i\;lg electronics m\py

Article
Comparison of Hardwired and Microprogrammed
Statechart Implementations

Javier Cereijo Garcia * and Roberto R. Osorio 2

1 European Spallation Source ERIC, 22100 Lund, Sweden
2 Department of Computer Engineering, CITIC, University of A Corufa, 15001 A Coruna, Spain;
roberto.osorio@udc.es

* Correspondence: javier.cereijogarcia@ess.eu; Tel.: +46-72-179-23-34

Received: 3 June 2020; Accepted: 9 July 2020; Published: 13 July 2020

Abstract: In scientific facilities such as particle accelerators, fast and jitter-free synchronization is
required in order to trigger a large number of actuators at the right time in a variety of situations.
The behaviour of the control systems and subsystems may be specified by using statechart diagrams,
which expand the capabilities of finite state machines allowing concurrency, a hierarchy of states,
and history. Hence, there is a need of tools for synthesizing those diagrams so that a new control
configuration may be deployed in a short time and an error-free manner in the required environments.
In this work, we present a tool that analyses the specification of a variant of the State Chart XML
(SCXML) standard tailored to hardware systems and produces a hardware description language
(HDL) code suited to implement the required control systems using FPGAs. A number of solutions
are provided to deal with the specific features of statecharts, such as multiple triggering events
and concurrent super-states. We also present a microprogrammed architecture able to implement
statecharts defined as firmware. Finally, we compare the advantages of each strategy in terms of
usability, resource usage, and performance, and their applicability to a specific facility is evaluated.

Keywords: statecharts; finite state machines; industrial control; FPGA

1. Introduction

Hardware-based control systems are required in certain environments, when perfect
synchronization is compulsory. In this work we present and compare the implementation of jitter-free
synchronization in research facilities using two methods: a tool that allows the automated synthesis
of hardware control systems based on graphical statechart descriptions and a microprogrammed
architecture [1] for the same statechart. The statechart descriptions follow a constrained version of
SCXML [2] tailored to hardware systems, and are also compared to the implementations developed
by a skilled engineer not only in terms of the generated code, but also in relation to the ease and
speed of support, maintainability and upgradability of those implementations in deployments with
certain requirements such as research facilities. We will focus on the specific case that motivated this
work, which is the generation of triggering signals in a particle accelerator at the European Spallation
Source (ESS) [3].

Statecharts were introduced by Harel in [4] as a tool to implement complex control systems,
either in software or hardware. They may be seen as an extension of Finite State Machines (FSMs) that
allow a clear specification of hierarchy and concurrency. These diagrams allow to group basic states
into super-states and specify conditions and transitions at a super-state level, reducing the complexity
of the specification and improving the readability. Some states may be active concurrently, making
them suitable to describe complex real-world systems, and the conditions to enable or disable them
can be specified in an unambiguous manner. Therefore, statecharts largely improve FSMs, and they
become part of the Unified Modeling Language (UML) [5].

Electronics 2020, 9, 1139; d0i:10.3390/ electronics9071139 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8768-2240
http://dx.doi.org/10.3390/electronics9071139
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1139 2 0of 18

Whereas automated software synthesis of statecharts is supported by several tools [6-8],
only a few efforts have been made towards hardware synthesis of statecharts. A number of tools,
most of them discontinued, provided partial solutions, but in general not all the functionalities in
statecharts are implemented, specially history. A thorough literature review of hardware synthesis of
statecharts is described in Section 2 together with an introduction to statecharts. Section 3 presents
how an engineer would tackle the HDL specification of a statechart, and Section 4 a description of
the hardware synthesis tool, listing the techniques that allow to synthesize statecharts. In Section 5
the description of the microprogrammed architecture and the procedure to write the microcode that
implements the statechart is also presented. Finally, in Section 6 the code obtained from all methods
is compared, focusing on the application of these methods to the ESS case, and in Section 7 the
conclusions of this work are presented.

2. Statecharts

Statecharts were introduced in 1987 as a tool to overcome the limitations of FSMs [9,10] in
describing the behaviour of complex systems. FSMs are state-based models where only one state is
active at any given time, which can be changed by external inputs or internal conditions. The change
between states is called transition.

The aspect that limits the usability of FSMs is that they can greatly grow in complexity when
adding states. Statecharts deal with this issue by extending the conventional state-transition diagrams
allowing for hierarchy and nested states, concurrency of parallel states and better communication
among the states. This allows for more compact, expressive and modular diagrams, that can describe
complex behaviour with smaller diagrams when compared to FSMs. As such, statecharts are a visual
formalism for describing states and transitions. At the same time statecharts maintain all of the
characteristics of FSMs, such as conditions, outputs, etc. Their main contributions are:

e Orthogonality: as opposed to classical FSMs, where only one state can be active at a time,
statecharts can have more than one state active concurrently. These are called AND-states,
while the traditional approach are called OR-states. Orthogonality is very useful for
describing subsystems.

e Depth: there is a hierarchy in the state structure, allowing for states or even complete FSMs or
sub-statecharts to live inside other states, connected with inter-level transitions. In the nested
structure the state containing other states is called super-state. Depth allows for great modularity,
clustering, and ease of movement between levels of abstraction by zooming in or out. It is also
possible to define initial and default initial states, and have history in the states, as explained in
Section 4.2.3.

e Broadcast mechanism: the different parts of a statechart are not independent of each other.
An action taking place in one part of the statechart can cause many different actions in a completely
different part of the statechart taking into account the orthogonality and depth. To allow this it
may be necessary that many components communicate with each other even if it is not evident in
the specification of the statechart.

In Section 4.2 the features of statecharts are explained in more detail.

In Figure 1, a statechart is shown. At the higher level, top is an OR super-state, because either active
OR wait super-states must be running, but not both at the same time. The active super-state is made
up of two regions, send and receive. This illustrates the concept of hierarchy, as one super-state may
be made up of several ones. In this case, both super-states are running in parallel, allowing to describe
concurrent processing. This is called an AND super-state (denoted by the divider line). Inside each
of them, only one state is active (e.g., update and save working concurrently). Contrarily, when wait
is active, either idle or background are running, but not both at the same time. A black dot and an
arrow point at the initial node for each super-state. Moreover, two super-states are denoted to have
history (an H within the dot). Therefore when processing returns to wait, it remembers whether it was

Electronics 2020, 9, 1139 30f18

running in idle or background and, in the latter case, in which of the three nodes. History is a crucial
characteristic that is seldom supported in previous works.

top level super-state (OR)

initial state @——— > wait super-state (OR)
wait
active super-state (AND) —
T = idle\ibackground
send S-S (OR) | receive S-S (OR)
: Ibackground
A
. sleep, background S-S (OR)
[transmission] background
wake

always
['transmission
always|
~ [transn

always [!send_once]

