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Abstract: A microstrip balanced-to-unbalanced (BTU) Gysel-type arbitrary power divider without
the high-impedance transmission-line (TL) section is proposed to eliminate the power division ratio
(PDR) limit of the conventional microstrip BTU power dividers. The proposed circuit includes
five moderate-impedance TLs having the same characteristic impedance in addition to a grounded
resistor. The arbitrary PDR is easily obtained by varying the electrical length of the TLs without
changing the characteristic impedances, especially the large PDR, which is difficult to achieve by
means of conventional BTU power dividers. When the PDR is ∞, the proposed circuit becomes
a balun. The closed-form design equations are derived and discussed. To verify the proposed
circuit, three prototypes I, II, and III are designed and fabricated for PDRs of 10 dB, 20 dB, and∞ dB,
respectively. The measured PDRs are in good agreement with the simulations. The measured isolation
between the output ports is higher than 31 dB for prototypes I and II. The measured insertion loss of
the balun prototype is 0.194 dB. Furthermore, the common-mode suppression of greater than 32 dB
and the return loss of higher than 22 dB are obtained for various PDRs.

Keywords: balanced to unbalanced; Gysel-type power divider; wide power division ratio range

1. Introduction

Power dividing is widely adopted for various microwave applications such as antenna feeding
networks, balanced amplifiers, and mixers [1]. Compared to the Wilkinson power divider,
the Gysel-type power divider has the advantage of high power-handling capability because of
its grounded resistor to sink the created heat effectively. Besides, the out-of-phase type of power
dividers can be used in various circuits such as current bleeding mixers for low noise applications and
performance improvement of the balanced circuits [2].

Due to the advantages of good common-mode suppression and high immunity to environmental
and device electronic noise, the balanced circuits have been studied, such as balanced filter [3–5],
balanced power divider [6–8], and balanced coupler [9–11]. However, for a system with both balanced
and unbalanced devices, external baluns are required for the connection between the conventional
power divider and balanced circuits, which increase the circuit size. In order to solve this problem,
the balanced-to-unbalanced (BTU) power divider is proposed to connect both balanced and unbalanced
components. Moreover, the BTU power divider can divide one pair of differential-mode signals into the
isolated single-ended ports, and common-mode rejection can also be realized [12–17]. The BTU power
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divider with an arbitrary power division ratio (PDR) is more useful and has the flexibility to divide the
power arbitrarily. Thus far, the PDR of the existing microstrip BTU power divider is only controlled by
means of the characteristic impedances of the different transmission-line (TL) sections [18–22]. For a
large PDR, a high-impedance TL is required. Due to the realizable impedance range of 20–120 Ω for
microstrip lines, the maximum PDR of the existing microstrip BTU power divider is 6.8 dB [18].

In this paper, a BTU Gysel-type arbitrary power divider without the high-impedance TL is
proposed to eliminate the PDR limit of the conventional microstrip BTU power dividers, along with
out-of-phase characteristics at two unbalanced output ports and high power-handling capacity.
The proposed circuit includes five moderate-impedance TLs having the same characteristic impedance
in addition to a grounded resistor. The arbitrary PDR can be easily obtained by varying the electrical
length of the TLs without changing the characteristic impedances. Design formulas are derived,
and both the theoretical and experimental results are given and discussed.

2. Circuit Structure and Design Theory

The schematic of the proposed BTU arbitrary power divider is depicted in Figure 1. It is composed
of one half-wavelength transmission line (i.e., electrical length of θ1 = 180◦), two-section transmission
lines with the electrical length θ2, two-section transmission lines with the electrical length θ3, and an
isolation resistor R. The isolation resistor is grounded, which makes the created heat sinking of the
resistors possible. Besides, all the transmission lines have the same characteristic impedance Z1.
The PDR is controlled by means of the electrical lengths of θ2 and θ3. The balanced input port A
comprises ports 1 and 4 terminated with Z01, and the output ports 2 and 3 are two unbalanced ports
terminated with Z02.
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Figure 1. The proposed balanced-to-unbalanced (BTU) arbitrary power divider. 

