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Abstract: Recently, supervised learning methods have shown promising performance, especially
deep neural network-based (DNN) methods, in the application of single-channel speech enhancement.
Generally, those approaches extract the acoustic features directly from the noisy speech to train a
magnitude-aware target. In this paper, we propose to extract the acoustic features not only from
the noisy speech but also from the pre-estimated speech, noise and phase separately, then fuse
them into a new complementary feature for the purpose of obtaining more discriminative acoustic
representation. In addition, on the basis of learning a magnitude-aware target, we also utilize the
fusion feature to learn a phase-aware target, thereby further improving the accuracy of the recovered
speech. We conduct extensive experiments, including performance comparison with some typical
existing methods, generalization ability evaluation on unseen noise, ablation study, and subjective
test by human listener, to demonstrate the feasibility and effectiveness of the proposed method.
Experimental results prove that the proposed method has the ability to improve the quality and
intelligibility of the reconstructed speech.
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1. Introduction

Speech enhancement has been studied extensively as a fundamental signal processing method
to reconstruct the actual received signals which are easy to be degraded by noisy adverse
conditions. Nowadays, speech enhancement has been widely used in the fields of speech analysis,
speech recognition, speech communication, and so forth. The aim of speech enhancement is
to recover and improve the speech quality and its intelligibility via different techniques and
algorithms, like unsupervised methods including spectral subtraction [1,2], Wiener filtering [3],
statistical model-based estimation [4,5], subband forward algorithm [6], subspace method [5,7], and so
on. Generally these unsupervised methods are based on statistical signal processing and typically work
in the frequency domain. These methods essentially implement speech enhancement by estimating the
gain function and noise. Voice activity detection (VAD) [8,9] algorithm is a simple approach to estimate
and update the noise spectrum, but its performance under non-stationary noise is unsatisfactory.
Proposals of minima controlled recursive averaging (MCRA) and improved MCRA (IMCRA) enhanced
the estimation of non-stationary noise [10].

Recent approaches formulate speech enhancement as a supervised learning problem, where the
discriminative patterns of speech and background noise are learned from training data [11].
The performance of supervised speech enhancement algorithms is affected by three key components,
that is, learning machine, training target and acoustic feature. (1) Learning machine. Compared with a
traditional learning machine, like support vector machine (SVM) [12], data-driven deep neural network
(DNN) has shown its strong power in adverse environments and has received much attention [13–18].
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A DNN is an ANN (Artificial Neural Network) with multiple hidden layers between the input and
output layers. Each layer contains multiple neurons, and the neurons between layers are connected
by different functions. Similar to shallow ANNs, DNNs can model complex non-linear relationships.
Due to the hierarchical structure and distributed representation at each layer, the data representation
ability of DNN is exponentially more powerful than that of a shallow model when given the same
number of nonlinear computational units [19]. Most recent researches focus on improving the algorithm
performance by superimposing and changing the structure of the DNN [14,20,21]; (2) training targets.
Training target is the key point for the quality of recovered speech, many well-designed binary
masks [22,23] or ratio masks [13,23–26] are proposed. In Reference [25], Wang et al. proved that
the ideal amplitude mask (IAM) can obtain a better performance on noise reducing than the ideal
binary mask (IBM) [23]. Liang et al. proposed and proved that the optimal ratio mask (ORM) can
further improve the signal-to-noise ratio (SNR) over the IRM by the theoretical analysis [24]. Bao et al.
proposed the corrected ratio mask (CRM) to separately preserve and mask more speech and noise
information and proved it performs better than the conventional ratio masks and other series of
enhancement algorithms [26]. Recently, phase has shown its strong relationship with speech quality.
Zheng et al. proposed a phase-aware DNN-based speech enhancement method [27], which used
instantaneous frequency deviation (IFD) [28] as one of the training target and overcame the difficulty
of processing a highly unstructured phase spectrogram; (3) acoustic features. The acoustic features
play an important role in learning the desired training target as the input of learning machines.
Early studies in supervised speech separation use only a few features such as pitch-based features [29]
and amplitude modulation spectrogram (AMS) [30] in monaural separation. Based on the research of
Wang et al. [25], recent studies often utilize a complementary feature set as the acoustic representation
features, which are composed of the amplitude modulation spectrogram (AMS) [30], the relative
spectral transformed perceptual linear prediction coefficients (RASTA-PLP) [29,31], the Mel-frequency
cepstral coefficients (MFCC) [32], and the Gammatone frequency cepstral coefficients (GFCC) [33].

A general scheme of existing DNN-based speech enhancement method is shown in Figure 1. In the
training stage, the complementary acoustic features Fx are extracted directly from the noisy speech
x(t) that is a mixture of clean speech and noise, and are applied to train the DNN. A magnitude-aware
training target TM is learned via the STFT (short-time Fourier transform) [5] spectrum of clean speech
s(t) and mix speech x(t). In the speech enhancement stage, the complementary acoustic features Fz

extracted from z(t), which is the noisy signal to be enhanced, are fed into a trained model to obtain the
estimated magnitude mask MR. The speech magnitude |Y(k, l)| can be calculated by the product of
the estimated magnitude mask MR and |Z(k, l)| which corresponding to the STFT magnitude of the
signal to be enhanced. The final recovered speech y(t) is recovered accurately by inverse STFT of the
recombination signal consisting of |Y(k, l)| and φz(k, l).