“ACK c
entry / raise acknowledge entry / raise acknowledge

Figure 1. Simple statechart with superstates, actions and conditions.
Review on Hardware Synthesis

Soon after statecharts were proposed, a number of tools for hardware synthesis were developed.
However, most of them were limited in scope, or were based on now obsolete technologies. In 1989,
Drusinsky and Harel [11] studied the challenges related to defining history and activation and
deactivation of super-states. The work gives implementation hints focused on Programmable
Logic Arrays (PLAs). Drusinksy and Yoresh [12] analysed the limitations of the previous work,
and focused on reducing the complexity of the transitions between super-states and efficient
state-coding. Again, the solutions are mainly oriented to PLA implementations. The first reference
to an automated tool is found in [13], where a tool called I-Logix Express VHDL (Very High Speed
Integrated Circuit Hardware Description Language) is used. However, it does not cover most of the
statechart features, and the paper is mainly a description of some use cases. Another paper [14] using
the same tool focusses mainly on validation, and overlooks implementation aspects, such as history.
A later product by I-Logix (Statemate) supported hardware synthesis with some limitations. Although
I-Logix has produced more statechart software synthesis tools, such as Rhapsody (now owned by
IBM), hardware synthesis was not included in them.

In [15], a comparison is made on the complexity of implementing the system directly in VHDL
code versus modelling and synthesizing the statecharts with the help of SPeeDCHART. Despite the
advantages of using a graphical environment, the authors highlight that strong VHDL knowledge
is still required. The same authors published a similar comparison based on implementing fuzzy
control systems. Nevertheless, the provided examples are actually implemented as FSMs, as they
lack of the sophistication of real statecharts. In [16], an Application-Specific Instruction Set Processor
(ASIP) is proposed for mapping statecharts. Most of the paper focuses on the architecture of the ASIP.
Statecharts are analysed using a tool called ROOM. History and other features are not supported. In a
later work [17], this limitation is not solved. A methodology for co-design is shown where statecharts
are implemented in hardware as flattened FSMs. Furthermore, in [18] the implementation of datapaths
ruled by a FSM or statechart is studied. The latter is implemented using SPeeDCHART (which was
also used in [15] and [19]), and the analysis reveals that the tool does not implement concurrency in a
satisfactory manner. Moreover, hierarchical superstates are flattened, rendering a single superstate
with a large number of states. The authors do not mention how they deal with history.

More recently, Qin, Chin et al. have published a number of papers [20,21] that analyse
the theoretical basis of automatic conversion from statecharts to Verilog HDL. Moreover, in [22],
they introduce a statechart editor and a hardware mapping tool for which some implementation

Electronics 2020, 9, 1139 4 0f 18

examples are provided. The applicability of these works is limited by the fact that they do not support
history nor transitions between states at different levels.

In [23], a methodology is presented for generating SystemC and VHDL code from a statechart
specification. Much of the paper is devoted to explain how to guarantee consistency between SystemC
and VHDL code behaviour when triggering events during simulation. The paper is mostly focused on
SystemC, so little details are given on the generation of VHDL code. Furthermore, as in many other
works, history is not supported.

Finally, Mathworks includes Stateflow [6], a commercial toolbox for Matlab that supports the
statecharts formalism, including history in nested regions. An add-on to the same product called HDL
Coder produces usable code for over 200 hardware platforms.

In summary, there is still a need for synthesis tools as the other existing tools, with the exception
of a commercial one, cover only a partial set of features and most of them are now discontinued.

3. Hardwired Strategy

Following there is an explanation of how an engineer would implement a statechart by hand.
Using an HDL such as Verilog or VHDL, the starting point consists of defining a process for each leaf
superstate. That is, those that do not contain other superstates. Each of those processes encode a FSM
with as many states as there are in each superstate. Moreover, a registered activation bit is defined for
each of them. The code for every process checks the activation bit. If active, a switch-case construct
will be used to write code for each basic state, which may include: generating outputs, updating the
internal state, producing events (signals) for other processes and switching off the current superstate
and sending an enabling event to a different one.

Inactive superstates evaluate if the conditions to be enabled are fulfilled. In such a case,
the activation bit will be switched on. Hierarchy is not implemented by nesting processes, but by
the way in which events are produced and consumed by the different processes. Looking at
Figure 1, event wake will activate both send and receive. There is not a process for superstate
active. Furthermore, sleep will be processed by all the superstates. First, send and receive will
become inactive.

Moreover, the internal state will be recovered if history is implemented or, otherwise, reset.
In some cases, a superstate may become active or inactive under different events. Thus, some processes
must register additional information that enables the code to decide when and how to activate the
superstate. This is sometimes called deep history. As an example, wait/idle will activate itself only if
it was disabled by wake, but not by background. Similarly, background will decide whether it should
resume or not.

Most of the communications between processes are carried out using events (signals). In some
cases, an event or an output may be produced by different processes. In such a case, all the sources
are or-ed to produce an unified event or output. Hence, inactive processes must produce zero-valued
outputs and events. Beside the superstates, additional processes could be defined in order to produce
and/or consume specific events. This includes all kind of counters or alarm triggers.

In summary, the well-known methodology for synthesizing FSMs must be extended with the
addition of an on/off bit. Furthermore, a simple mechanism for implementing history is needed;
and hierarchy is modelled by raising and consuming events. It must be remarked that all processing is
specified with a clock cycle granularity. Therefore, actions and transitions must be completed in the
duration of a clock cycle. Those actions that may span several cycles (such as iterations) could require
splitting into different states.

Electronics 2020, 9, 1139 50f 18

4. Automatic Synthesis of Statecharts

4.1. Statechart Parsing and Analysis from a Graphical Tool

There are several graphical tools that allow designing and testing statecharts, as well as
implementing them in form of C, Java or other software programming languages. Those are part,
in most cases, of UML tool suites. However, as described in Section 2, there is a lack of tools that
can perform the hardware synthesis of statecharts in a successful manner without sacrificing some
of statechart’s main characteristics. An automatic tool has been developed by us that is able to
produce HDL code starting from a graphical description of a statechart without imposing important
requirements on the statechart. For the development of our tool we have used Yakindu Statechart
Tools (Yakindu SCT) [7], which is specifically focused on statecharts. Yakindu SCT saves the statechart
model in a XML file describing the regions, states, history nodes, etc, and the transitions between them.

The selection of Yakindu for designing the statecharts determines the statechart variant used as
a starting point for our application, State Chart XML (SCXML). Nevertheless, since the implementation
of statecharts in hardware systems present some unique characteristics compared to the software
implementation, which is the main target of SCXML, some aspects have not been implemented in our
tool, such as “invoke”, the errors and logs, or the data model.

