
electronics

Article

UAV Autonomous Aerial Combat Maneuver Strategy
Generation with Observation Error Based on
State-Adversarial Deep Deterministic Policy
Gradient and Inverse Reinforcement Learning

Weiren Kong * , Deyun Zhou , Zhen Yang , Yiyang Zhao and Kai Zhang

School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China;
dyzhou@nwpu.edu.cn (D.Z.); nwpuyz@mail.nwpu.edu.cn (Z.Y.); zhaoyiyang@mail.nwpu.edu.cn (Y.Z.);
zhangkainwpu@mail.nwpu.edu.cn (K.Z.)
* Correspondence: k@mail.nwpu.edu.cn

Received: 17 June 2020; Accepted: 8 July 2020; Published: 10 July 2020
����������
�������

Abstract: With the development of unmanned aerial vehicle (UAV) and artificial intelligence
(AI) technology, Intelligent UAV will be widely used in future autonomous aerial combat.
Previous researches on autonomous aerial combat within visual range (WVR) have limitations
due to simplifying assumptions, limited robustness, and ignoring sensor errors. In this paper, in order
to consider the error of the aircraft sensors, we model the aerial combat WVR as a state-adversarial
Markov decision process (SA-MDP), which introduce the small adversarial perturbations on state
observations and these perturbations do not alter the environment directly, but can mislead the
agent into making suboptimal decisions. Meanwhile, we propose a novel autonomous aerial combat
maneuver strategy generation algorithm with high-performance and high-robustness based on
state-adversarial deep deterministic policy gradient algorithm (SA-DDPG), which add a robustness
regularizers related to an upper bound on performance loss at the actor-network. At the same time,
a reward shaping method based on maximum entropy (MaxEnt) inverse reinforcement learning
algorithm (IRL) is proposed to improve the aerial combat strategy generation algorithm’s efficiency.
Finally, the efficiency of the aerial combat strategy generation algorithm and the performance and
robustness of the resulting aerial combat strategy is verified by simulation experiments. Our main
contributions are three-fold. First, to introduce the observation errors of UAV, we are modeling air
combat as SA-MDP. Second, to make the strategy network of air combat maneuver more robust in
the presence of observation errors, we introduce regularizers into the policy gradient. Third, to solve
the problem that air combat’s reward function is too sparse, we use MaxEnt IRL to design a shaping
reward to accelerate the convergence of SA-DDPG.

Keywords: aerial combat; reinforcement learning; robustness; sensor errors; network training; UAV

1. Introduction

Compared with human-crewed aircraft, military UAVs have attracted much attention for their
low cost, long flight time, and fearless sacrifice [1]. With the development of sensor technology,
computer technology, and artificial intelligence technology, the operational performance of military
UAVs has been significantly improved, and the range of tasks that can be performed has been
continuously expanded. Although military UAVs can perform reconnaissance and ground attack
missions, most control decisions are made by ground station controllers. Because it is difficult to
adapt to the fast and changeable air battle scene, the traditional ground station command operation
is difficult to command the UAV for aerial combat [2]. Moreover, since the weapons and sensors

Electronics 2020, 9, 1121; doi:10.3390/electronics9071121 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-4935-9802
https://orcid.org/0000-0002-7400-5387
https://orcid.org/0000-0002-7728-916X
https://orcid.org/0000-0003-4935-0688
https://orcid.org/0000-0002-1188-2120
http://www.mdpi.com/2079-9292/9/7/1121?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9071121
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1121 2 of 24

mounted by UAVs are less than the human-crewed aircraft, compared with the aerial combat of the
human-crewed aircraft, UAVs should be fought in the close range. Therefore, the autonomous aerial
combat of UAVs in close range is an important research topic.

This study focuses on gun-based aerial combat WVR, referred to as dogfighting. Although missiles
have developed into major equipment for beyond-visual-range operations, particularly for
second-generation fighters and later [3], their effectiveness and death toll have been lower than
expected. Therefore, as the next-generation fighter, unmanned combat with guns is considered the key
to WVR combat.

