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Abstract: A compact single-photon counting module that can accurately control the bias voltage
and hold-off time is developed in this work. The module is a microcontroller-based system which
mainly consists of a microcontroller, a programmable negative voltage generator, a silicon-based
single-photon avalanche diode, and an integrated active quench and reset circuit. The module is
3.8 cm X 3.6 cm X 2 cm in size and can communicate with the end user and be powered through a
USB cable (5 V). In this module, the bias voltage of the single-photon avalanche diode (SPAD) is
precisely controllable from —14 V ~ —38 V and the hold-off time (consequently the dead time) of the
SPAD can be adjusted from a few nanoseconds to around 1.6 pus with a setting resolution of ~6.5
ns. Experimental results show that the module achieves a minimum dead time of around 28.5 ns,
giving a saturation counting rate of around 35 Mcounts/s. Results also show that at a controlled
reverse bias voltage of 26.8 V, the dark count rate measured is about 300 counts/s and the timing jitter
measured is about 158 ps. Photodetection probability measurements show that the module is suited
for detection of visible light from 450 nm to 800 nm with a 40% peak photon detection efficiency
achieved at around 600 nm.

Keywords: single-photon counting; compact module; bias voltage control; hold-off time setting

1. Introduction

Single-photon counting techniques have been used in low-light sensing applications such
as LIDAR [1,2], quantum key distribution [3], medical imaging technology [4], and 3D imaging
technology [5,6]. Photomultiplier tubes have been the traditional solution for photon counting
applications, but in recent years single-photon avalanche diode (SPAD) has become an alternative
candidate due to its lower cost, lower operating voltage, higher sensitivity, and smaller size.

The dead time in a SPAD is the off time when the SPAD is quenched after every avalanche event to
dissipate trapped charge, thereby minimizing the “afterpulsing” phenomenon. As a result, a trade-off
exists between the maximum photon counting rate and an acceptable level of noise. An accurate
adjustment of the dead time is important to achieve an optimal dead time (and consequently optimal
maximum photon counting rate) in a single-photon counting system. The bias voltage has a major effect
on the SPAD’s important performance parameters such as dark count rate (DCR) and photon detection
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efficiency (PDE). A higher bias voltage will lead to better PDE due to the increase in the avalanche
trigger probability. However, the potential drawbacks include higher DCR and the considerable
afterpulsing effect. Therefore, the bias voltage should be adjustable and optimized to achieve best
overall performance. Several SPAD-based single-photon counting modules have been developed [7-17]
but these modules are limited in that the dead time and bias voltage of the detector are difficult to
change. This limits their usefulness in varying environments and for the case where the detector needs
to be changed for different measurement purposes. In addition, existing designs are usually bulky and
cumbersome, which limits their usefulness in applications that require compact solutions.

In this work, a compact multi-parameter adjustable single-photon counting module is developed.
The module is a microcontroller-based system mainly consisting of a programmable negative voltage
generator, a silicon-based SPAD, an active quenching and reset integrated circuit (AQR-IC) and
I/O components. In this module, a custom designed SPAD was fabricated and used with its bias
voltage precisely controllable from —14 V ~ —38 V using a programmable negative voltage generator.
With the AQR-IC, the hold-off time (consequently the dead time) in the SPAD can be adjusted from
a few nanoseconds to around 1.6 us with a setting resolution of ~6.5 ns. A microcontroller of the
module is used to drive and control the SPAD’s bias voltage and hold-off time which can also be
connected to a PC through USB for the graphical user interface. With the control of the bias voltage and
high-resolution setting of the dead time, intelligent control can be added to the module for detection
optimizations under varying environments that greatly improve the SPAD-based photon counting
system’s robustness. In addition, the module developed is about 3.8 cm X 3.6 cm X 2 cm in volume,
allowing it to be used in compact photon counting systems. Experimental results show that the module
achieves a minimum dead time of around 28.5 ns which demonstrates a saturation counting rate
of around 35 Mcounts/s. At a controlled reverse bias voltage of 26.8 V, the DCR measured is about
300 counts/s and the timing jitter measured is about 158 ps. Photodetection probability measurements
show that the module is suited for detection of visible light from 450 nm to 800 nm with a 40% peak
PDE at around 600 nm.