Our application processes the XML description of the statechart using Xerces C++ [24], a validating
XML parser. It provides a shared library for parsing, generating, manipulating and validating XML
documents using different APIs; we have chosen the DOM [25] API. Although a tree walker that goes
through the document node by node is provided, it does not allow enough flexibility to produce the
HDL code in a well structured manner. Therefore, we used the parser in a more flexible way, defining
in each step a current node that allows moving back and forth through the structure.

In our current implementation some restrictions are assumed in order to ease the design of
the application:

o The names of the elements do not include spaces.

e Only events and internal conditions are accepted as transition triggers: external events, counters
or integer variables having a specific value are accepted, but more general conditions, such as
“after one second”, valid in the Yakindu SCT model, are not accepted. Instead, an internal or
external counter is used to measure time spans as a number of clock cycles. Using the clock period
as a time unit allows greater accuracy in high-speed signal processing.

e Only shallow history is supported: shallow history is defined as a pseudo state that remembers
the last active state inside the region that includes it. Deep history, which remembers all the latest
states of a hierarchy of multiple nested states, is not currently supported.

e All the states in the statechart must have different names.

Although a formal study of the consistency and validity of our statechart variant has not been done,
the features of SCXML that have not been implemented are not part of the core of statecharts. They are
also mainly related to software implementations and do not transfer easily to hardware designs.
The only exception to this would be the restriction on deep history. Most of the restrictions are in place
to rule out cases that are improbable or even impossible in our goal implementation. Furthermore,
some restrictions may reduce the complexity of the implementation. Hence, we firstly considered that
transitions only could happen between states in the same region and level of the hierarchy. That did
not inhibit the implementation of some systems, but encouraged a better specification of the statechart.
However, that restriction has been finally eliminated without a significant complexity increase.

4.2. Synthesis of Super-States

The synthesis of FSMs is well understood [26,27], and a number of tools exist able to convert
graphical representations into HDL code. However, statecharts introduce new features, such as

Electronics 2020, 9, 1139 6 of 18

super-states and history, that require new synthesis techniques. So far, synthesis has chiefly been
addressed from a software point of view [28].

By analysing the XML description of the statecharts provided by Yakindu SCT, a basic
implementation of a super-state can be obtained using the same procedure as for FSMs, which consist
of defining: (a) state encoding, (b) a state transition function, and (c) an output generation function.
However, some characteristics of super-states may be more challenging to implement, such as:

e Orthogonality (or concurrency).

e Depth (or hierarchy).

e History.

o Distributed generation (super-states generating the same output or event).

e Entry, exit and event-driven actions inside a state, conditions, and actions on transitions.

4.2.1. Orthogonality

While FSMs can only have one state active at a time, statecharts can have two or more states active
concurrently. This can happen when the two states are in different levels of the hierarchy, as explained
in Section 4.2.2, or in the same level (orthogonality). In the latter case they are called AND-states.
Each super-state can have different regions, with each region implementing a FSM, and all of the
FSMs being active at the same time. Although each region should run almost independently of the
concurrent ones, they can affect each other, for example if one event is raised by one of the regions,
and that same event has an effect on a different region. Our application implements each region as
a different process that runs concurrently with the rest of the processes.

For example, let us consider the statechart shown in Figure 1. Inside the active super-state there
are two parallel regions, named send and receive, and in this simple case the two regions implement
independent FSMs that do not have any effect on each other. Listing 1 shows an extract of the XML file
of the model that describes the two parallel regions, and Listing 2 shows an extract of the VHDL code
generated by our application that implements these two regions as processes.

Listing 1. Extract of the XML file from Figure 1 that describes the two parallel regions (edited for clarity).

<vertices xsi:type="sgraph:State" xmi:id="..." name="active" incomingTransitions="...">
<outgoingTransitions xmi:id="..." specification="sleep" target="..."/>

<regions xmi:id="..." name="send">

</regions>

<regions xmi:id="..." name="receive ">

</regions>

</vertices>

Listing 2. Extract of the output VHDL file implementing the two regions described in Listing 1 (edited
for clarity).

sendFSM: process (sleep , wake, send, resume, background, sendCurrentState)
begin

case sendCurrentState is

[...]

end case;

end process;

receiveFSM : process (sleep , wake, send, resume, background, receiveCurrentState)
begin

case receiveCurrentState is

[...]

end case;

end process;

Electronics 2020, 9, 1139 7 of 18

4.2.2. Depth

As opposed to FSMs, statecharts can have different levels of hierarchy with states (or even
complete FSMs) living inside other states, giving the statechart a sense of depth. In this case,
when a super-state is left, all the states underneath it should be disabled, and when the super-state is
entered, the FSM inside it starts or continues its operation. This can be implemented in two ways:

e Each region is automatically disabled when the super-state containing it is disabled, and it is also
re-established automatically when the parent super-state is enabled. In some unusual transitions
between states in different regions it may be a sub-state that disables or enables the super-state
containing it.

e Each region monitors all the transitions and events happening in any place of the statechart,
not only the transitions in, to, or from its neighbouring regions, and if appropriate it reacts to
them. In this case each region does not react to states being enabled or disabled, but rather to the
transitions themselves, and each region needs to determine if the transition affects it (for example
by disabling a super-state that down in the hierarchy includes the region under consideration) to
react as expected.

Although in some cases the first option could be more suitable, we have implemented the second
one for one main reason: in transitions where the source and destination states are not in the same
region and super-state, it would be the sub-states enabling and disabling the super-states where they
live, and not the other way around. Then this enabling or disabling action needs to be cascaded
down from the super-state downwards in the hierarchy. It is even possible that a transition from a
state enables or disables super-states several levels up in the hierarchy, which would trigger a lot of
disabling actions. If the regions or states are aware of the transitions instead, the produced HDL code
is shorter and smaller circuits are synthesized. Listing 3 shows the output of our application for the
wait region in Figure 1.

Listing 3. Extract of the output VHDL file implementing the wait region (edited for clarity).

waitFSM: process (sleep , wake, send, resume, background, waitCurrentState)
begin

case waitCurrentState is
when idle =>

if wake = '1’ then
waitHistReg <= 0;
waitNextState <= waitEntry;
else

if background = ’1’ then
waitNextState <= background;
end if;

end if;

when background =>

if wake = ’1’ then
waitHistReg <= 1;
waitNextState <= waitEntry;
else

if background = ‘1’ then
waitNextState <= idle;

end if;

end if;

when waitEntry =>

if sleep = 1’ then

case waitHistReg is

when 0 =>

waitNextState <= idle;
when 1 =>

waitNextState <= background;
end case;

end if;

end case;

end process;

Electronics 2020, 9, 1139 8 of 18

The hierarchy can have any number of levels, so a sub-state in a super-state can at the same time
be a super-state. Our application uses recursive functions to go through all the levels of the hierarchy
to complete the statechart model.