Since the early 1960s, a great deal of research has been done on autonomous aerial combat,
and some remarkable research results have been published. The problem of aerial combat is modeled
as pursuit-evasion games [4–6], and various theoretical and optimal control schemes provide solutions
for autonomous aerial combat. Using differential game theory [7], the aerial combat model is modeled
as a deterministic, complete information pursuer-evader game model. In Reference [8], approximate
dynamic programming (ADP), a real-time autonomous one-to-one aerial combat method, was studied,
and the results were tested in real-time indoor autonomous vehicle test environments (RAVEN).
ADP differs from classical dynamic programming in that it constructs a continuous function to
approximate future returns. ADP does not need to perform future reward calculations for each
discrete state. Therefore, its real-time performance is reliable. A more complex two-on-one combat
was treated as a differential game in three-dimensional space [9]. These theoretical approaches make
possible the mathematical interpretation of the problem of aerial combat. However, they may include
oversimplified assumptions, such as fixed roles or two-dimensional motion, to reduce complexity and
computational time.

Some approaches are to model autonomous aerial combat as rule-based heuristic systems
that imitate the behavior of human pilots. In Reference [10–12], the maneuvering library design,
control application, and maneuvering identification based on the basic fighter maneuvers (BFM) expert
system are presented. Based on a combination of the BFM library, target prediction, and impact point
calculations, an autonomous aerial combat framework for two-on-two engagements was proposed
in [9]. At the same time, the influence graph model is used to model the pilot’s decision-making
process choosing the right maneuver at every moment in the aerial combat [13,14]. The rule-based
system produces real and reasonable simulation results. However, it is difficult to deal with all combat
situations, modify previously designed rules, and add new rules.

Artificial neural network and reinforcement learning methods have recently exhibited an
improved performance by generating effective new tactics for various simulation environments.
Based on the artificial neural network, aerial combat maneuver decision-making is learned from a large
number of aerial combat samples with strong robustness [15–18]. However, aerial combat samples need
to include multiple groups of time series and aerial combat results. Due to the difficulty in obtaining
samples for aerial combat, it is necessary to mark samples at each sampling time manually. Therefore,
aerial combat samples’ problem limits the application of the method of generating an aerial combat
maneuver strategy based on a neural network. In Reference [19], an algorithm based on DDPG and a
new training method was proposed to reduce training time and simultaneously obtain sub-optimal
but effective training results. A discrete action space was used, and the aerial combat maneuvering
decisions of an opponent aircraft were considered. However, the current reinforcement learning
methods all consider that the acquired aerial combat status is accurate, which is inconsistent with
the real aerial combat. In addition, reinforcement learning has also been applied in the fields of UAV
flight control and multi UAVs cooperative flight control [20–22]. In Reference [20], deep Q-network,
policy gradient and DDPG are used to design the 2-DOF flight attitude simulator control system and
the feasibility of model-free reinforcement learning algorithm is proved through the experimental
results. In Reference [21], the output reference model tracking control for a nonlinear real-world
two-inputs–two-outputs aerodynamic system is solved by iterative model-free approximate value
iteration (IMF-AVI), and theoretical analysis shows convergence of the IMF-AVI while accounting for

Electronics 2020, 9, 1121 3 of 24

approximation errors and explains for the robust learning convergence of the NN-based IMF-AVI.
In Reference [22], a UAV control policy based on DDPG to address the combination problem of 3-D
mobility of multiple UAVs and energy replenishment scheduling, which ensures energy efficient and
fair coverage of each user in a large region and maintains the persistent service.

Further practical improvements are required for the WVR autonomous aerial combat. We propose
a novel the autonomous aerial combat maneuver strategy generation algorithm with high-performance
and high-robustness based on the SA-DDPG algorithm. In order to consider the error of the aircraft
sensors, we model the aerial combat WVR as a state-adversarial Markov decision process (SA-MDP),
which introduce the small adversarial perturbations on state observations and these perturbations
do not alter the environment directly, but can mislead the agent into making suboptimal decisions.
SA-DDPG introduce a robustness regularizers related to an upper bound on performance loss at the
actor-network to improve the robustness of the aerial combat strategy. At the same time, a reward
shaping method based on MaxEnt IRL is proposed to improve the efficiency of the aerial combat
strategy generation algorithm. Finally, the aerial combat strategy generation algorithm’s efficiency
and the performance and robustness of the resulting aerial combat strategy are verified by simulation
experiments. Our contribution in this paper is a novel autonomous aerial combat maneuver strategy
generation algorithm with high-performance and high-robustness based on SA-DDG. Unlike existing
methods, the observation errors of UAV is introduced into the air combat model, and regularizer is
introduced into the policy gradient to make the strategy network of air combat maneuver more robust.
Finally, to solve the problem that air combat’s reward function is too sparse, we use MaxEnt IRL to
design a shaping reward to accelerate the convergence of SA-DDPG.