2. System Description

Figure 1 shows the block diagram of the single-photon counting module consisting of the following
parts: (1) A Microcontroller (STC89C52RC) circuitry which is used to communicate with the user
end (PC) via an USB to TTL chip and also used for the control of bias voltage and the hold-off time;
(2) A programmable negative voltage generator which is used to generate a stable and controllable
negative high voltage for the SPAD; (3) An active quenching and reset integrated circuit (AQR-IC) for
the hold-off time setting in the SPAD and (4) A custom designed SPAD.
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Figure 1. Block diagram of the single-photon counting module developed.
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2.1. Microcontroller Circuitry

In the microcontroller circuitry, a crystal oscillator is used to provide the clock pulses to the
microcontroller chip which is powered through a USB cable. The circuitry is used to receive the
control information (including hold-off time and bias voltage value) from PC (end user) through the
USB-TTL converter chip and sends the control signals to related circuitry for the bias voltage and
hold-off time setting in the SPAD. The microcontroller sets the eight binary ports Sy~Sy of the AQR-IC,
from 0 (“00000000”) to 255 (“11111111”) to achieve the hold-off time of 6.5 ns~1.6 us in the SPAD.
It also sends “ADJ” signal to the programmable negative voltage generator to achieve the required
negative bias voltage for biasing the SPAD.

2.2. Programmable Negative Voltage Generator

Figure 2 shows the schematic of the programmable negative voltage generator. In the circuit,
aboost circuit (consists of a bipolar transistor, an inductor, a diode and two capacitors) is used to generate
high negative output voltage and a MAX749 chip (digitally adjustable bias regulator) [18]-based circuit
is used to drive the boost circuit, detect the feedback signal, and maintain the output voltage at a
set value. The output of the programmable negative voltage generator is determined by the internal
reference current, Irgr of the chip which is set by the microcontroller (through signal line, AD]).
When the voltage generator is operating, if the current flowing through the feedback resistance (Rgg),
Is, is greater than the reference current, Irgr, the boost circuit will be stopped and the absolute value
of the output voltage will drop and the Is will decrease. If Ig falls below Irgr, the boost circuit will
be driven to continue to boost the output and the absolute value of the output voltage will increase
and the Is will increase. In this way, Is can be set equal to Irgr and the output voltage —Voyr can be
controlled as follows:
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Figure 2. Schematic of programmable negative voltage generator.

In this design, the feedback resistance Rpp is set to 2 M() and the reference current can be set from
around 7 pA to 19 pA. This makes the setting range of the programmable negative voltage generator
to be around —14 V ~ -38 V.
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2.3. SPAD and AQR-IC

The SPAD and AQR-IC used in the module are previously designed chips [19-22]. The SPAD is a
20 um diameter planar SPAD which is based on a shallow p-n junction. It is manufactured in p-type
epitaxially grown bulk silicon using a 1.5 um complementary metal-oxide-semiconductor (CMOS)
compatible process and suited for detection of visible wavelengths (from 400 nm to 850 nm) [19,20].
In the SPAD, a p-substrate with a p-type doping forming the central active area and the N* doping
overlaps the active area, forms the diode cathode, and contact to metal layers. The overlapping
guard ring, and the diode forms with the p-substrate, prevents edge breakdown of the central active
area. The AQR-IC is used to actively quench the SPAD after each avalanche event (lower its reverse
bias voltage below its breakdown voltage), keep it in “OFF” state for a period of user-defined time
(hold-off time) and set the reverse bias voltage back to its original level for the next avalanche
detection. The hold-off time (and the dead time) is controlled by the end user through the PC and
the microcontroller chip. With the developed active quenching and reset IC, the maximum counting
rate of the module can be greatly extended and the after pulsing effects can be effectively reduced.
The photos of the fabricated SPAD and AQR-IC can be seen in Figure 3a,b, respectively.

Figure 3. Photos of the custom designed and fabricated (a) SPAD and (b) AQR-IC.