We notice that recent research on DNN-based speech enhancement mainly focuses on training
targets design and DNN structure optimization [18]. In our opinion, there are at least two issues
that, although have not received widespread attention so far, may play an important role in further
improving performance of the speech enhancement. One is related to acoustic feature extraction,
the other is related to the full use of phase information. In our study, we notice that the acoustic
features extracted directly from the noisy (mixed) signals cannot effectively characterize the unique
properties of the signal and noise, which is not conducive to network training and target learning.
Intuitively, if the acoustic features can be extracted separately from the speech and noise, it will be more
helpful to construct discriminative acoustic features. On the other hand, phase has shown its strong
relationship with speech quality [34,35], and phase processing has received much attention than ever
before. In Reference [27], Zheng et al. proved that on the basis of existing scheme as shown in Figure 1,
by incorporating the instantaneous frequency deviation (IFD) [28] as a phase-aware training target to
jointly estimate the phase spectrogram, the speech enhancement performance can be further improved.

This paper proposes two main improvements to existing DNN-based speech enhancement
methods. Firstly, we propose a novel discriminative complementary feature, which is a fusion of
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multiple sources. As shown in Figure 2, we pre-estimate the speech x̃(t), noise ñ(t) and calculate the
phase from the mix signal x(t), then fuse the features extracted from them separately with the features
extracted from the mixed signal to construct a refined acoustic representation. To our knowledge,
this study is the first time to extract features from pre-estimated speech and noise, especially from
the phase. Secondly, in order to make full use of the phase information, we also incorporate IFD as a
phase-aware training target to estimate the phase spectrogram. However, different to Reference [27],
we employ an independent DNN (see Figure 2) to train the phase-aware target instead of utilizing
a single DNN to jointly train both magnitude and phase targets for the purpose of reducing
computational complexity. Extensive experiments conducted on the TIMIT corpus [36] show that the
proposed method outperforms the existing methods in terms of speech quality, speech intelligibility
and speech distortion.
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Figure 1. General scheme of existing deep neural network (DNN)-based speech enhancement method.
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Figure 2. Training scheme of the proposed method.

The rest of this paper is organized as follows—the details of the proposed method are described in
Section 2. Especially, the pre-estimation of noise and speech is introduced in Section 2.1, the proposed
feature fusion method is introduced in Section 2.2, the calculation of magnitude-aware and phase-aware
training target is introduced in Section 2.3, the network structure and training strategy is introduced in
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Section 2.4, the speech enhancement method is introduced in Section 2.5. In Section 3, we present the
experimental data, comparison methods and evaluation metrics. We conduct a series of experiments
and analyze the results in Section 4. Especially, we conduct extensive comparison experiments in
Section 4.1, analyze the generalization ability of comparison methods on unseen noise in Section 4.2,
and obtain a deep insight of the proposed method by ablation study in Section 4.3. Finally, we conclude
this study and outlook the future work in Section 5.

2. Proposed Method

In this paper, n(t) and s(t) represent the interference noise and clean speech, respectively.
x(t) represents the noisy speech used in training stage, which is a mixture of n(t) and s(t). z(t) and
y(t) represent the signal to be enhanced and the final recovered signal, respectively. N(k, l), S(k, l),
X(k, l), Z(k, l) and Y(k, l) denote the STFT spectrum corresponding to n(t), s(t), x(t), z(t) and
y(t), respectively.

2.1. Pre-Estimation of Noise and Speech

Equations (1) and (2) represent the generation of noisy speech in the time and frequency domains.
k and l denote the frequency bin index and frame index, respectively. To estimate the independent
noise and speech from the noisy speech, we first utilize STFT technique with L time shift and N DFT
length to convert a noisy speech in time domain to a spectro-temporal spectrogram where the harmonic
structure of the speech can be observed clearly, then utilize specific method to obtain estimated noise
and speech, respectively.

x(t) = s(t) + n(t) (1)

X(k, l) = S(k, l) + N(k, l). (2)

2.1.1. Noise Estimation

We apply the IMCRA [10] method to estimate the noise. It is extremely important to
effectively track the prior signal-to-noise ratio (SNR) ξ(k, l), posterior SNR γ(k, l), and noisy power
spectral density S̃p(k, l) (S̃pmin(k, l) is corresponding minimum value) in noise estimation [37,38].
The conditional probability that the final speech exists can be expressed as follows:

p(k, l) =
1

1 + q(k,l)
1−q(k,l) (1 + S̃p(k, l)) exp(− ξ(k,l)γ(k,l)

1+ξ(k,l) )
(3)

q(k, l) =



1,
|X(k, l)|2

BminS̃pmin(k, l)
≤ 1 and

S(k, l)
BminS̃pmin(k, l)

< ζ0;

(3− |X(k,l)|2

Bmin S̃pmin(k,l)
)

2
, 1 <

|X(k, l)|2

BminS̃pmin(k, l)
and

S(k, l)
BminS̃pmin(k, l)

< ζ0; (4)

0, else.