The remainder of this paper is organized as follows. Section 2 explains and defines the aerial
combat model based on SA-MDP. Next, the specific theory and techniques for autonomous aerial
combat maneuver strategy generation based on SA-DDPG are described in Section 3. A reward shaping
method based on MaxEnt IRL is proposed in Section 4. Section 5 details the virtual combat environment
and analyzes the performance of the proposed algorithm. This paper is concluded in Section 6. In this
study, the UAV piloted by the proposed algorithm, and the target is referred to as the attacker and the
target, respectively, for simplicity.

2. Aerial Combat Modeling

2.1. State-Adversarial Markov Decision Process (SA-MDP)

Markov decision process (MDP) is widely used in robotics, economics, manufacturing,
and automatic control [23]. MDP is a mathematical framework for probabilistic modeling of
the interactions between agents and the environment [24]. Agent is assumed to be learner or
decision-maker, interacting with the environment. It receives a reward and a representation of the
environment’s state at each time step and imposes an action on the environment that may change its
future state. This interaction between the agent and the environment is shown in Figure 1a.

A typical MDP is represented using a 6-tuple (S ,A, T , γ,D,R), where S = {s0, s1, ..., sn} is a set
of possible states that represent a dynamic environment, A = {a0, a1, ..., an} is a set of available actions
that the agent can select at a certain state, T is the state transition function which is determined by the
current state and the next action of the agent. MDP assumes that performing an operation in a given
state depends only on the current state-action pair, not on the previous states and actions, that is,

P (st+1|st, at, st−1, at−1, ..., s0, a0) = P (st+1|st, at) (1)

Equation (1) is called Markov property [25]. So, its mapping relationship is shown in Equation (2).

T : S ×A× S ′ → [0, 1] (2)

Electronics 2020, 9, 1121 4 of 24

T is the state transition probability matrix that provides the probability of the system transition
between every pair of the states, γ ∈ [0, 1) is the discount rate that guarantees the convergence of total
returns. D is the initial state distribution, andR is the reward function, which specifies the reward for
taking action in a state whose mapping relationship is shown in Equation (3).

R : S ×A → R (3)

The core objective of an MDP is to find a policy π for the agent, where the policy π : S → A
specifies the action to take at the current state, where π(s) = a denotes that action a is always executed
in-state s following the policy π. Moreover, the goal is to find the optimal policy of π∗ that maximizes
the cumulative discounted reward over an infinite horizon:

π∗ = arg max
π

E
[

∞

∑
t=0

γtR (st, π(st))

]
(4)

The value function of policy π at state s is the expected discounted return of starting in-state s
and executing the policy. The value function can be computed as:

Vπ(s) = Eπ

[
∞

∑
k=0

γkRt+k | st = s

]
(5)

The Q-value function of policy π at state s and using action a is the expected discounted return of
starting in-state s and using action a and executing the policy. The Q-value function can be computed as:

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k | st = s, at = a

]
(6)

The Bellman equation [26] for Vπ(s) and Qπ(s, a) can be computed as:

Vπ(s) = Eπ

[
∞

∑
k=0

γkRt+k | st = s

]
= Eπ

[
Rt + γRt+1 + γ2Rt+2... | st = s

]
= Eπ [Rt + γ(Rt+1 + γRt+2...) | st = s]

= Eπ [Rt + γVπ(st+1) | st = s]

= ∑
s′∈S

P(s′|s, π(s))
[
R(s, π(s), s′) + γVπ(s′)

]
(7)

The calculation process of the Bellman equation for Qπ(s, a) is similar to Vπ(s):

Qπ(s, a) = ∑
s′∈S

P(s′|s, a)
[
R(s, a, s′) + γQπ(s′, π(s′))

]
(8)

In SA-MDP [27], an adversary v(s) : S → S is introduced shown in Figure 1b. The role of the
adversary is to perturb the observation of the agent, such that the action is taken as π(v(s)), however,
the environment still transits from state s rather than v(s) to the next state. Since v(s) may be different
from s, the agent’s action from π(v(s)) may be sub-optimal, and thus the adversary can reduce the
reward earned by the agent. In practical control problems, the uncertainty of measurement or state
estimation is often reflected as the noise in the worst case. In order to model the uncertainty of
measurement of the UAV, we assume that the error between the measured value v(s) and the real
value s satisfies the small disturbance constraint, so we restricted v(s) to choose the value inside the

Electronics 2020, 9, 1121 5 of 24

I∞ ball containing s. Formally, v(s) ∈ B(s) is assumed, where B(s) is a small set of states, s ∈ B(s) and
B(s) is a set of task-specific “neighbouring” states of s.