4.2.3. History

A super-state has history if it can remember its present state and return to it later after being
disabled for a while. A super-state without history, however, will always resume its activity starting at
its initial state. Implementing this behaviour can basically be achieved in two manners. In the first
way, a wait state is added, and a copy of the current state is kept on a register. A disabled super-state
will be running in its wait state until a resume event is triggered, then the saved state will be used.
Alternatively, it may be simpler to add a wait state attached to each normal state and transit to it when
the super-state is disabled. The convenience of each solution should be assessed for each particular
case but, in our current application, only the former is implemented, which can be seen in Listing 3.
In this example the wait state is named waitEntry and it stores the state in the waitHistReg register.
The wait state is also used as the entry node, but its initialization is not shown in the listing.

Deep history consists of the ability of resuming to the right state even it is deeply buried in
a hierarchy of regions. Currently, our tool does not implement deep history. Instead, processing will
resume to the highest region in the hierarchy, whether it was previously active or not. If that region
has history, it will be correctly implemented. Furthermore, when the previously active region becomes
active again, processing will resume to the right state, as history is not reset.

Despite not being operational in our tool, a simple mechanism would allow implementing deep
history. It would consist of adding an extra wait state, or deep history inner state, in the region with
the deep history state, and all the regions inside it in the hierarchy. This extra wait state does not
replace the normal wait state that may be present in the regions, since they will be activated under
different conditions and transitions. Nevertheless they can share the register that holds the saved state,
so the extra wait state becomes just a flag.

4.2.4. Distributed Generation

Ideally, each super-state generates a sub-set of outputs and events different to other super-states.
However, this is not always true, either because the statechart is not neatly designed or because using
different super-states actually helps to organize the statechart. Hence, the implementation of each
super-state may depend on others. A preliminary parsing of the statechart description finds which
outputs and events are produced by different super-states, and asserts that only one of them is active
at the same time. Next, output and event signals are renamed by appending a suffix that relates each
signal to the super-state in which it is produced. Finally, the global signals are obtained by reduction
as: globalSignal = (signal_ss1 and active_ss1) or (signal_ss2 and active_ss2) or....

4.2.5. Actions and Conditions

Entry and exit actions are not unique to statecharts, since FSMs can also model them as part of
their inputs and outputs. However, in statecharts, they are expanded by allowing actions to happen
when some conditions are met at any moment during the active phase of a state. For example, a state
may increase a counter when an event is raised anywhere in the statechart, but the counter would not
increase if the specific state is not active. In this case the statechart models the counter-increase action
as being performed by the active state. Conditions can also apply to any transition, action, event, etc.

Transitions are condition-dependent. Conditions are evaluated using if-elsif-else statements,
which in VHDL introduces a priority order even if, in many cases, conditions are mutually exclusive.
However, as it is pointed out in [29], conflicting transitions may happen when more than one condition
applies at the same time on a given state leading to different transitions. In such a case, our tool
will give priority to transitions specified at a higher level. In the case of transitions in the same

Electronics 2020, 9, 1139 9of 18

region, those with higher priority will be coded first. Actually, the latter does not require any specific
programming, as Yakindu XML-files list the transitions in order of priority.

Some tasks may require several clock cycles before completing. In those cases, it may happen that
exiting the current superstate before completion is not desired. This is called Run-to-Completion (RTC).
In the context of this tool, RTC is specified and implemented as shown in Figure 2. The first superstate
will exit if event is triggered, even if that it is not desired. The second one, however, will not react to
event until the task in completed. However, there could happen that event is only active during some
cycles before completion. Therefore, the third superstate registers event using a concurrent superstate
so that the event is not missed. Similarly, more than one event could be registered and a priority
scheme could be implemented.

run-to-completion run-to-completion run-to-completion + register
S PN manRTC__ | register
.—»{ RTC ‘ .—»{ RTC ‘ .—»{ RTC ‘ } ‘reset_regH
event b 3 h S e
«— end end end |
event | v
) event) ORreg | — | event
| more ‘ < |~ more ‘ - A more | ! ‘\reg |= event [== L
|
RTC not guranteed RTC could miss event RTC with 1 event registered

Figure 2. The problem or Run-to-Completion is presented. RTC is not guaranteed if the event affects
the whole superstate. A simple implementation of RTC is achieved when only more reacts to the event.
In order to avoid missing an event, however, a concurrent process may be required to register incoming
events before completion.

4.2.6. VHDL Implementation Steps

Our application performs the parsing of the XML file and generation of the VHDL file in a series
of steps:

e Previous to the HDL generation, the XML file is parsed once to get a structural description of the
statechart. This includes creating lists of: associated ids and names, associated transitions and
triggers, states, and history nodes.

e When the main parsing is performed, the first step is the declaration of the entity, with the name
of the statechart and the list of in and out events from the statechart interface list.

o Then the architecture body starts defining each of the types of regions’ states and history nodes
and defining two signals that will hold the current and next state for every region. Signals for
internal variables and registering and saving the active states in transitions with history are also
defined in this step.

e Next the architecture body begins. Each region is implemented as a VHDL process which is
basically a case-when list of the current state in that region. This is the most complex step,
and where the considerations explained by Section 4.2 express themselves. Recursive functions
are used to ensure that the statechart is implemented completely.

e The VHDL code is finished with a synchronization process that, synchronously, updates the
current state of each region process with the next state as determined by the normal operation of
the statechart.

5. Microprogrammed Architecture

A microprogrammed architecture [1] for statecharts is now described. The basic element of this
architecture is a circuit able to run one or more superstates in a non-concurrent manner. The circuit is
able to switch between superstates connected by transitions and implement shallow history.

In order to implement the concurrency required by AND-superstates, as many of those circuits
must be instantiated as superstates may run in parallel at the same time. Each circuit is made of
a micro-memory that stores one micro-instruction for each basic state. Each micro-instruction encodes

Electronics 2020, 9, 1139 10 of 18

the actions to be carried out by that state, and all the possible transitions and the conditions (event) that
would trigger those transitions. The circuit will read one micro-instruction each cycle using a program
counter (PC), decode it, execute the actions, and select the next value for PC after evaluating the list of
conditions and transitions.

All instances have access to the same set of inputs, outputs and internal variables. Events derived
from inputs and variables influence the transitions on different instances, establishing connections
between superstates. For example, one superstate may change a common variable in order to trigger
an event in another concurrent one. In the following paragraphs, the implementation is described
in detail.