ξ(k, l) ,
λs(k, l)
λn(k, l)

(5)

γ(k, l) ,
|X(k, l)|2

λn(k, l)
, (6)
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where q(k, l) denotes the prior probability of the absence of speech, λs(k, l) and λn(k, l) denote the
variances of desired speech and noise at the T-F bin (k, l), respectively. Two empirical constants
Bmin = 1.66, ζ0 = 1.67. Furthermore, the noise spectrum can be estimated as

σ̃2
n(k, l) = (α + (1− α)p(k, l))σ̃2

n(k, l − 1)

+[1− (α + (1− α)p(k, l))] |X(k, l)|2 ,
(7)

where α = 0.85 which is the smoothing factor and σ̃2
n(k, l) represents the noise power spectral density

estimate at time frame l and frequency bin k. The pre-estimated noise amplitude
∣∣Ñ(k, l)

∣∣ is the
square root of σ̃2

n , and the corresponding pre-estimated noise ñ(t) can be obtained via the inverse
Fourier transform to Ñ(k, l). Figure 3 illustrates an example of noise estimation: the left subplot is
the spectrogram of an actual noise and the right one is the the spectrogram of estimated noise from a
noisy speech.

Figure 3. Noise estimation.

2.1.2. Speech Estimation

There are many suitable methods, such as the minimum mean-square error (MMSE) estimator,
Log-MMSE estimator [37,39], and Bayesian statistics [5], which can be utilized to estimate the
independent speech from the noisy speech. In contrast, Log-MMSE estimator performs better in terms
of noise suppression and speech distortion reduction. Log-MMSE estimator obtains the optimized
speech by minimizing the error between the logarithmic amplitude of the pre-estimated speech and
the actual speech:

e = E(logS(k, l)− logX̃(k, l)). (8)

We use Zk for logSk, then the matrix generating function ΦZk |X(k,l)(µ) of Zk based on X(k, l) is

ΦZk |X(k,l)(µ) = E{exp[µZk]|X(k, l)} = E{Sµ
k |X(k, l)}

=

∫ ∞
0

∫ π
2

0 sk
µ p(S(k, l)|sk, φs)p(sk, φs)dφsdsk∫ ∞

0

∫ π
2

0 p(S(k, l)|sk, φs)p(sk, φs)dφsdsk

,
(9)

where p is the conditional probability, µ is an index and φ is phase. After the related calculations

ΦZk |X(k,l)(µ) = λ
µ
2
k,lΓ(

µ

2
+ 1)Φ(

µ

2
, 1;−νk,l) (10)
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νk,l =
ξ(k, l)

1 + ξ(k, l)
γ(k, l), (11)

where Γ and Φ are the gamma function and the confluent hypergeometric function, respectively.
Find the derivative of ΦZk |X(k,l)(µ) when µ is equal to 0, you can get the conditional mean of logS(k, l).

E|logS(k, l)|Y(k, l)| = 1
2

logλk +
1
2

logνk +
1
2

∫ ∞

νk,l

e−t

t
dt. (12)

And bring the result into the following formula

X̃(k, l) = E(logS(k, l) | X(k, l)). (13)

After calculation and simplification, the pre-estimated speech can be obtained by using the
statistical model of the Fourier coefficient for statistical imprisonment features:

X̃(k, l) =
ξ(k, l)

1 + ξ(k, l)
exp

1
2

∫ ∞

νk,l

e−t

t
dtX(k, l);

.
(14)

2.2. Feature Fusion

In this paper, we propose fusing the features extracted from the noisy speech Fx, the pre-estimated
independent speech Fs, the pre-estimated independent noise Fn, and the phase feature Fp.

For Fs and Fx, we utilize the complementary acoustic feature set which has been widely accepted
by recent studies as the representation vector.

Fs = [ f AMS
s ; f PLP

s ; f MFCC
s ; f GFCC

s ] (15)

Fx = [ f AMS
x ; f PLP

x ; f MFCC
x ; f GFCC

x ]. (16)

The complementary feature set is composed of 15-dimensional AMS ( f AMS) [30], 13-dimensional
RASTA-PLP ( f PLP) [31], 31-dimensional MFCC ( f MFCC) [32], and 64-dimensional GFCC ( f GFCC) [33].
To further augment the feature vector, we apply the delta (derivatives) operation to further double
the feature dimension. Thus, for each time frame, the final dimension of a complementary acoustic
features set is 246, that is, 2× (15 + 13 + 31 + 64), both for Fs and Fx.

For Fn, we only extract AMS [30] as its representation and get a 15-dimensional feature vector.

Fn = [ f AMS
n ]. (17)

For the purpose of further improving the discrimination of acoustic feature and enhancing the
ability of the DNN to fit the phase-aware training target, in this paper, we propose to employ the IFD
of noisy speech as the phase feature Fp which is a 257-dimensional vector. Following the idea proposed
in Reference [27], the IFD can be calculated as:

IFX(k, l) = principle(φx(k, l)− φx(k, l + 1))

= arg(X(k, l)X∗(k, l))
(18)

Fp = IFDX(k, l) = IFX(k, l)− ε (19)

ε =
2π

N
kL. (20)

X∗(k, l) denotes the complex conjugate of the complex number X(k, l). The IFX can also be
understood as the negative derivative of the phase spectrum along the time axis in Reference [40] and
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Formula (18) is the expression of the complex number field. Function principle(.) denotes the selection
of principal values which projects the phase difference onto [−π,+π] and the function arg(.) calculates
the phase angle of a complex number [27]. The ε is the center frequency, where L is the time shift
between two adjacent frames and N is the length the discrete Fourier transform. IFDX(k, l) measures
how far an IF value strays from its center frequency, so the role of ε is to eliminate the striation caused
by different center frequencies, which makes the structure of the speech more apparent [28].

The final fusion feature is a concatenation of above features and the total dimension is 764.