2.1. Analysis of Impedance Matching and Isolation Conditions 

To obtain the perfect impedance matching and isolation conditions, the proposed power 

divider between ports 2 and 3 can be separated into two paths, as shown in Figure 1, and the ABCD 

matrix of two paths can be obtained as 



































212

212

313

313

1Path_23
cos/sinj

sinjcos

1/1

01

cos/sinj

sinjcos









Z

Z

RZ

Z

DC

BA
, (1) 
















































































3

1

3

313

01
1

1

1

111

01
2

1

2

212

23_Path2
cos

sinj

sinjcos

1
1

01

cos
sinj

sinjcos

1
1

01

cos
sinj

sinjcos
















Z

Z

ZZ

Z

ZZ

Z

DC

BA
. (2) 

The ABCD parameters of two paths are derived as 

RZA /sincosjsinsincoscos 321323223_Path1   , (3a) 

Figure 1. The proposed balanced-to-unbalanced (BTU) arbitrary power divider.

2.1. Analysis of Impedance Matching and Isolation Conditions

To obtain the perfect impedance matching and isolation conditions, the proposed power divider
between ports 2 and 3 can be separated into two paths, as shown in Figure 1, and the ABCD matrix of
two paths can be obtained as[

A B
C D

]
23_Path1

=

[
cosθ3 jZ1 sinθ3

j sinθ3/Z1 cosθ3

][
1 0

1/R 1

][
cosθ2 jZ1 sinθ2

j sinθ2/Z1 cosθ2

]
, (1)
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j sinθ2
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Z01
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
 cosθ1 jZ1 sinθ1
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cosθ1


 1 0

1
Z01

1


 cosθ3 jZ1 sinθ3

j sinθ3
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cosθ3

. (2)

The ABCD parameters of two paths are derived as

A23_Path1 = cosθ2 cosθ3 − sinθ2 sinθ3 + jZ1 cosθ2 sinθ3/R, (3a)
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B23_Path1 = −Z1
2 sinθ2 sinθ3/R + jZ1 cosθ2 sinθ3 + jZ1 cosθ3 sinθ2, (3b)

C23_Path1 = cosθ2 cosθ3/R + j cosθ3 sinθ2/Z1 + j cosθ2 sinθ3/Z1, (3c)

D23_Path1 = cosθ2 cosθ3 − sinθ2 sinθ3 + jZ1 cosθ3 sinθ2/R, (3d)

A23_Path2 = sinθ2 sinθ3 − cosθ2 cosθ3 − j2Z1 cosθ3 sinθ2/Z01, (4a)

B23_Path2 = 2Z1
2 sinθ2 sinθ3/Z01 − jZ1 cosθ2 sinθ3 − jZ1 cosθ3 sinθ2, (4b)

C23_Path2 = −2 cosθ2 cosθ3/Z01 − j cosθ2 sinθ3/Z1 − j cosθ3 sinθ2/Z1, (4c)

D23_Path2 = sinθ2 sinθ3 − cosθ2 cosθ3 − j2Z1 cosθ2 sinθ3/Z01. (4d)

To meet the requirement of perfect isolation (S23 = 0) and perfect matching at output ports (S22 = 0
and S33 = 0), the following relations need to satisfy [22]

B23_Path1 + B23_Path2 = 0, (5)

Z02 =
B23_Path1

D23_Path1 −D23_Path2
=

B23_Path2

D23_Path2 −D23_Path1
. (6)

By substituting (3b) and (4b) into (5), the following equation is obtained.