Each instance is made of the following elements: micro-memory, PC, a set of registers to implement
history, the logic to decode and evaluate the conditions and transitions, and the logic to decode the
actions to be performed. At least, as many instances are needed, as concurrent superstates but, in order
to enable future upgrades, a slightly larger number is recommended. The use of double-port memories
allows sharing part of the cost between instances, especially when each of them implements only a few
states. The length of the micro-instructions may be significantly large, especially in cases with many
inputs and/or variables and outputs. Therefore, several memory modules are often required for each
instance, and the advantage of sharing becomes more evident.

The program counter represents addresses in the micro-memory, but this may require a translation
in some cases. Thus, when switching to a new state within the same superstate, the microinstruction
provides the exact address of the next state. However, when switching to a different superstate,
a special code is given instead. That code is an index in the range of 0 to 7, for example, and it
is translated to a real address using the history register at that index. Thus, the first addresses are
reserved and any transition to one of those addresses is translated to a real one. At the same time,
if that superstate implements history, the current content of PC is stored in the history register of the
current superstate. In this way, future transitions back to the exiting superstate will resume at the
right state/micro-instruction. The initial values for the history registers are loaded at configuration
time, at the same time as the content of the micro-memory, and a set of flags that signal whether each
superstate implements history or not. Figure 3 shows how micro-memories, PC, and history registers
work together.

Inputs to the system are key in decision making. Events based on inputs are produced
by comparing each input value to a set of reference values (we propose 2 for each input).
Hence, events such as inputl is lower than refl can be used as conditions for any of the running
microprograms.

Counters are used as internal variables. The value of each counter is also compared to reference
values producing events similarly to inputs. A micro-instruction may update the content of any
counter by issuing a command that specifies loading or adding a reference value, incrementing or
decrementing it.

Finally, outputs are selected by the micro-programs assigning one of the counters or a predefined
value. Optionally, each individual output may be configured to be registered. Figure 4 shows the basic
structure of the three types of components.

In order to deal with a mix of OR and AND superstates, all the microprograms run concurrently,
even if no real work is done. Hence, a microprogram may be running a ghost superstate until it
branches into an activated AND superstate. Ghost superstates are made of micro-instructions that
evaluate the conditions that may lead to branch to another superstate, but they do not change any
internal variable or produce any output. Figure 5 shows how to implement the complete statechart in
Figure 1 using two microprograms. The second one will mimic all branches until arriving to receive,
where real actions will be carried out. The same scheme may be applied for a larger number of
micro-programs and deeper hierarchies.

It is not possible to implement deep history using the proposed architecture, as it does not
implement call-return, just branching. Hence, the engineer must choose a fixed superstate to return

Electronics 2020, 9, 1139 11 of 18

to. However, each superstate history is not lost, so that when entering that superstate, execution will
resume at the right micro-instruction.

translated) ;
address action
yes dt
. condition
Micro-memory Pmanagement

new address/index
after checking conditions

history
registers
select
history

addrefs
3

Figure 3. Basic microprogrammed circuit with micro-memory. Microinstructions are evaluated
and condition management produces a new address. If the address is actually a super-state index,
a translation obtain the real address and the history registers are updated if history is implemented for
the exiting super-state.

o [8 r-'
value 0 s F @ counter
input;, g N 3 ref 0 z
value a P 3 H
referen. g _ > <
value 1
o < 2
<
input counter output

Figure 4. Basic scheme of inputs, counters and outputs in the microprogrammed architecture.
Every input value is compared against 2 reference values. The resulting 6 flags are used as conditions
by the microprograms. Counters work in a similar way, but they are updated according to commands
issued by the microprograms. Output modules a basically a mux with an optional output register.

wait ghost wait
idle idle
background ghost backgd
read read
check check
ack ack
send receive
idle read
send save
update ACK
wait

Figure 5. Main and ghost micro-programs for the statechart in Figure 1. The micro-program on the
right side mimics all the transitions of the main one without performing real work. When branching to
receive, real actions are taken until that super-state is left again.

5.1. Micro-Instruction Format

Micro-instructions are made of two fields. First, a set of conditions to decide where to branch.
Each condition is made of: the index of the event to be evaluated; a comparison (<=>>); inverting flag;
the reference value to use; the chain bit; and the target address. Simple conditions may be combined
(and operand) by setting the chain bit. The or operand is implemented by using the same target for
different conditions. The second field specifies the actions to be taken: updating one or more counters
or producing a given output. Figure 6 shows the format for the statechart in Figure 1. Allowing several
conditions increase micro-instruction length, but limiting the number requires splitting the evaluation.
Figure 7 shows an example, when the format is so narrow that only two conditions may be encoded in
the same micro-instruction. In such cases, engineers must assess the impact of using extra cycles.

5.2. Configuration

A chain of registers store the initial addresses for each superstate; the flags that support history;
the reference values for the inputs, counters and outputs; and the initial values of the counters.

Electronics 2020, 9, 1139 12 of 18

The configuration is loaded byte by byte and it propagates to the last element in the chain, where the
micro-memories are located.

idx comp inv ref chain address idx val action
Woo 0 I oo
T~ _— \ /

[cond0 [cond1 | cond2 [cond3 | cond4 [action0 [actiont |
conditions for transitions to a new p instruction actions for this p instruction

Figure 6. Micro-instruction format for the statechart in Figure 1 including bit-fields. At least five
conditions and two actions are needed. Each condition requires 12 bits; each action 6.

condition target condition target state_nota—
- others ¢ evalc—»
start: if a eval_b else state_nota state_c
eval_b: if b state_ab else state_a_notb ab .
. — /
state_nota: if b state_nota_b else eval_c ab N
&'
eval_c: if ¢ state_c else others _;"e< o o F
"fs\ o 4 state_nota—»
\’70% state_nota_b

Figure 7. Three-step evaluation of five conditions when only two may be addressed at the same time.
This situation corresponds to mapping a statechart onto a micro-programmed architecture that was
originally planned for simpler designs.

6. Evaluation

The proposed methods are now evaluated using four different use cases: the example from
Figure 1, the digital watch proposed by Harel in his original work [4] and the two main components of
the ESS timing system—the event generator (EVG) and the event receiver (EVR)—which provides the
fast and jitter-free synchronization that is required to successfully run such a complex machine as ESS.
Hence, one engineer introduced the diagrams in Yakindu and used our tool to produce VHDL code in
an automatic way and implemented the statecharts. A second engineer analysed the statecharts and
produced VHDL code by hand and implemented them using the microprogrammed architecture.

A recreation of the original Harel’s diagram is presented in Figure 8. From it, alarm1-status,
alarm?2-status, and dead have been later removed as they have been found to be redundant with other
states and the reset signal of the circuit. All the other aspects have been implemented, except deep
history. In the hand-coded version; however, deep history has been included without much effort.