F = [Fx; Fs; Fn; Fp]. (21)

2.3. Training Target

In addition to widely used magnitude-aware training target, we also utilize an independent
phase-aware training target to train the corresponding phase mask. As for phase-aware target,
we follow the idea proposed in Reference [27] and utilize the IFD calculated on the clean speech
as the phase target, to improve the estimation of the final speech.

IFDS(k, l) = IFS(k, l)− ε. (22)

To balance phase-aware target (IFD) and the magnitude-aware target on the training errors,
we normalize IFD into the range of [0, 1). As shown in Figure 2, DNN1 is used to train the phase
model. Here, the fusion feature (F) is used as the network input, and the clean speech IFDs (that is,TP)
is used as the network output. They are jointly trained to obtain model-1.

As for magnitude-aware target, in our implementation, we utilize ideal amplitude mask (IAM),
which is named as FFT-MASK in Reference [25]. The IAM is defined as the ratio of STFT magnitude of
clean speech s(t) and noisy speech x(t).

IAM(k, l) =
|S(k, l)|
|X(k, l)| , (23)

where |S(k, l)| and |X(k, l)| represent spectral magnitudes of clean speech signal and mixed signal
within a T-F unit, respectively. As shown in Figure 2, IAM corresponds to the amplitude target (TR).
In the second network training process, IAM and the fusion feature (F) are used as the output and
input of the DNN2, respectively, to train the model-2.

2.4. Network Structure and Training Strategy

In order to obtain optimal fitting effect, we propose to use two DNNs with the same structure to
train IAM (magnitude mask) and IFD (phase mask) respectively, instead of jointly training two masks
with a single DNN as in Reference [27]. Each DNN employs a five-layer structure, including one input
layer, three hidden layers, and one output layer. Each hidden layer consists of 2048 rectified linear
neurons (ReLU). The sigmoid activation function is adopted for the input and output layers. In the
training process, the DNN is optimized by minimizing the mean square error (MSE). The learning rate
decreases linearly from 0.008 to 0.0001. The scaling factor for adaptive stochastic gradient descent is
set to 0.0015. During network training, the number of epochs for back propagation training is set to 30,
and the batch size is set to 32.

2.5. Speech Enhancement

As shown in Figure 4, for the purpose of reconstructing the enhanced speech y(t) from the
mix signal z(t), the fusion feature F is firstly calculated according to the description in Section 2.2.
Then, the fusion feature F is input to the model1 and model2 to obtain the estimated phase target MP
and the estimated amplitude target MR, respectively. The model1 and model2 are obtained in the
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training stage (see Figure 2). Implementing STFT on z(t) can get φz(k, l) and |Z(k, l)|, then get Z(k, l).
The estimated amplitude spectrum |Y(k, l)| can be obtained by |Z(k, l)| ∗MR.

Z(k, l) = |Z(k, l)| ejφz(k,l). (24)

The phase reconstruction process is more complicated [27]. First, we use φz(k, l) as the initial
phase, then calculate IFx according to the Equation (18) and reconstruct the phase along the time axis

φ̂(k, l) =
∑N

i=−N(s(i)M̂(k, l + i))unwrap(φ̂i(k, l)|φ̂i(k, l − 1))

∑N
i=−N(s(i)M̂(k, l + i))

(25)

φ̂i(k, l) =

 φz(k, l + i) +
i−1

∑
n=0

IF(k, l + n), i f i 6= 0

φz(k, l + i), i f i = 0, (26)

where s(i) denotes the proximity weight, unwrap(.) is an unwrapping function which can make the
phase spectrogram smooth along the time axis, and M̂(k, l + i) is the reliability index. −N ≤ i ≤ N.
Finally the phase can be reconstructed along the frequency axis

φy(k, l) ≈ arg(|Y(k1, l)| ejφ̂(k,l) W(k− k1)

W(0)
+ |Y(k2, l)| ejφ̂(k,l) W(N + k− k2)

W(0)
), (27)

where k1 < k < k2, k1 and k2 are two adjacent harmonic bands of the k-th frequency band. W(k) is
the discrete Fourier transform of the k-th window function. So the final enhanced speech y(t) can be
reconstructed by the inverse STFT of |Y(k, l)| and φy(k, l).
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Figure 4. Speech enhancement scheme of the proposed method.

3. Experimental Data, Comparison Methods and Evaluation Metric

3.1. Experimental Data

In the experiment, the TIMIT voice database [36] was used for performance evaluation. We chose
380 speakers to form a training set, and 40 speakers to constitute a test set. All of the speakers
have 10 clean utterances. And the test set and the training set are completely non-coincident in our
experiment. The total experimental data consists of 3800 clean training utterances and 400 clean test
utterances. We also selected 4 types of noises, including babble, factory1, factory2 and buccaneer1
as added noise from the NOISEX-92 database [41]. Each noise signal was separated into two parts,
one for constructing training mixture and the other for testing. We mixed each clean utterance with
16 short noise segments at the SNR levels of −5 db, −3 db and 0 dB respectively, where the 16 noise
segments came from the 4 types of noises, each with 4 random noise segments for training and with
1 random noise segments for testing. Thus there are 60,800 training discourse and 6400 test discourse
at each SNR level. All corpora was re-sampled to 16 kHz, and converted to a T-F unit with the frame
length set to 20 ms and the frame shift set to 10 ms.
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3.2. Comparison Methods

In our experiment, we compared the proposed method to (1) a classical DNN-based speech
method [25] which follows the scheme shown in Figure 1; (2) the method proposed in Reference [26]
which exploited the CRM as the training target, and (3) a state-of-the-art method proposed
in Reference [27] which improved the speech enhancement by incorporating the phase-aware training
target. For the convenience of description, in this paper, we termed methods in References [25–27],
and the proposed as DNN, DNN-CRM, DNN-IFD, DNN-MP, respectively. In addition, we also
provided the result of noisy speech, which is termed as NOISY, as the baseline to evaluate the
improvement of different methods.