Environment

Agent

action
At

state
St

reward
Rt

Rt+1
St+1

(a) MDP

Environment

Agent

action
At

state
St

reward
Rt

Rt+1

St+1

Adversary
v(St)

(b) SA-MDP

Figure 1. The diagrammatic sketchs of MDP and SA-MDP.

The definitions of adversarial value and action-value functions under v is similar to the definition
of regular MDP:

Vπ
v (s) = Eπ◦v

[
∞

∑
k=0

γtRt+k | st = s

]
(9)

Qπ
v (s, a) = Eπ◦v

[
∞

∑
k=0

γtRt+k | st = s, at = a

]
(10)

where π ◦ v is the policy under observation perturbations: π(v(s)). The Bellman Equations of Vπ
v (s)

and Qπ
v (s, a) for fixed v can be computed as:

Vπ
v (s) = ∑

s′∈S
P(s′|s, π(v(s)))

[
R(s, π(v(s)), s′) + γVπ(s′)

]
(11)

Qπ
v (s, a) = ∑

s′∈S
P(s′|s, a)

[
R(s, a, s′) + γQπ(s′, π(v(s′)))

]
(12)

2.2. System Modeling

2.2.1. State Transitions

As for the state information s of the aircraft, this paper uses the ground coordinate system to
describe the coordinates of the aircraft and represents the path of the aircraft in the process of aerial
combat. Use the coordinate system in Figure 2b to describe the forces on the aircraft. The unbalance of
torques in the model of state transitions is ignored, which plays a role in simplifying the model since
the research focuses on the air maneuver decision algorithm. Therefore, the three-degree-of-freedom
(3-DoF) aircraft particle motion model is selected to analyze its force characteristics. After coordinate
transformation, a simplified aircraft dynamics equation can be obtained, as shown in Equation (13).

dv
dt

= g(nx − sin γ)

dγ

dt
=

g
v
(nz cos φ− cosγ)

dΨ

dt
=

gnz sin φ

v cos γ

(13)

where v is the speed of the aircraft, g represents the acceleration of gravity, nx and nz indicate the
tangential overload and the normal overload, γ, Ψ and φ respectively indicate the aircraft’s pitch angle,
yaw angle, and roll angle. The following formula can be obtained by analyzing the force of the aircraft.
nx is tangential overload; nz is normal overload. nx is used to change the speed of the aircraft; nz and
φ determine the rate of change of pitch angle and yaw angle, which can change the flight direction
and altitude.

Electronics 2020, 9, 1121 6 of 24

Target

Attacker

3/9 o’clock line

6 o’clock line

av

ov

Antenna Train

Angle(ATA)

Aspect Angle (AA)

(a) Combat geometry and parameters

O
gx

gy

gz

bx

by

bz

xn

zn

(b) Aircraft 3-DoF particle model

Figure 2. The geometric situation of the aerial combat.

According to the simplified dynamics equation of the aircraft, the change of UAV coordinates with
time can be obtained, and the moving differential equations of the aircraft can be obtained, as shown
in Equation (14).

dx
dt

= v cos γ cos Ψ

dy
dt

= v cos γ sin Ψ

dz
dt

= v sin γ

(14)

As can be seen from Equation (14), when the initial velocity v, the initial pitch angle γ, the initial
yaw angle Ψ of the aircraft is given, the coordinates of the aircraft in the ground coordinate system can
be obtained through integral calculation.

Single order inertial links are introduced into the three control commands to make the control
process of the aircraft model more consistent with the real aircraft control process. The acceleration
commands (nxcmd, nzcmd, φcmd) due to actuator dynamics are given by

nx

nxcmd
=

1
1 + τxs

nz

nzcmd
=

1
1 + τzs

φ

φcmd
=

1
1 + τφs

(15)

where τx, τz and τφ are time constants of nx, nz and φ, respectively.