The EVG and EVR are shown in Figures 9 and 10. Their structure is not as complex as that
of the digital watch, apart from the fact that a significant number of AND superstates are required.
In that sense, the digital watch tests the capability of correctly implementing most of the features of
statecharts, while the remaining ones are used to compare the quality of the code in relation to the
hand-written one.

These examples illustrate the main concepts of statecharts but they differ greatly in complexity.
Harel’s watch, EVG and EVR specify a large number of AND-superstates, several inputs and conditions,
but only Harel’s requires deeply nested hierarchy. We refer to the original papers [4,30]. Table 1
summarizes the main characteristics of the examples. Some of the figures have been expanded
manually (between parentheses) in order to allow for some upgradability, which could extend the
useful life of an embedded system.

Table 1. Evaluation of four statecharts: main characteristics. For the sake of upgradability, some figures
have been expanded (shown between parentheses).

Figure1 Harel (Figure8) EVG (Figure9) EVR (Figure 10)

states 7 48 28 30
superstates 4 19 9 12
max. AND superstates 2 (4) 7 (8) 9 (10) 12 (14)
events 7 (16) 17 (32) 28 (32) 23 (32)
counters 1(4) 8 (16) 6(8) 12 (16)

outputs 1(4) 4(16) 8 (16) 12 (16)

Electronics 2020, 9, 1139

13 0f 18

multialarmclock

display

d jrunon == 1
e
(e —

waitstate

entry chimeon
et chime

et alarmzon

a
‘a
out
c
alarm2 update2 updatet
o|[tarm: L.b ipdate2 kb odatet
5

~

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

alive
main alarm1status alarm2status chimestatus light power
displays
.
displays
[disabled] [disabled] [disabled] ﬁ m
T==T1

regularbeeptest 4 faron = danpon == 1 4 impon = 11 b br ! satupaens

regular d = d (alarmf20n == 0| d (chimgon == 0]
i SRR

alarmiboep [enabled] [enabled] enabled
quiet
[T3=T3]
Seep
oy oepes

Figure 8. Recreation of Harel’s description of a statechart to control a digital watch.

main_region

*~{on]

[] [] B

M0 ey Mact_out = e ety Va2 out="rvo ety s

it e ot - s Wico_ i Lo/ o= o e i) Lot oo o oz aid Lt eu Mo el
[Mxdocnt == 0] Mxgtent == 0] [Mx¢2ent == 0] [Mx¢3cnt == 0]

MxcOon

hxcq feset

Mxcion

oniry !
ik { MxcOent = MxeDent - 1

i/ MxeTent = Mxetont - 1

Mxc2on
o5t ey e thczsor | M1
1

tick /Me2ent = Mrczen

[Mxc3on m
Sell enry / ixc3ont = Mxc3set s el

ik { Mac3ont = Mxc3ent

starloC stoplOC
Running
EviGnr u\ SetParams " DataDistrBus TCksrc | TimeStamp
I I
EvtGnr I \ I
Sequencer TNxCle (Nomal] | [patabistrBus !
I I I
I I
I I
| Mxcs I
Mxc0 Mxc1 Mxc2 Mxc3 } Enabled
I

Enabled

Figure 9. Statechart of an EVG from the ESS control system.

main_region

Disabled
master_enable | T master_disable
L

enabled

status_and_control data_buffer

N

data_buffer

mode_selection

T
| heartbeat

delay_generator

prescalers

delay_generator

avuraroc_onel | dout roe_ond
antpr ! e

T
|
I
1
|
|
|
I
|
|
|
I
1
1 | [doufier_rec
|
|
I
|
|
|
I
1
|
|
|
|

. (m :ﬂg:-md-l b [W::Ig-nzdll
; (e _; [

|
|
|
! T
‘ o 2 Taagen2 Toogers
s | ime_vald - ! o |]|
| oo e e —
] bus_and_dbuffer | - P o | [g ! e proscalors
o Tdoutor_send ! e St o e ||| Sl } e 1
! ! | |
ik I I delgentpfiaah deigen o I geigengfioas I deigennags
! y I - I
wait I ‘wait I efhenorrigger deifentirigger deghen2urigger 2 defhendirigger

i O o ~ il = -
‘

e ! (—defgenodet ! | (doigen3der
|
|
‘
|
‘

Figure 10. Statechart of an EVR

The implementation of the example from Figure 1 will be analysed first using the data from

Table 2. As it can be seen, the hand written code is more concise that any other option as: the

Electronics 2020, 9, 1139 14 of 18

automatic tool produces verbose code; and the microprogrammed architecture describes large
multiplexers for condition and action selection (those 689 lines of VHDL code do not include the
firmware). The number of logic blocks (Xilinx Kintex-7 look-up-tables) and flip-flops are similar for the
hand-written and automatic implementations, but the microprogrammed architecture results in a large
overhead. The latter architecture is the only one that requires RAM memories. Each microinstruction
is 102 bits wide, requiring four 32-bit words. Thus, four double-port memories will support two
AND-superstates. Then, twice that amount is needed to host up to four concurrent AND-superstates.
Finally, the microprogrammed architecture is significantly slower than the hardwired ones, mainly due
to the use of memory blocks and large multiplexers. This may have an impact on the performance
of the systems or be irrelevant for a particular application. The difference in speed between the two
hardwired circuits is not significant.

Table 2. FPGA resource utilization and clock cycle (delay) for the statechart in Figure 1 using
three methodologies.

Hand-Coded Automatic Tool Microprogrammed

Lines of code 148 232 689
Logic blocks 24 26 8416
Flip-flops 43 43 1872
RAM (18 Kbit) 8

delay (ns) 1.29 1.33 8.56

Table 3 shows results for Harel’s watch. As in the previous case, hand-written code is shorter
and produces the smaller circuit. The automatic tool produces a similar circuit using a more verbose
code. Again, the microprogrammed architecture is both significantly larger and slower than the other
two architectures. In this case, each micro-instruction is 130-bit long, requiring five 32-bit words.
Hence, five block of memory may host two AND-superstates, and four times that amount will host the
planned eight concurrent AND-superstates.

Table 3. FPGA resource utilization and clock cycle (delay) for the statechart proposed by Harel [4]
using three methodologies.

Hand-Coded Automatic Tool Microprogrammed

Lines of code 569 1483 753
Logic blocks 131 169 16,203
Flip-flops 140 156 4776
RAM (18 Kbit) 20
delay (ns) 1.59 1.61 8.70

The implementation results for EVG and EVR are similar and they are shown in Table 4. As with
the digital watch, the hand-coded implementations use slightly less resources than those generated
by the tool. A quick inspection revealed that, in all three cases, the tool was using more flip-flops to
encode the hierarchy of states, whereas the engineer decided to flatten the structure. As mentioned in
Section 3, superstates that only contain other superstates are not implemented. The microprogrammed
implementations are similar to the digital watch, as the number of resources where expanded in the
same way (see Table 1). The differences are mainly attributed to the cost of managing a different
number of AND superstates. Importantly, neither EVG nor EVR require deep-history. Harel’s watch
does, but it may be implemented using simple history without losing usability.