For fair comparison, all comparison methods utilized deep neural network as the learning machine
with the same structure and learning strategy as the original literature proposed. For training target,
DNN, DNN-IFD, and DNN-MP utilized IAM as the magnitude-aware training target, while DNN-CRM
utilized CRM as the magnitude-aware training target following its original setting. DNN-IFD,
and DNN-MP utilized IFD as the phase-aware training target. For acoustic features, DNN, DNN-CRM
and DNN-IFD utilized the complementary features [25], and DNN-MP utilized the proposed
fusion feature.

3.3. Evaluation Metrics

For the purpose of evaluating the performance of the different methods, we utilized several
metrics, including perceptual evaluation of speech quality (PESQ) [42], shot-time objective intelligibility
(STOI) [43], extended STOI (ESTOI) [44] and signal to distortion ratio (SDR) [45].

PESQ can effectively estimate speech quality and its score ranges from −0.5 to 4.5. The higher the
PESQ score is, the better the predicted speech quality is. STOI evaluates the objective intelligibility of a
degraded speech signal by computing the correlation of the temporal envelopes of the degraded speech
signal and its clean reference. It has been shown empirically that STOI score is strongly correlated
with human speech intelligibility scores. ESTOI evaluates the objective intelligibility of a degraded
speech signal by computing the spectral correlation coefficients of the degraded speech signal and its
clean reference in short time segments. Unlike STOI, ESTOI does not assume that frequency bands
are mutually independent. Both scores of STOI and ESTOI range from 0 to 1. The higher the scores
are, the better the predicted intelligibility is. The SDR score is computed by blind source separation
evaluation measurements. It has been widely used for evaluating speech quality [27].

4. Experiments and Analysis

4.1. Experiment 1: Speech Enhancement Performance Comparison

Comprehensive experimental results are listed in Table 1. Comparing the speech enhancement
performance of different methods, it shows that: (1) all DNN-based speech enhancement methods can
effectively improve the speech quality and intelligibility of the original noisy speech for various types
of added noise at any SNR level. From the perspective of SNR, the higher the SNR of the original noisy
signal, the higher the speech intelligibility and quality of the final recovered signal, which is consistent
with common sense. In terms of noise, among the four types of noise, Factory2 and Buccaneer1 seem to
be easier to handle, while Babble and Factory1 are relatively difficult; (2) In general, DNN, DNN-CRM,
and DNN-IFD have similar speech enhancement capabilities, and the proposed DNN-MP achieves
further improvement beyond those three methods. Taking the processing of Babble noise at the −5 db
SNR level as an example, it shows that DNN, DNN-CRM and DNN-IFD can improve the PESQ of
NOISY from 1.42 to about 1.63 with an average gain of 0.2. In contrast, the proposed DNN-MP can
obtain a gain of more than 0.3 (from 1.42 to 1.75). For ESTOI and STOI, the gains obtained by DNN,
DNN-CRM and DNN-IFD are about 0.13 and 0.10, while by DNN-MP is up to 0.18 and 0.12. For SDR,
DNN, DNN-CRM and DNN-IFD improve that of NOISY from−4.81 to 0.35, 0.40 and 0.54, respectively,
and DNN-MP further improves it to 1.41.
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Figure 5 presents an intuitive comparison, herein we plot the averaging performance of the
comparison methods on (a) all SNR levels for factory1 noise and (b) all noise at −5 dB SNR level.
For the purpose of eliminating the magnitude difference between four evaluation metrics (ref. Table 1),
we reduced the value of PESQ and SDR by 10 times. It is not difficult to see from Figure 5 that the
performance of DNN, DNN-CRM, DNN-IFD, and DNN-MP increases stepwise for all four evaluation
metrics. This statistical result once again demonstrates the assertions of previous studies [26,27],
namely the performance of DNN can be improved by replacing the IAM target with the CRM target
(DNN-CRM), and the performance can be further improved by adding phase-aware target on the basis
of magnitude-aware target, which proves the importance of phase information in speech enhancement
(DNN-IFD). Obviously, our method achieves the leading performance due to the fusion of both
magnitude/phase-aware features and targets.
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Figure 5. Performance averaged on (a) all SNR levels for factory1 noise, and (b) all noise at −5 dB
SNR level.

We also compared the spectrograms of the same noisy sentence, which is the No. 395 sentence
randomly selected from the test data set at −5 dB SNR level before and after speech enhancement
with different comparison methods. Figures 6–9 correspond to the case of adding the noise of babble,
factory1, factory2 and buccaneer1 respectively. In each figure, the annotation CLEAN represents the
clean speech without noise adding, and NOISY represents the noisy speech after adding a specific
noise to the CLEAN speech. DNN, DNN-CRM, DNN-IFD, and DNN-MP represent the recovered
speech after corresponding processing method. Comparing the spectrograms of CLEAN and NOISY
in each figure, it illustrates that at −5 dB SNR level, the clean signal is heavily polluted with the
added noise. For the No. 395 sentence, in terms of a particular method, it shows that DNN and
DNN-IFD perform better in processing factory2 and buccaneer1, but poorly in babble and factory1.
While DNN-CRM is the opposite of DNN and DNN-IFD, it performs better in processing babble
and factory1 but poorly in factory2 and buccaneer1. In contrast, the proposed DNN-MP achieves
considerably good noise-reduction results for each type of noise.