2.2.2. State Definition

The state of aerial combat can be fully described using the current motion parameters of the
attacker and the target; that is, the inertial coordinates parameters, the velocity parameters and the
attitude angle parameters of the two aircrafts. The position, velocity and attitude angle parameters of
the agent and the opponent can be represented as follow:

Smotion = [xa, ya, za, xo, yo, zo, va, vo, γa, γo, φa, φo, Ψa, Ψo] (16)

where xa, ya, za are the inertial coordinate parameters of the attacker in the ground coordinate system;
xo, yo, zo are the parameters of the inertial coordinate of the opponent in the ground coordinate system;
va is the velocity parameter of the attacker and vo is the velocity parameter of the target; γa is the pitch

Electronics 2020, 9, 1121 7 of 24

angle of the attacker and γo is the pitch angle of the target; φa the roll angle of the attacker and φo is
the roll angle of the target; Ψa the yaw angle of the attacker and Ψo is the yaw angle of the target.

In this paper, the depth neural network (DNN) is used to approximate the critic network and
actor-network. In order to ensure the good convergence performance of the deep neural network,
the above parameters are normalized to the aerial combat state-space vector. State-space vectors are
displayed in Table 1.

Table 1. The state space for the aerial combat model.

State Definition State Definition

s1
xa

xmax−xmin
s2

xo
xmax−xmin

s3
ya

ymax−ymin
s4

yo
ymax−ymin

s5
za

zmax−zmin
s6

zo
zmax−zmin

s7
va

vmax−vmin
s8

vo
vmax−vmin

s9
γa
2π s10

γo
2π

s11
φa
2π s12

φo
2π

s13
Ψa
2π s14

Ψo
2π

Then, the errors of the position, height, speed, and attitude sensors of the attacker and the errors
of the position, height, speed and attitude sensors of the target are modeled as a disturbance of the
information around the real state, which can be random or has antagonistic characteristics. In the
paper, a random disturbance is used as an error in the state:

Bε(s) = {ŝ : s− ε ≤ ŝ ≤ s + ε} (17)

where Bε(s) is the bounded set of the state vector, it is an I∞ ball around the state vector s.
The perturbation range ε on each state feature is determined individually, depending on the standard
deviation of that state feature.

2.2.3. Action Definition

In this paper, a continuous action space is used to control the aircraft. There are three continuous
control commands referred to in Section 2.2.1 to control the aircraft. Therefore, the action space can be
indicated by:

(nxcmd, nzcmd, φcmd) (18)

2.2.4. Reward Function and Terminal Condition

In real WVR aerial combat scenes, both aircraft maneuver at the same time; therefore, one aircraft
will be located at the tail of the other aircraft. This ensures stable locking on the other party,
and therefore, the opponent aircraft finds it challenging to get rid of the lock, and then attack the
different plane. The combat geometry and parameters shown in Figure 2a are employed.

In Figure 2a, λa is the antenna train angle (ATA) of the attacker, which is the angle between the
line-of-sight (LoS) vector and the attacker’s velocity vector. εa is the aspect angle (AA) of the attacker,
which is the angle between the LoS vector and the target’s velocity vector. εa can be obtained in terms
of the velocity of vector va and the LoS vector ρ, where ρ denotes the LoS vector between the attacker
and the target. The ATA and AA are allowed to take any value between ±180◦. ATA and AA can be
obtained from Equations (19) and (20).

λa = cos−1
[

Vr × ρ

|Vr ||ρ|

]
(19)

Electronics 2020, 9, 1121 8 of 24

εa = cos−1
[

Vb × ρ

|Vb||ρ|

]
(20)

As can be seen from Figure 2a, a smaller value of |λa|means that the attacker is more accurate at
aiming at the target, so |λa| is inversely proportional to the shooting chance or offensive advantage.
Similarly, a smaller |εa| indicates a lower probability of being hit by the target; therefore, |εa| is inversely
proportional to the survival advantage. A termination condition of WVR aerial combat and rewards
can be designed through the above-mentioned quantitative analysis of the aerial combat objectives
and related parameters. The reward function can be designed using Equation (21) as follows:

R =

1.0, |λa(s)| < 30◦ ∧ |εa(s)| < 60◦

−1.0, |λo(s)| < 30◦ ∧ |εo(s)| < 60◦

0, otherwise
(21)