2Z1
2 sinθ2 sinθ3/Z01 −Z1

2 sinθ2 sinθ3/R = 0. (7)

Equation (7) can be simplified as
R = Z01/2. (8)

By substituting (3b), (3d), (4d) and (8) into (6), the following equation is obtained:

−Z1
2 sinθ2 sinθ3/R + jZ1 cosθ2 sinθ3 + jZ1 cosθ3 sinθ2

= Z02(2 cosθ2 cosθ3 − 2 sinθ2 sinθ3 + jZ1 cosθ3 sinθ2/R + jZ1 cosθ2 sinθ3/R)
(9)

For simplicity, Z1 and Z02 are set to be equal to R.

Z1 = Z02 = R. (10)

Then, the relation between θ2 and θ3 is derived with Equation (9) as

2 cosθ2 cosθ3 = sinθ2 sinθ3. (11)

It is obtained from Equation (11) that

tanθ2 tanθ3 = 2. (12)

Thus, the perfect impedance matching and isolation conditions for the proposed power divider
are obtained as (8), (10), and (12).

2.2. Analysis of Power Transmission from Input Port to Output Ports

Due to the fact that when the differential port A (combined by ports 1 and 4) is excited, all the input
power is transmitted solely to the terminations at ports 2 and 3 [23]. There is no power dissipation in
the isolation resistor at the center frequency. The voltage VR (as shown in Figure 1) for the resistor R is
zero at the center frequency; therefore, the schematic in Figure 1 is simplified as shown in Figure 2
for the analysis of the power transmission characteristics of the proposed power divider at the center
frequency. If the PDR between ports 2 and 3 is k2:1, V2 = −kV3. The voltage relations of the two output
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branch lines for the differential excitation case (i.e., V4 = −V1) can be obtained by using the ABCD
transmission matrix concept as (13).

V1 = V2 cosθ2 + V2 sinθ2 cotθ3 + jV2Z1 sinθ2/Z02, (13a)

V4 = −V1 = V3 cosθ3 + V3 sinθ3 cotθ2 + jV3Z1 sinθ3/Z02. (13b)
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By using the relations of V4 = −V1 and Z1 = Z02, it is obtained as

V2 cosθ2 + V2 sinθ2 cotθ3 + jV2 sinθ2 = −(V3 cosθ3 + V3 sinθ3 cotθ2 + jV3 sinθ3). (14)

By equating the real part and imaginary part of (14), the PDR can be derived as

k = −
V2

V3
=

sinθ3

sinθ2
. (15)

It can be seen from Equation (15) that the PDR of the proposed BTU power divider is only
determined by the electrical lengths of the TLs (i.e., θ2 and θ3) when Z1 = Z02 = R = Z01/2.

By substituting (15) into (11), the following equation is obtained:

2
√

1− sin2 θ2

√
1− k2 sin2 θ2 = k sin2 θ2. (16)

Equation (16) is solved as

sinθ2 =

√√√
4k2 + 4−

√
(4k2 + 4)2

− 48k2

6k2 . (17)

Thus, the design equations of the proposed power divider are obtained as (8), (10), (12), and (17).

2.3. S-Parameter Analysis

To derive the standard S-parameter of the proposed circuit, by using the topology shown in
Figure 2, the ABCD matrix between ports 1 and 4 can be obtained as[

A B
C D

]
14

=

[
1 0

YL1 1

][
cosθ1 jZ1 sinθ1

jY1 sinθ1 cosθ1

][
1 0

YL2 1

]
, (18)
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where

YL1 =
Y1(Y02 − jY1 cotθ3 + jY1 tanθ2)

Y1 + Y1 tanθ2 cotθ3 + jY02 tanθ2
, (19a)

YL2 =
Y1(Y02 − jY1 cotθ2 + jY1 tanθ3)

Y1 + Y1 tanθ3 cotθ2 + jY02 tanθ3
, (19b)

with Y1 = 1/Z1 and Y02 = 1/Z02.
Substituting (10) into (18) and using (12), the ABCD matrix between ports 1 and 4 is derived as[

A B
C D

]
14

=

 −1 0

−
Y1(Y02−jY1 cotθ3+jY1 tanθ2)