4.2. Experiment 2: Generalization Ability Evaluation on Unseen Noise

To investigate the generalization ability of the comparison methods, we tested their performance
on an unseen noise. In this experiment, we trained the model with 15,200 discourse adding buccaneer1
noise from the TIMIT database at −5 dB SNR level, and tested the performance on discourse adding
buccaneer2 noise from the NOISEX-92 database at same SNR level. Although both noises of buccaneer1
and buccaneer2 are cockpit noise, their difference comes from the speed and altitude when getting
noise. From Table 2, it can be seen that the generalization ability of the proposed DNN-MP is superior
to all other comparison methods.
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Table 1. Experiment 1: Speech enhancement performance comparison.

SNR Method
Babble Factory1 Factory2 Buccaneer1

PESQ ESTOI STOI SDR PESQ ESTOI STOI SDR PESQ ESTOI STOI SDR PESQ ESTOI STOI SDR

NOISY 1.42 0.273 0.547 −4.81 1.29 0.254 0.534 −4.80 1.31 0.293 0.548 −4.81 1.19 0.226 0.526 −4.81
DNN 1.62 0.419 0.643 0.35 1.70 0.427 0.671 2.41 2.13 0.591 0.798 5.94 2.08 0.529 0.779 5.00

−5 dB DNN-CRM 1.63 0.420 0.645 0.40 1.71 0.431 0.675 2.52 2.14 0.596 0.801 6.13 2.10 0.534 0.783 5.19
DNN-IFD 1.64 0.425 0.646 0.54 1.74 0.442 0.682 2.94 2.21 0.606 0.806 6.31 2.14 0.542 0.785 5.53
DNN-MP 1.75 0.455 0.662 1.41 1.83 0.460 0.688 3.55 2.27 0.621 0.815 7.18 2.22 0.561 0.792 6.18

NOISY 1.55 0.319 0.596 −2.85 1.42 0.308 0.580 −2.85 1.45 0.345 0.600 −2.86 1.30 0.275 0.571 −2.86
DNN 1.81 0.483 0.703 2.43 1.87 0.495 0.724 4.31 2.28 0.638 0.827 7.36 2.24 0.583 0.808 6.35

−3 dB DNN-CRM 1.82 0.488 0.707 2.55 1.89 0.502 0.728 4.46 2.30 0.646 0.832 7.55 2.26 0.595 0.810 6.67
DNN-IFD 1.84 0.495 0.709 2.71 1.93 0.510 0.731 4.75 2.35 0.651 0.835 7.81 2.31 0.601 0.812 6.91
DNN-MP 1.93 0.503 0.714 3.57 1.97 0.529 0.737 5.32 2.41 0.663 0.844 8.07 2.34 0.619 0.819 7.54

NOISY 1.74 0.397 0.665 0.10 1.62 0.385 0.653 0.10 1.67 0.431 0.676 0.10 1.49 0.358 0.644 0.10
DNN 2.08 0.581 0.781 5.43 1.87 0.495 0.724 4.31 2.50 0.704 0.864 9.46 2.48 0.659 0.847 8.35

0 dB DNN-CRM 2.10 0.589 0.785 5.58 1.88 0.507 0.729 4.77 2.52 0.711 0.870 9.66 2.50 0.667 0.851 8.62
DNN-IFD 2.14 0.592 0.789 5.82 1.93 0.512 0.732 4.82 2.59 0.723 0.873 9.83 2.56 0.675 0.855 8.78
DNN-MP 2.23 0.610 0.806 6.71 2.03 0.531 0.740 5.64 2.65 0.739 0.883 10.74 2.66 0.686 0.859 9.14
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Figure 6. Performance comparison in terms of spectrogram for babble noise at −5 dB SNR level.

Figure 7. Performance comparison in terms of spectrogram for factory1 noise at −5 dB SNR level.

4.3. Experiment 3: Ablation Study

The foregoing experiments prove that the proposed method (DNN-MP) is superior to existing
methods in terms of both speech enhancement performance and generalization ability. The good
performance of DNN-MP comes from two aspects—one is the fusion of multiple features extracted
from pre-estimated speech, pre-estimated noise, and phase, beyond only from clean speech; the other
is the comprehensive utilization of magnitude-aware and phase-aware training targets.
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Figure 8. Performance comparison in terms of spectrogram for factory2 noise at −5 dB SNR level.

Figure 9. Performance comparison in terms of spectrogram for buccaneer1 noise at −5 dB SNR level.

Table 2. Generalization ability on unseen noise.