3. Experimental Results

Figure 4 shows the assembled single-photon counting module. The module consists of a main
board, a cubic black package, and a fiber adapter that allows coupling of incident light to the SPAD
through a fiber.
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Figure 4. The assembled single-photon counting module.
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Figure 5a shows the experimental results for the reverse bias voltage setting in the module.
By inputting the required voltage in the user graphic interface (GUI), the bias voltage will be adjusted.
Results show that the bias voltage can be accurately set from —14 V to —38 V with standard deviation
of less than 0.06 V and output voltage ripples of less than 50 mV. The setting range and resolution
can be changed by setting the feedback current flowing to the feedback port of the MAX749 chip in
the programmable negative voltage generator circuit. Figure 5b shows the setting of the hold-off time
in SPAD of the module. The hold-off time can also be adjusted using the PC-based GUI. As can be
seen from the figure, by changing the input code from “1” to “255”, the hold-off time in the SPAD can
be linearly and precisely adjusted from several nano seconds to 1.6 ps with a setting resolution of
about 6.5 ns. With the minimum hold-off time, a dead-time of around 28.5 ns can be achieved, giving a
saturation counting rate of around 35 Mcounts/s.
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Figure 5. (a) The bias voltage boost circuit’s output voltage with the voltage set on computer; (b)
External input codes versus hold-off time.

To test the PDE and the dark count characteristics of the module, an experimental setup shown
in Figure 6 was built. In the setup, a broad band light source (Thorlabs SLS201L/M) is used with its
output light guided to a filter holder (Thorlabs FOFMF/M) by a fiber and the output of the filter holder
is connected to the SPAD using another fiber. Optical band-pass filters and attenuation filters are used
to alter the spectrum and power intensity of the light directed to the SPAD. A counter (FCA3100) is
used to record the pulse counting rate at the output of the module.
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Figure 6. Experimental setup for the dark count rate and photon detection efficiency measurement.
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Figure 7 shows the DCR measured for different bias voltages. This measurement was carried out
when the light source is turned off and the hold-off times was set to about 100 ns, 500 ns, and 1000
ns. Results show that with overran excess bias voltage of 1 V (reverse bias voltage of around 25.6 V),
the DCR in the SPAD is about 80 counts/s and when the excess bias voltage increased to 3 V, the DCR
increases to about 1 kcounts/s.
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Figure 7. Dark count rate measured for varies bias voltages.

Figure 8 shows the PDE measured for different wavelengths and reverse bias voltages. In the
measurement, a broad-spectrum light source is used to provide the incident light to the module and
optical filters are used to select the specific wavelength and alter the power intensity of the incident
light. For each specific wavelength, the incident light power and the photon counting rate of the
module are measured and the PDE of the module is calculated. Results show that the module is suited
for detecting the short wavelengths of the incident light from 400 nm to 800 nm with a peak PDE of
about 40% achieved at 600 nm.

45 T T T T T T
. Reverse bias voltage| 4
= 40 ! | —u— 256V .
= —s—26.8V
g 35 27.8V H
Q ]
(5] L I | 4
g 30 *
L J \ 1
c 25 P
2 / A i
- Y, A
_§ 201 | 7 ! \\ [ . 7
K = AN .. S Te ]
15 = — —
7 7 \. ¥
§ /S ' ™ S| 1
S 10} g I \.\_» = i
= yavd T
o 5 [ 94
1 L L n 1 L 1

400 450 500 550 600 650 700 750 800 850
Wavelength (nm)

Figure 8. Dependence of photon detection efficiency on the incident wavelength for different
bias voltages.

Figure 9 shows the experimental setup for measuring the afterpulsing probability. A pulsed
pico-second laser source operating at 10 kHz was used to generate the incident light which was coupled
to the SPAD of the module. The laser source used is from ALPHALAS GmbH and the part number
of the laser driver and the diode laser are “PLDD-50M" and “PICOPOWER-LD-660-50" respectively.
The output of the module is connected to the two ports (start and stop) of a Time-to-digital converter
(TDC). The TDC'’s “start” channel is triggered by the rising edge of the output pulse of the module and



Electronics 2020, 9, 1131 7 of 11

the “stop” channel is triggered by the falling edge of the next neighboring pulse. In this way, the time
interval between every two pulses is recorded. After a large amount of data collection (around 10,000
samples), the distribution histogram of the interval times between two adjacent pulses can be built and
the afterpulsing probability can be concluded [23-26].
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Figure 9. Experimental setup for measuring SPAD’s afterpulsing probability.