Y1+Y1 tanθ2 cotθ3+jY02 tanθ2
−

Y1(Y02−jY1 cotθ2+jY1 tanθ3)
Y1+Y1 tanθ3 cotθ2+jY02 tanθ3

−1


=

 −1 0
−Y02(tanθ3−j+j2)−Y02(tanθ2−j+j2)

tanθ2+tanθ3+j2 −1

 = [ −1 0
−Y02 −1

] . (20)

Using the conversion from ABCD matrix to S-parameters, the S-parameters in terms of ports 1
and 4 are obtained with (20) as [

S11 S14

S41 S44

]
=

[
−1/2 −1/2
−1/2 −1/2

]
. (21)

Moreover, when either port 1 or 4 is excited, the two divided waves at ports 2 and 3 are 180◦

out of phase. To realize the PDR of k2:1 between the output ports, S21 and S31 can be obtained using
(13). According to the definition of S-parameters and the use of (15), S21 and S31 are finally simplified
as follows,

S21 =
V2
√

2V1
=

k
√

2(
√

1− k2 sin2 θ2 + kejθ2 )
, (22)

S31 =
−V3
√

2V1
=

−1
√

2(
√

1− k2 sin2 θ2 + kejθ2 )
. (23)

Considering the perfect isolation between ports 2 and 3 (Sss23 = 0) and the perfect matching at
output ports (Sss22 = 0, Sss33 = 0), as mentioned in Section 2.1, the standard scattering matrix Sstd is
derived as

[Sstd] =


−1/2 S21 S31 −1/2
S21 0 0 −S21

S31 0 0 −S31

−1/2 −S21 −S31 −1/2

. (24)

Based on the standard S-parameters (24), the mixed-mode scattering matrix can be obtained as [19]

[Smm] =


SddAA SdsA2 SdsA3 SdcAA
Ssd2A Sss22 Sss23 Ssc2A
Ssd3A Sss32 Sss33 Ssc3A
ScdAA ScsA2 ScsA3 SccAA

 =


0
√

2S21
√

2S31 0
√

2S21 0 0 0
√

2S31 0 0 0
0 0 0 −1

, (25)

where Ssd denotes differential-mode to single-ended transmission coefficients; Ssc denotes
common-mode to single-ended suppression coefficients; Sdd, Scc, and Scd denote differential return loss,
common-mode reflection, and differential-mode to common-mode conversion coefficient, respectively;
and Sss indicates a single-ended S-parameter.

3. Parameter Analysis

Based on the previous theory analysis, the design parameters of the proposed power divider can
be easily calculated. For a given PDR, θ2 and θ3 can be calculated by using (17) and (12), respectively.
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Figure 3 gives the calculated values of θ2 and θ3 for the different PDRs from 0 to 30 dB when
Z1 = Z02 = R = Z01/2. It shows that the PDRs are controlled by means of the electrical lengths of θ2 and
θ3. For various PDRs from 0 to 30 dB, θ2 and θ3 are always less than 90◦, which implies that the size of
the proposed BTU power divider will be less than that of the existing BTU power divider [18,19].
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Figure 3. Electrical length versus power division ratio (PDR).

To verify the design Equation (8), (10), (12), and (17), three sets of design parameters are calculated
according to the PDRs of 0 dB, 10 dB, and 20 dB. In these three cases, all the electrical parameters of the
TLs are the same, except for the values of θ2 and θ3 with Z02 = Z1 = R = 50 Ω, Z01 = 2Z02 = 100 Ω.
Two quarter-wavelength impedance transformers are applied for matching Z01 to the standard 50-Ω
port, which has the characteristic impedance of