When a aircraft (assumed to be the attacker) satisfies the condition |λa(s)| < 30◦ ∧ |εa(s)| < 60◦

and satisfies this condition for a period of time, it is believed that the attacker can maintain the
condition and complete the attack and destruction of the target. In this paper, since there is no killing
simulation of UAVs, the problem is simplified as follows: when the attacker continuously tracks
the target for five decision periods (e.g., the attacker is rewarded with one, five times over), it is
considered that the attacker is stable tracking the target and the attacker wins. Similarly, when the
target continuously tracks the attacker for five decision periods (e.g., the attacker is rewarded with
−1, five times over), it is considered that the target is stable tracking the attacker and the attacker
is defeated.

3. Autonomous Aerial Combat Maneuver Strategy Generation of UAV within Visual Range
Based on SA-DDPG

3.1. Deep Deterministic Policy Gradient (DDPG)

DDPG is an algorithm which concurrently learns a Q-function and a policy. It uses off-policy
data and the Bellman equation to learn the Q-function and uses the Q-function to learn the policy.
DDPG algorithm is successfully used in continuously high dimensional. DDPG is an actor-critic
and model-free algorithm based on the deterministic policy gradient [28]. In other words, in DDPG,
the actor directly maps states to actions instead of outputting the probability distribution across a
discrete action space. In the DDPG algorithm, a policy parameter θ exists in the value function Q(s, a),
and this function must be derived from the policy. The gradient of the objective J(θ) = Es∼µ[G] can be
expressed as follows:

∇θ J(θ) = Es∼ρπθ [∇θπθ(s)∇aQπ(s, a)|a=πθ(s)] (22)

In Equation (22) there are no expectations related to actions. Therefore, compared with a stochastic
policy, policy strategies needless learning data and exhibit high efficiency, especially in the case of
action spaces of large dimensions.

The policy and value functions of DDPG are approximated with deep neural networks. Like the
DQN algorithm [29], experience replay [30] and dual network structures are introduced in the
DDPG to make the training process more stable, and the algorithm converges more. DDPG is,
therefore, an off-policy algorithm, and the sample trajectories from the experience replay buffers
stored throughout the training.

Electronics 2020, 9, 1121 9 of 24

3.2. State-Adversarial Deep Deterministic Policy Gradient (SA-DDPG)

In SA-MDP, the optimal adversary v∗π(s) that minimizes the total expected reward for a given π,
and define the optimal adversarial value and action-value functions:

Vπ
v∗(s) = min

v
Vπ

v (s) (23)

Qπ
v∗(s, a) = min

v
Qπ

v (s, a) (24)

The Bellman equation for optimal adversary v∗π(s) can be written as:

Vπ
v∗(s) = min

sv∈B(s)
∑

s′∈S
P(s′|s, π(sv))

[
R(s, π(sv), s′) + γVπ(s′)

]
(25)

According to Theorem 5 in [27], given a policy π for a standard MDP, the inequality relation
between the value function of standard MDP and SA-MDP can be obtained:

max
s∈S
{Vπ(s)−Vπ

v∗(s)} ≤ α max
s∈S

max
ŝ∈B(s)

DTV(π(·|s), π(·|ŝ)) (26)

where DTV(π(·|s), π(·|ŝ)) is the total variation distance

DTV(π(·|s), π(·|s′)) =
√

2
π

‖π(·|s)− π(·|ŝ)‖2
σ

+ O(‖π(·|s)− π(·|ŝ)‖3
2) (27)

between π(·|s) and π(·|ŝ), and

α := 2
[

1 +
γ

(1− γ)2

]
max

(s,a,s′)∈S×A×S

∣∣R(s, a, s′)
∣∣ (28)

is a constant that does not depend on π.
Equation (26) shows that as long as DTV(π(·|s), π(·|ŝ)) is not too large for any ŝ close to s the

performance gap between Vπ(s) and Vπ
v∗(s) can be bounded. Equation (27) shows that as long as we

can penalize ‖π(·|s)− π(·|ŝ)‖2 the total variation distance between the two smoothed distributions
can be bounded. In DDPG, we parameterize the policy as a policy network πθ and the critic as a critic
network Qθ . According to Equation (26), for each state we need to find maxŝ∈B(s) DTV(π(·|s), π(·|ŝ)),
and we use maxŝ∈B(s) ‖π(·|s)− π(·|ŝ)‖2 as a surrogate. Note that the smoothing procedure can be done
completely in test time, and during training time our goal is to keep maxŝ∈B(s) ‖π(·|s)− π(·|ŝ)‖2 small.