Figure 10 shows the measured afterpulsing probability in the module for different hold-off times
with a bias voltage of 27.6 V. Results show that when the hold-off time of the SPAD is set to more than
500 ns, the afterpulsing probability can be significantly limited to below 0.3%. Results also show that
as the bias voltage increases, the afterpulsing probability will also rise.
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Figure 10. Afterpulsing probability versus different hold-off times.

To measure the timing jitter of the module, the experimental setup shown in Figure 11 was built.
In the setup, a 660 nm pulsed laser is used to generate a pulsed light signal to the SPAD of the module
and the time delay between the laser synchronized pulse signal and the pulses of the module’s output
is measured using a TDC. The time delays” histogram distribution is then built and its full width half
maximum (FWHM) is taken as the system’s timing jitter [27].
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Figure 11. Experimental setup for measuring timing response of the module.
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Figure 12 shows the timing responses of the module for different bias voltages. In the measurement,
the hold-off time was set to about 200 ns. As can be seen from the figure, increasing the bias voltage
results in narrower timing jitter and a timing jitter of 145 ps was measured at the bias voltage of 27.6 V.
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Figure 12. Timing responses of the single-photon counting module.
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To test the heat dissipation of the module, the module was operated continually at room
temperature (20 °C) for more than 3 hours and the temperature of the main chips and components on
the board (including microcontroller chip, Max749 (boost circuit) chip, USB to TTL chip, DAC chip,
5 V=3 V stabilizer, chip crystal oscillators, SPAD and AQR-IC) was measured. Results show that most
the main components are kept cool with the temperature of less than 30 °C.

The breakdown voltage and DCR temperature dependency (using a temperature chamber) were
also tested. As can be seen from Figure 13, the breakdown voltage of the SPAD rises with increasing
temperature at about 0.024 V per °C. Figure 14 shows the plot of the DCR for different temperatures,
in this case the excess bias voltage is kept at 1 V. Results show that the DCR increases with increasing
temperature by about 23 counts/s per °C.
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Figure 13. Breakdown voltage measured for various temperatures.
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4. Conclusions

In this paper, the design, the implementation, and the characterization of new compact
single-photon counting module is presented. The module enables accurate digital control of the bias
voltage and hold-off time of the SPAD. This enables the intelligent optimization of photon detection in
varying environments to enhance the module’s robustness. In the system, a programmable negative
voltage generator was designed to provide the bias voltage for the SPAD and an active quench and reset
chip was developed for the hold-off time control, afterpulsing reduction, and maximum counting rate
extension. The new implementation includes a silicon SPAD fabricated in-house is used as the photon
detector and a microcontroller system supervises the user interface and the setting of bias voltage and
hold-off time. The module is 3.8 cm X 3.6 cm X 2 cm in size and can be powered using a USB connection
that allows it to be used in compact single-photon counting applications. Experimental results show
that the module can provide a controlled bias voltage for the SPAD from -14 V ~ -38 V with a
setting resolution of 0.4 V and the hold-off time (consequently the dead time) in the SPAD from a few
nanoseconds to around 1.6 us with a setting resolution of ~6.5 ns. Results showed the module can
achieve a minimum dead time of 28.5 ns that leads to a maximum counting rate of around 35 Mcounts/s.
At a controlled bias voltage of 26.8 V, a low DCR of 300 counts/s and a low timing jitter of 158 ps can be
achieved. Results also show that when the hold-off time was set to more than 500 ns, the afterpulsing
can be effectively reduced to below 0.3%. In addition, the photodetection probability measurements
show that the module is suited for detection of short wavelengths of the light from 450 nm to 800 nm
with a 40% peak PDE achieved at 600 nm.
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