√
2Z02. The calculated values of θ2 for the PDRs of

0 dB, 10 dB, and 20 dB are 54.74◦, 18.18◦, and 5.73◦, respectively. For the three cases, the values of θ3 are
54.74◦, 80.67◦, and 87.13◦, respectively. The mixed scattering parameters are given in Figure 4. When
port A is excited in differential mode, the |Ssd2A| values at f 0 in Figure 4a for the three cases are −3.010,
−0.414, and −0.043 dB, respectively, and the |Ssd3A| values are −3.010 dB, −10.415 dB, and −20.046 dB,
leading to the desired PDRs of 0 dB, 10 dB, and 20 dB. Perfect isolation between ports 2 and 3 and
perfect impedance matching at ports 2 and 3 are achieved at f 0 for various PDRs, as shown in Figure 4b.
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When port A is excited in the common mode, |SccAA| at f 0 is always 0 dB, and the transmission
parameters of |Scc2A| and |Scc3A| at f 0 are all less than −65 dB, implying that no power transfers from the
common-mode port A to ports 2 and 3, as shown in Figure 4c. Figure 4d shows that the phase difference
between Ssd3A and Ssd2A is constant at 180◦ for a PDR of 0 dB. As the PDR increases, the out-of-phase
bandwidth will decrease.

4. Implementation and Performance

For the verification of the proposed theory, three prototypes I, II, and III are designed with a center
frequency of f 0 = 1.0 GHz for PDRs of 10 dB, 20 dB, and∞ dB, respectively. The circuit is implemented
on the PTFE/woven-glass substrate with a relative permittivity of 2.65 and a thickness of 1.5 mm.

4.1. Prototype I for a PDR of 10 dB

In this case, the output-port termination impedance Z02 is selected as 50 Ω. According to Section 2,
it is determined that Z1 = R = Z02 = 50 Ω, Z01 = 100 Ω, and θ1 = 180◦. The values of θ2 and θ3 are
calculated by using Equations (12) and (17) as 18.18◦ and 80.67◦, respectively. Using the TL synthesis
tool ADS Linecalc, the physical dimensions of TLs are calculated. In order to take account of the
distributed inductance effect of via holes for optimal physical dimensions of TLs, final dimensions are
obtained by using the HFSS EM simulation. The final dimensions of the prototype I are given in Table 1.
As shown in Figure 5, two λ/4 impedance transformers with the width of W1 are used for matching the
impedance Z01 of 100-Ω to 50-Ω input-port impedance. The lengths of two λ/4 impedance transformers
are L1 and L7, respectively. The width of the branch lines is W2 for the characteristic impedance of
Z1 = 50 Ω. Besides, based on the available chip resistors, the grounded resistance R is selected as 51 Ω.

Table 1. Dimensions of the prototype I (unit: mm; referring to Figure 5).

L1 L2 L3 L4 L5 L6 L7 W1 W2

48.7 9.05 50.0 11.3 37.65 93.1 48.7 2.3 4.1Electronics 2020, 9, x FOR PEER REVIEW  8 of 13 
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Figure 5. Photograph of the fabricated 10-dB BTU power divider.

The simulated and measured mixed S-parameters of the proposed 10-dB BTU power divider
are shown in Figure 6. At the center frequency of f 0 = 1.0 GHz, the measured |Ssd2A|, as shown in
Figure 6a, is −0.472 dB and |Ssd3A| is −10.478 dB, meeting the requirement for a PDR of 10 dB. At f 0,
the measured differential return loss is 24.2 dB, and the fractional bandwidth (FBW) of the return loss
better than 10 dB is about 23.4% (from 0.896 GHz to 1.133 GHz). Figure 6b shows that the measured
isolation between output ports 2 and 3 at f 0 is 38.2 dB, and it is better than 15 dB over 0.842 GHz
to 1.203 GHz (35.3%). In Figure 6c, the common-mode reflection |SccAA| is greater than −1 dB from
0.766 GHz to 1.237 GHz (47.0%). The mode conversion coefficient at the balanced port |SdcAA| is less
than −15 dB over the entire frequency range of interest. The common-mode suppression is better than
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15 dB from 0.869 GHz to 1.092 GHz (22.7%) with a maximum common-mode suppression of 36.5 dB at
0.979 GHz. In Figure 6d, the measured phase difference between output ports 2 and 3 is 180◦ ± 5◦ in
the frequency range from 0.944 GHz to 1.100 GHz. An excellent out-of-phase characteristic around the
center frequency is obtained.
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Table 2. Dimensions of the prototype II (unit: mm; referring to Figure 7). 