Electronics 2020, 9, 1139 15 of 18

Table 4. FPGA resource utilization and clock cycle (delay) for the event generator (EVG) and event
receiver (EVR) statecharts using three methodologies.

EVG EVR
Hand Tool uProg Hand Tool uProg

Lines of code 409 614 811 574 737 753
Logic blocks 171 215 16,422 79 106 19,857

Hlip-flops 99 143 4686 86 107 5108
RAM (18Kbit) 25 30
delay (ns) 1.73 1.60 8.81 1.84 1.68 8.70

Next, each strategy will be analysed comparing the implementation of the four statecharts. For the
hardwired architectures, the number of lines of code and hardware components is proportional to the
complexity of the statechart. The delay, however, does not increase significantly, as the critical path is
defined by the most complex super-state, not the aggregation of many. This suggests that the synthesis
of even larger statecharts should still produce fast circuits.

The circuits obtained using the automatic tool are comparable to those made by hand. A small
resource overhead has been detected due to the implementation of some superstates. As hierarchy
is more neatly implemented in the current way, we do not consider the need of rewriting the tool to
optimize those cases. The main advantage of using our tool is the possibility of applying changes to
the statechart in minutes and obtaining the HDL code in seconds. As a drawback, deep-history cannot
be implemented.

The code size for the microprogrammed architectures is similar in all cases, as many of the
components are the same even if they are instantiated in different amounts. The maximum differences
are a factor 2.4 in logic blocks; and a factor 2.7 in flips-flops. In all cases the delay is very similar.
The complexity of the microprogrammed architecture is largely due to the micro-instruction format,
which is defined by the worst case. Particularly, state check in Figure 1 requires evaluating five
conditions. As a consequence, the architectures are not very different. A shorter format could have
been chosen, as shown in Figure 7, if some extra delay is acceptable. Eventually, the main difference is
in the number of registers for reference values and the multiplexers that, as Table 1 shows, are double
the size in most cases. The delay in these architectures is mainly due to accessing the micro-memories
and propagating the signals through large multiplexers. It can be seen that there is not a great increase,
as the delay in multiplexers grows logarithmically with the number of inputs.

Any of the proposed examples can be implemented in any modern FPGA, with the exception
of the smaller devices of some series. Furthermore, as cost does not grow exponentially with the
complexity of the statechart, it is feasible to synthesize an extended architecture with extra inputs,
counters, and outputs.

Although difficult to quantify, there are other advantages of using our tool and methodology
in terms of ease and speed of support, maintainability and upgradability, which are compulsory in
some cases, specifically in research facilities. The application that motivated our work presented in
this paper, the ESS timing system, has some components that have a very flexible hardware, including
FPGA Mezzanine Cards (FMCs), that require hardware reconfiguration. Some other timing system
components are located in places where access is difficult or restricted, for example because the
physical dimensions of the component location are tight or blocked, or because there may be radiation
in the environment. In these cases it is important that the update process is fast and simple, since the
time to perform it may be short (for example during a shutdown period of the facility) and it may be a
technician without HDL experience performing the update, so using a visual tool such as statecharts
to model the system is a big advantage. The new configuration should also be error-free, since the
problems that could arise may be impossible to solve until the next shutdown or update period
(in some cases planned for months in the future). They may even prevent the correct operation of some
instruments, causing delays and extra costs in the experiments. In this kind of situations the work here

Electronics 2020, 9, 1139 16 of 18

presented is better and faster than the classical approach of writing by hand the hardware configuration
of the systems. Our tool makes it easy and simple to update the hardware configuration even with
no HDL programming experience, using a graphical approach and importing only one file to our
tool. It also keeps the chance of errors as low as possible by automatically generating a correct VHDL
file. Our methodology based on microprogramming allows updating and deploying configurations
quickly without logic synthesis, since for the deployment only a new configuration is needed instead
of a new bitfile. Furthermore, there is no dependency on the version of the synthesis software, so
maintainability is easier. These characteristics are very important in some applications. Although the
needs of ESS triggered the development of the work here presented, both the tool and methodology
can be used for any other cases where the target system can be implemented as a statechart.

Each of these implementation options may produce circuits that are faithful to the original
design in different degrees. Despite being time-consuming and error-prone, hand-written code
has the potential to implement any characteristic of the statechart. The automatic tool and
the micro-programmed architecture have the main limitation of not implementing deep-history.
However, it is not expected that this produces malfunctioning problems. In the case of microprograms,
it is possible that the architecture cannot evaluate complex conditions in a single cycle. In that case,
evaluation is split in several cycles, and the resulting latency may be noticeable.

7. Conclusions

Statecharts are a useful tool for specifying embedded control systems in both software and
hardware. Three methods are compared for hardware synthesis. We have obtained small and fast
implementations using our automatic tool, almost as efficient as human-written code. Statecharts may
also be implemented using a microprogrammed architecture. In that case, a significant overhead
must be expected in both the number of components and clock-cycle length. However, the benefits of
an upgradable architecture must be considered, as it allows to deploy mission-critical control systems
that may be updated as needed without physically accessing the hardware, such as nuclear facilities or
space probes.

Author Contributions: Conceptualization,].C.G. and R.R.O.; methodology,].C.G. and R.R.O.; software,].C.G.
and R.R.O.; validation, J.C.G. and R.R.O.; formal analysis,].C.G. and R.R.O,; investigation,].C.G. and R.R.O;
resources,].C.G. and R.R.O.; data curation,].C.G. and R.R.O.; writing—original draft preparation, J.C.G. and
R.R.O.; writing—review and editing, J.C.G. and R.R.O,; visualization, J].C.G. and R.R.O.; supervision,].C.G. and
R.R.O.; project administration, J.C.G. and R.R.O.; funding acquisition, R.R.O. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded in part by the Ministry of Science and Innovation of Spain (project
TIN2016-75845-P, AEI/FEDER/EU), Xunta de Galicia and FEDER funds of the EU under the Consolidation
Program of Competitive Reference Groups (ED431C 2017/04), and under the Centro de Investigacién de Galicia
accreditation 2019-2022 (ED431G 2019/01).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Milkes, M. The Genesis of Microprogramming. IEEE Ann. Hist. Comput. 1986, 8, 116-126. [CrossRef]

2. State Chart XML (SCXML). Available online: https://www.w3.org/TR/scxml (accessed on 3 July 2020).

3. European Spallation Source. Available online: https://europeanspallationsource.se (accessed on 3 July 2020).
4. Harel, D. Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Program. 1987, 8, 231-274.

