12.524398614693366 6.037762553211165 9.065500584144592 
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4.11. Comparison of PM Prediction Accuracy According to Sequence Length

We evaluated the performance according to the sequence length with the data parameters in
Table 5. The sequence length is 24 per day. The comparison confirmed that the best result was a
sequence length of 7 days (Table 20), which generated the lowest values for PM2.5 MAE, PM2.5 RMSE,
PM10 MAE, and PM10 RMSE. We highlighted that MAE and RMSE were reduced.
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14 Days 7.057825475352884 10.854893642056501 4.967073756780628 6.993131797131667

4.12. Comparison of PM Prediction Accuracy According to Batch Size

We evaluated the performance according to the batch size and found the best result with a batch
size of 96 (Table 21). We highlighted that MAE and RMSE were reduced.

Table 21. Performance evaluation results according to the batch size.

Batch Size PM2.5 MAE PM2.5 RMSE PM10 MAE PM10 RMSE

64 6.8723638736498796 10.872907681846236 4.889641018450285 7.023668509637945
96 6.915248555917008 10.872228585931706 4.5699693535437085 6.6472971974889905

128 7.290778784389358 11.358100746070686 5.090586659374237 7.652284409114551
160 7.195339101694315 10.9563082562599 4.820049060024904 6.8492290512882485
192 7.0080317971032 10.925634792582278 5.250878940846936 7.90720787936262
256 7.627937784358025 11.255332451776745 4.7917052769598865 6.9397277896506875
512 6.833282805161927 10.740158388237752 4.691628873916771 6.85637822970579
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4.13. Compare of LSTM Model, CNN Model, and GRU Model

Based on the experimental results, we evaluated the performance with the LSTM and CNN
models, the GRU model with a sequence length of 7 days, and a batch size of 96 (Table 22). As a result,
the LSTM model appeared to be highly accurate in the training data (Figure 16), but the test data
confirmed that the CNN model did not show similarity (Figure 17). The gray line is the actual value
and the red line is the prediction value of the GRU model. The green line is the CNN prediction value,
and the blue line is the LSTM model prediction value. We highlighted that lowest MAE and RMSE.

Table 22. Performance evaluation result according to each model.

Batch Size PM2.5 MAE PM2.5 RMSE PM10 MAE PM10 RMSE

CNN 10.21723294956235 13.501415151238904 9.280525187180793 13.293511747301356
LSTM 7.201965056645242 10.964201214885806 4.672849256285137 6.92387169617792
GRU 7.796999000699376 11.986331910014759 6.552875746664709 9.338689775858853
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The difference between the actual and predicted values in each model was confirmed to differ
from the training data and the test data. In particular, the training data of the CNN model had some
similarities, but the test data could not be predicted. We confirmed that the highest accuracy was
obtained using the LSTM model (Table 22).

5. Conclusions

We analyzed other PM prediction models. We analyzed the correlation between address format,
air quality data, and weather data, and PM. We developed a PM prediction model through the 24
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solar terms provided by the Korea Meteorological Administration, weather data, and air quality data
provided by AirKorea. Our paper makes the following key contributions to the literature. (1) It was
confirmed that the address format improves the accuracy when developing prediction models that are
affected by regions such as PM and weather. (2) When developing a forecasting model that is affected
by seasons such as PM and weather, it was confirmed that accuracy is improved when 24 solar terms
are used. (3) It was confirmed that the air quality data improves the accuracy when developing the PM
prediction model. (4) It was confirmed that the atmospheric pressure improves the accuracy when
developing the PM prediction model. For future research, the authors will apply hybrid models, such
as convolutional neural networks and recurrent neural networks. For future research, the authors will
apply visualization such as a map. For future research, the authors will apply hybrid models of the
LSTM model and other deep learning models (e.g., RNN, CNN, GRU, DAE, Q-Networks) to improve
the accuracy of PM prediction.
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