L1 L2 L3 L4 L5 L6 L7 W1 W2 

48.7 2.55 51.0 9.3 36.9 85.8 48.7 2.3 4.1 

Figure 6. Performances of the proposed 10-dB BTU power divider. (a) |Ssd2A|, |Ssd3A|, and |SddAA|.
(b) Output ports isolation and return loss. (c) |SccAA|, |Ssc2A|, |Ssc3A|, and |SdcAA|. (d) Phase difference
between the output ports.

4.2. Prototype II for a PDR of 20 dB

Compared to prototype I, only θ2 and θ3 need to change for a PDR of 20 dB. Using Equations (12)
and (17), θ2 and θ3 are calculated and obtained as 5.73◦ and 87.13◦, respectively. The photograph of the
fabricated prototype II is shown in Figure 7. The dimensions of the prototype II are given in Table 2.
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Table 2. Dimensions of the prototype II (unit: mm; referring to Figure 7). 

L1 L2 L3 L4 L5 L6 L7 W1 W2 

48.7 2.55 51.0 9.3 36.9 85.8 48.7 2.3 4.1 

Figure 7. Photograph of the fabricated 20-dB BTU power divider.
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Table 2. Dimensions of the prototype II (unit: mm; referring to Figure 7).

L1 L2 L3 L4 L5 L6 L7 W1 W2

48.7 2.55 51.0 9.3 36.9 85.8 48.7 2.3 4.1

The simulated and measured mixed S-parameters of the proposed 20-dB BTU power divider are
shown in Figure 8. At the center frequency of f 0 = 1.0 GHz, the measured |Ssd2A|, as shown in Figure 8a,
is −0.233 dB and |Ssd3A| is −20.121 dB; therefore, the measured PDR is 19.89 dB. At f 0, the measured
differential return loss is 25.1 dB. The return loss is better than 10 dB from 0.891 GHz to 1.090 GHz
(a FBW of about 20.0%). Figure 8b shows that the measured isolation between output ports 2 dB and
3 dB at f 0 is 31.4 dB, and it is better than 15 dB from 0.817 GHz to 1.157 GHz (34.4%). In Figure 8c,
the common-mode suppression is better than 15 dB from 0.894 GHz to 1.109 GHz (21.5%) with a
maximum common-mode suppression of 32.5 dB. The mode conversion coefficient at the balanced port
is better than 16.5 dB over the entire frequency range from 0.7 GHz to 1.3 GHz. The common-mode
reflection |SccAA| is greater than −1 dB from 0.766 GHz to 1.237 GHz (47.0%). In Figure 8d, the measured
phase difference between output ports 2 and 3 is 180◦ ± 5◦ from 0.98 GHz to 1.10 GHz. The out-of-phase
characteristic around f 0 is also obtained.
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the termination at port 3 and the isolation resistor are in parallel, which could be merged in a single 

resistor (i.e., R = 50 Ω / 50 Ω). However, the 25-Ω resistors do not exist as discrete components. So, 

the available chip resistor R = 24 Ω is chosen for use. Then, the proposed BTU power divider 
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Figure 8. Performances of the proposed 20-dB BTU power divider. (a) |Ssd2A|, |Ssd3A|, and |SddAA|.
(b) Output ports isolation and return loss. (c) |SccAA|, |Ssc2A|, |Ssc3A|, and |SdcAA|. (d) Phase difference
between the output ports.