PESQ ESTOI STOI SDR

DNN 1.19 0.182 0.607 −3.69
DNN-CRM 1.26 0.201 0.631 −0.637
DNN-IFD 1.34 0.245 0.653 −0.829
DNN-MP 1.37 0.249 0.661 1.37

In order to further explore the effects of the aforementioned components on the speech
enhancement performance, we did two groups of ablation study. In the first set of experiments,
we kept the network structure and training targets (IAM and IFD) of the DNN-MP method
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unchanged, and successively removed pre-estimated noise feature (Fn), pre-estimated speech feature
(Fs), phase feature (Fp), and their combination, that is, Fn and Fp, Fn and Fs, Fp and Fs, from the
fusion feature F (ref. Equation (21)), for the purpose of investigating their role in fusion feature.
The experimental results tested with buccaneer1 noise at −5 dB SNR level are listed in Table 3. As can
be seen from the table, among the three independent features, Fs and Fp (especially Fs) have a significant
impact on the performance of DNN-MP. Taking the metric PESQ as an example, removal of Fp and Fs

result in a drop from 2.22 to 2.17 and 2.15, respectively. When both Fp and Fs are removed, the result
drops to 2.12. In contrast, Fn has relatively little impact on DNN-MP, which can be derived from
the fact that DNN-MP and −Fn, −Fp and −Fn,p, −Fs and −Fn,s almost have the same PESQ value.
The author hopes that this discovery can guide researchers to further optimize fusion features.

Table 3. Experiment 3-1: Effect of specific feature on DNN-MP.

PESQ ESTOI STOI SDR

DNN-MP 2.22 0.561 0.792 6.18
−Fn 2.21 0.561 0.790 6.21
−Fp 2.17 0.557 0.788 5.81
−Fs 2.15 0.550 0.787 5.79
−Fn,p 2.16 0.556 0.787 5.82
−Fn,s 2.15 0.549 0.786 5.80
−Fp,s 2.12 0.542 0.783 5.61

−Fn represents removing Fn from the fusion feature. −Fn,p represents removing both Fn and Fp from the fusion feature.

In the second set of experiments, we kept the network structure, fusion feature (F) and the
magnitude-aware training target (IAM) of the DNN-MP method unchanged, but removed phase-aware
training target (IFD). The experimental result tested with buccaneer1 noise at −5 dB SNR level is
termed as DNN-M and listed in Table 4. Compared to DNN-MP, DNN-M’s performance (PESQ) drops
to 2.13, which demonstrates the important role of phase-aware training target in speech enhancement.

Table 4. Experiment 3-2: Effect of phase-aware training target on DNN-MP .

PESQ ESTOI STOI SDR

NOISY 1.19 0.226 0.526 −4.81
DNN-M 2.13 0.544 0.783 5.46

DNN-MP 2.22 0.561 0.792 6.18

4.4. Experiment 4: Subjective Test by Human Listeners

In order to give a more comprehensive understanding of the performance of various comparison
methods, we also conducted a subjective test by human listeners. We recruited 36 volunteers aged
between 16 and 60 years old. All volunteers had no background knowledge in related speech
enhancement research fields, so the fairness of the test results will not be affected by personal
preferences for comparison methods. We randomly selected 20 noisy speech sentences from the
test set and processed them with four aforementioned comparison methods, that is, DNN, DNN-CRM,
DNN-IFD and DNN-MP. Thus, for each piece of speech sentence, we got four enhanced speeches
that had been de-noised. A tester was asked to select one from four that he/she thought had the best
de-noising effect, and to fill out the questionnaire as shown in Table 5. In the table, the top row presents
the number of speech sentence randomly selected from the test set. S1, . . . , S36 in the leftmost column
denotes the number of tester. ♥,4, �, and ♦ represents the method of DNN, DNN-CRM, DNN-IFD,
and DNN-MP, respectively.

Based on the original questionnaire, we counted the results of the subjective test. As shown in
Table 6, the cumulative number of votes for all sentences is 36 × 20 = 720 votes, of which 264 votes
are for the DNN-MP method (♦), 225 votes are for the DNN-CRM method (4), 193 votes are for
the DNN-IFD method (�), and 38 votes are for the DNN method (♥). Among the 20 noisy speech
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sentences, thirteen noisy speech sentences processed by the proposed DNN-MP method are considered
to have the best quality, these speech sentences are composed of No. 24, 28, 74, 172, 179, 207, 239, 267,
306, 321, 391, 398 and 400. Two noisy speech sentences No. 155 and No. 163 processed by the DNN-IFD
are considered to have the best processing effect. Another two noisy speech sentences No. 234 and
No. 377 processed by the DNN-CRM method are considered to have the best quality. In addition,
both DNN-CRM and DNN-IFD are considered to have the best quality for speech sentences No. 136
and No. 235, while for No. 36, both DNN-CRM and DNN-MP are considered to have the best quality.
The subjective test once again proved that the proposed method can remove noise more effectively
than other comparison methods.

Table 5. Original questionnaire of subjective test.