[CrossRef]

Unified Modeling Language. Available online: https://www.uml.org/ (accessed on 3 July 2020).

6. Mathworks. Stateflow HDL Coder. 2018. Available online: https://www.mathworks.com/products/hdl-
coder.html (accessed on 3 July 2020).

o

http://dx.doi.org/10.1109/MAHC.1986.10035
https://www.w3.org/TR/scxml
https://europeanspallationsource.se
http://dx.doi.org/10.1016/0167-6423(87)90035-9
https://www.uml.org/
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/hdl-coder.html

Electronics 2020, 9, 1139 17 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Yakindu Statechart Tools. Available online: https://www.itemis.com/en/yakindu/state-machine/
(accessed on 3 July 2020).

IBM. Rhapsody. 2020. Available online: https://www.ibm.com/products/systems-design-rhapsody
(accessed on 3 July 2020).

Mealy, G.H. A method for synthesizing sequential circuits. Bell Syst. Tech.]. 1955, 34, 1045-1079. [CrossRef]
Moore, E.FE. Gedanken-Experiments on Sequential Machines. In Automata Studies; Princeton University Press:
Princeton, NJ, USA, 1956; pp. 129-153.

Drusinsky, D.; Harel, D. Using statecharts for hardware description and synthesis. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 1989, 8, 798-807. [CrossRef]

Drusinsky-Yoresh, D. A state assignment procedure for single-block implementation of state charts.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1991, 10, 1569-1576. [CrossRef]

Clemente, P.; Rundstadler, P.; Specter, L.; Walsh, K. From Statecharts to Hardware FPGA and ASIC Synthesis.
In Proceedings of the Spring VHDL International Users” Forum, Scottsdale, AZ, USA, 3-6 May 1992.

Kol, R;; Ginosar, R.; Samuel, G. Statechart methodology for the design, validation, and synthesis of large
scale asynchronous systems. In Proceedings of the Second International Symposium on Advanced Research
in Asynchronous Circuits and Systems, Fukushima, Japan, 18-21 March 1996; pp. 164-174.

Salapura, V.; Waleczek, G.; Gschwind, M. A comparison of VHDL and Statecharts-based modeling
approaches. In Proceeding of the ITI, Pula, Croatia, 14-17 June 1994.

Veith, C.; Buchenrieder, K.; Pyttel, A. Mapping Statechart Models Onto an FPGA-based ASIP Architecture.
In Proceedings of the EURO-DAC’96, European Design Automation Conference, Geneva, Switzerland,
16-20 September 1996; pp. 184-189.

Buchenrieder, K.; Veith, C. A Prototyping Environment for Control-oriented HW /SW Systems Using
State-charts, Activity-charts and FPGA’s. In Proceedings of the EURO-DAC’94, European Design Automation
Conference, Grenoble, France, 19-22 September 1994; pp. 60-65.

Muller-Wipperfurth, T.; Hagelauer, R. Graphical entry of FSMDs revisited: putting graphical models on
a solid base. In Proceedings of the Design, Automation and Test in Europe, Paris, France, 23-26 February
1998; pp. 931-932.

Salapura, V.; Hamann, V. Implementing fuzzy control systems using VHDL and statecharts. In Proceedings
of the EURO-DAC’96, European Design Automation Conference, Geneva, Switzerland, 16-20 September
1996; pp. 53-58.

Qin, S.; Chin, W.N. Mapping Statecharts to Verilog for Hardware /Software Co-specification. In Proceedings
of the FME 2003: Formal Methods, Pisa, Italy, 8-14 September 2003; pp. 282-300.

Qin, S.; Chin, W.N,; He, J.; Qiu, Z. From Statecharts to Verilog: A Formal approach to hardware/software
co-specification. Innov. Syst. Softw. Eng. 2006, 2, 17-38. [CrossRef]

Tran, V.A.V,; Qin, S.; Chin, WN. An Automatic Mapping from Statecharts to Verilog. In Proceedings of the
Theoretical Aspects of Computing—ICTAC 2004, Guiyang, China, 20-24 September 2004; pp. 187-203.
Findenig, R.; Leitner, T.; Esen, V.; Ecker, W. Consistent SystemC and VHDL Code Generation from State
Charts for Virtual Prototyping and RTL Synthesis. In Proceedings of the DVCon 2011, San Jose, CA, USA,
28 February-3 March 2011.

Apache Xerces Project. Available online: http://xerces.apache.org/ (accessed on 3 July 2020).

DOM, Document Object Model. Available online: https://dom.spec.whatwg.org/ (accessed on 3 July 2020).
Kam, T,; Villa, T.; Brayton, R.; Sangiovanni-Vincentelli, A. Synthesis of Finite State Machines: Functional
Optimization; Springer: Boston, MA, USA, 1997.

Villa, T.; Kam, T.; Brayton, R.; Sangiovanni-Vincentelli, A. Synthesis of Finite State Machines: Logic Optimization;
Springer: Boston, MA, USA, 1997.

Ziadi, T.; Helouet, L.; Jezequel,].M. Revisiting statechart synthesis with an algebraic approach.
In Proceedings of the 26th International Conference on Software Engineering, Edinburgh, UK, 28 May 2004;
pp. 242-251.

https://www.itemis.com/en/yakindu/state-machine/
https://www.ibm.com/products/systems-design-rhapsody
http://dx.doi.org/10.1002/j.1538-7305.1955.tb03788.x
http://dx.doi.org/10.1109/43.31537
http://dx.doi.org/10.1109/43.103506
http://dx.doi.org/10.1007/s11334-005-0020-2
http://xerces.apache.org/
https://dom.spec.whatwg.org/

Electronics 2020, 9, 1139 18 of 18

29. Harel, D.; Naamad, A. The STATEMATE semantics of statecharts. ACM Trans. Softw. Eng. Methodol. 1996,
5,293-333. [CrossRef]

30. Cereijo-Garcia, J.; Korhonen, T.; Lee,].H.; Piso, D.; Osorio, R.R. Timing System at ESS. In Proceedings of
IPAC, Copenhagen, Denmark, 14-19 May 2017.

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/235321.235322
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Statecharts
	Hardwired Strategy
	Automatic Synthesis of Statecharts
	Statechart Parsing and Analysis from a Graphical Tool
	Synthesis of Super-States
	Orthogonality
	Depth
	History
	Distributed Generation
	Actions and Conditions
	VHDL Implementation Steps

	Microprogrammed Architecture
	Micro-Instruction Format
	Configuration

	Evaluation
	Conclusions
	References