4.3. Prototype III for a PDR of∞ dB

For a PDR of∞ dB, the electrical lengths of θ2 and θ3 are 0◦ and 90◦, respectively. Meanwhile,
the termination at port 3 and the isolation resistor are in parallel, which could be merged in a single
resistor (i.e., R = 50 Ω / 50 Ω). However, the 25-Ω resistors do not exist as discrete components.
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So, the available chip resistor R = 24 Ω is chosen for use. Then, the proposed BTU power divider
becomes a balun, as shown in Figure 9. The dimensions of the fabricated balun are given in Table 3.
The simulated and measured mixed S-parameters of the proposed balun (i.e., the prototype III) are
shown in Figure 10.
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Figure 10. Performances of the proposed balun. (a) |Ssd2A|, |Sss22| and |SddAA|. (b) |SccAA|, |Ssc2A|,
and |SdcAA|.

In Figure 10a, the measured |Ssd2A|, |SddAA|, and |Sss22| at f 0 are −0.194 dB, −22.1 dB, and −44.7 dB,
respectively. The FBW for the measured return loss better than 10 dB is about 24.7% from 0.886 GHz
to 1.136 GHz. In Figure 10b, the common-mode suppression is better than 15 dB from 0.840 GHz to
1.156 GHz (31.7%) with a maximum common-mode suppression of 33.6 dB. The measured |SdcAA|

is less than −13 dB from 0.7 GHz to 1.3 GHz with a minimum common-mode to differential-mode
conversion coefficient of −36.6 dB.

4.4. Performance Comparison

The comparison of the proposed BTU arbitrary power divider with previous works is summarized
in Table 4. The PDR of the proposed BTU power divider is considerably larger than that of [18–21],
which is attributed to the proposed configuration without a need for the high-impedance transmission
lines (HITL). The cost of the large PDR is the FBW of the proposed BTU power divider less than that
of [18,19,21], which is reasonable and acceptable. The size of the proposed BTU power divider is less
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than that of [18–21], which is mainly because θ2 and θ3 values are always less than 90◦ for various
PDRs. Furthermore, good common-mode suppression (CMS), high isolation, and large return loss are
also obtained for arbitrary PDRs.

Table 4. Performance comparison.

Ref. Type Phase HITL f 0
(GHz)

PDR
(dB)

CMS
(dB)

Isolation
(dB)

RL
(dB)

FBW
(%)

Size
(λg × λg)

[18] BTU OOP Needed 2 3 >20 ~18 ~25 ~43 0.73 × 0.45
[19] BTU OOP Needed 2 5 34.9 27.7 27.7 ~44 0.48 × 0.48
[20] UTB IP Needed 2 3 >20 >20 ~22 ~21 0.72 × 0.51
[21] UTB IP Needed 2 3 35.4 41.2 37.8 ~37 0.75 × 0.51

Prototype I BTU OOP None 1 10 36.5 38.2 24.2 23.4 0.45 × 0.29
Prototype II BTU OOP None 1 20 32.5 31.4 25.1 20.0 0.44 × 0.28
Prototype III BTU OOP None 1 ∞ 33.6 - 22.1 24.7 0.42 × 0.30

UTB: Unbalanced-to-balanced. UTU: Unbalanced-to-unbalanced. OOP: Out-of-phase. IP: In-phase. HITL: High
impedance transmission lines. PDR: Power division ratio. CMS: Common mode suppression. RL: Return loss.
FBW: Fractional bandwidth.

5. Conclusions

In this paper, a BTU Gysel-type power divider with arbitrary PDR and out-of-phase characteristics
has been presented. It can be easily synthesized with the prescribed PDR. The proposed configuration
includes five-section of moderate-impedance TLs, which have the same characteristic impedances
but different electrical lengths. The PDR is controlled by the electrical lengths of the TLs, which can
avoid the limitation of the high impedance TLs on the PDR. The FBW is 20.0–24.7% for various PDRs.
Furthermore, the proposed BTU Gysel-type power divider is also useful for high-power applications.

Further work is required to broaden the bandwidth. Based on the proposed configuration,
the research on dual-band BTU arbitrary power divider could be carried out.
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