24 28 36 74 136 155 163 172 179 207 234 235 239 267 306 321 377 391 398 400

S1 ♦ � ♦ ♦ ♦ ♦ 4 4 4 ♦ 4 4 ♦ 4 ♦ ♦ 4 4 ♦ ♦
S2 4 ♦ 4 4 4 4 ♦ 4 ♦ ♦ 4 4 4 ♦ 4 ♦ 4 4 4 4
S3 4 ♦ 4 ♦ 4 � ♦ ♦ 4 4 ♦ 4 ♦ ♦ ♦ 4 4 ♦ 4 4
S4 � � 4 � � ♦ ♦ ♦ � ♦ � � � ♦ ♥ ♦ � ♦ ♥ ♦
S5 4 ♦ ♦ ♦ 4 4 4 � 4 ♦ 4 4 ♦ 4 � ♦ ♦ ♦ ♦ ♦
S6 ♦ ♦ 4 ♦ 4 ♦ 4 � ♦ 4 4 4 ♦ ♦ ♦ ♦ ♦ 4 4 4
S7 � � 4 4 � 4 4 � 4 4 4 4 ♦ 4 4 � 4 � � 4
S8 ♦ ♦ ♦ � � ♦ � ♦ � � � � ♦ � ♦ ♦ ♦ ♦ � ♦
S9 � � � ♦ � � � ♦ ♦ � � � � � ♦ ♦ ♦ � ♦ �

S10 ♦ � � � 4 � ♦ 4 � � ♦ 4 4 � � � � 4 ♦ �
S11 4 4 4 4 4 4 4 ♦ � � � ♦ � 4 ♦ � � ♥ ♥ ♥
S12 ♥ � � ♦ ♥ � ♦ ♦ � ♦ ♥ ♥ � ♦ ♥ � ♦ � � ♦
S13 � � ♦ 4 4 4 � ♦ ♦ 4 4 � 4 ♦ 4 ♦ 4 4 4 �
S14 ♦ ♦ ♦ ♦ ♦ ♦ ♦ 4 ♦ ♦ 4 ♦ 4 ♦ ♦ ♦ 4 ♦ 4 ♦
S15 ♦ ♦ 4 � ♥ 4 ♦ � 4 ♦ 4 ♦ 4 4 4 ♦ 4 4 ♦ 4
S16 � ♦ ♦ ♦ ♦ � ♦ � ♦ ♦ ♦ � ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
S17 � � ♦ � � � ♦ ♥ ♦ � � ♥ � � � � ♦ � ♦ �
S18 ♦ � ♦ ♦ ♦ � � ♦ ♦ ♦ � ♦ � ♦ ♦ ♦ ♦ ♦ ♦ ♦
S19 � � ♦ ♦ � � � ♦ � � � � � � � � � � � �
S20 ♦ ♦ � 4 4 � ♦ � ♥ ♦ 4 ♥ � � ♦ � � � ♦ 4
S21 � � ♦ � 4 � 4 � � � 4 4 ♦ 4 � � 4 4 4 �
S22 ♥ 4 4 � ♥ ♥ 4 4 ♦ ♥ ♥ 4 ♥ ♥ 4 ♥ 4 ♥ 4 4
S23 � ♦ � � ♦ � � � � ♦ ♦ ♦ ♦ ♦ ♦ ♦ � ♦ � ♦
S24 ♦ ♦ � ♦ � � � � ♦ � 4 4 ♦ � 4 � � � � ♥
S25 � ♦ � 4 ♦ 4 � � ♥ � � � � ♦ � � � � � �
S26 ♦ � ♦ � ♦ � ♥ ♦ 4 ♥ 4 4 4 ♦ ♦ ♦ � 4 4 ♥
S27 � ♦ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ♦
S28 4 4 4 4 ♥ 4 4 4 ♥ ♦ ♥ ♥ 4 ♥ ♥ ♥ ♥ ♦ 4 4
S29 4 � � 4 � � 4 4 4 � 4 � 4 4 � 4 4 � 4 4
S30 4 4 4 4 � 4 4 � � 4 4 � � 4 � � 4 4 4 4
S31 ♦ � � ♦ � ♦ � ♦ ♦ � � � � ♦ � ♦ � ♦ ♦ ♥
S32 ♦ ♦ 4 � 4 � ♦ ♦ ♦ ♦ ♦ � ♦ 4 4 ♦ � 4 � ♦
S33 ♦ ♦ � ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ � ♦ ♦ ♦ ♦ � ♦ ♦ ♦
S34 4 � 4 ♦ � � 4 ♦ ♦ 4 � ♦ � 4 ♦ � 4 � ♦ ♦
S35 ♦ ♦ ♦ ♦ � � � ♦ ♦ � ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
S36 4 ♦ ♦ ♦ 4 ♦ � ♦ � ♦ ♦ � ♦ � ♦ ♦ ♦ ♦ � �

Table 6. Experiment 4: Subjective test scores.

24 28 36 74 136 155 163 172 179 207 234 235 239 267 306 321 377 391 398 400 Sum

DNN 2 0 0 0 4 1 1 1 3 2 3 4 1 2 3 2 1 2 2 4 38
DNN-CRM 9 4 13 10 12 10 8 8 8 7 15 13 9 11 8 3 13 11 12 11 193
DNN-IFD 11 15 10 10 12 17 15 11 10 12 10 13 12 8 9 12 12 9 9 8 225
DNN-MP 14 17 13 16 8 8 12 16 15 15 8 7 14 15 16 19 10 14 13 14 264

5. Conclusions

In this study, we propose a novel DNN-based single-channel speech enhancement method by
fusing the magnitude-aware and phase-aware information in both feature and training target aspects.
Extensive experiments demonstrate that the proposed method (DNN-MP) is superior to comparison
methods in terms of both speech enhancement performance (speech quality and intelligibility) and
generalization ability. Experiments and analysis show that the good performance of the proposed
method comes from two aspects—one is the fusion of multiple features extracted from pre-estimated
speech, pre-estimated noise, and phase, beyond only from clean speech, the other is the comprehensive
utilization of magnitude-aware and phase-aware training targets.
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