For the set B(s) = {ŝ : s|sl ≤ ŝ ≤ su}, we can use the perturbation analysis tools Interval Bound
Propagation (IBP) mentioned in Section 3.3 to give the upper and lower bounds of πθ(ŝ):

lπ(s; θ) ≤ πθ(ŝ) ≤ uπ(s; θ), ∀ŝ ∈ B(s) (29)

where the bounds lπ(s; θ) and uπ(s; θ) are differentiable functions of θ. So we can obtain the upper
bound of the norm of the difference as follows:

max
ŝ∈B(s)

‖πθ(s)− πθ(ŝ)‖2 ≤ ‖uπ(s; θ)− lπ(s; θ)‖2 (30)

The SA-DDPG training algorithm is shown in Algorithm 1. The main difference comparing
to regular DDPG is the additional loss term LSA(θ), which provides an upper bound on
maxŝ∈B(s) ‖πθ(s)− πθ(ŝ)‖2. If this term is small, we can bound the performance loss under adversary.

Electronics 2020, 9, 1121 10 of 24

Algorithm 1 State-Adversarial Deep Deterministic Policy Gradient (SA-DDPG).

1: Randomly initialize critic network Q(s, a; θQ) and actor π(s; θπ) with weights θQ and θπ

2: Initialize target network Q′ and π′ with weights θQ′ ← θQ, θπ′ ← θπ

3: Initialize replay buffer R.

4: for episode = 1 to M do

5: Initialize a random process N for action exploration

6: Receive initial observation state s1

7: for t = 1 to T do

8: Select action at = π(s; θπ) +Nt according to the current policy and exploration noise

9: Execute action at and observe reward rt and observe new state st+1

10: Store transition (st, at, rt, st+1) in R

11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R

12: Set yi = ri + γQ′(si+1, π(si+1; θπ′); θQ′)

13: Update critic by minimizing the loss: L = 1
N ∑i(yi −Q(si, ai|θQ))2

14: Obtain upper and lower bounds on π(si; θπ) using IBP:

lπ(s; θπ) ≤ π(s; θπ) ≤ uπ(s; θπ), ∀s ∈ B(si) (31)

15: Upper bound on I2 distance:

LSA(θ
π) =

1
N ∑

i
‖uπ(si; θπ)− lπ(si; θπ)‖2 (32)

16: Update the actor policy using the sampled policy gradient:

∇θπ J(θπ) =
1
N ∑

i

[
∇aQ(s, a; θQ) |s=si ,a=π(si ;θπ) ∇θπ π(s; θπ) |si −κ∇θπ LSA(θ

π)
]

(33)

17: Update the target networks:

θQ′ ← τθQ + (1− τ)θQ′

θπ′ ← τθπ + (1− τ)θπ′
(34)

18: end for

19: end for

3.3. Interval Bound Propagation of Neural Network

The goal of IBP [31] is to find the lower and upper bounds in Equation (30). For clarity of
presentation, we assume that the neural network is defined by a sequence of transformations hk for
each of its K layers. That is, for an input z0, we have

zk = hk(zk−1) k = 1, ..., K (35)

Electronics 2020, 9, 1121 11 of 24

The output zK ∈ RN has N logits. The simplest approach is to bound the activation zk of each
layer by an axis-aligned bounding box (i.e., zk(ε) ≤ zk ≤ zk(ε)) using interval arithmetic. For I∞

adversarial perturbations of size ε we have for each coordinate zk,i of zk:

zk,i(ε) = min
zk−1(ε)≤zk−1≤zk−1(ε)

eT
i hk(zk−1)

zk,i(ε) = max
zk−1(ε)≤zk−1≤zk−1(ε)

eT
i hk(zk−1)

(36)

where z0(ε) = x0 − ε and z0(ε) = x0 + ε. For the fully connected layers that can be represented in the
form hk(zk−1) = Wzk−1 + b, solving the optimization problems Equation (36) can be done efficiently
with two matrix multiplies:

µk−1 =
zk−1 + zk−1

2

rk−1 =
zk−1 − zk−1

2
µk = Wµk−1 + b

rk = |W|rk−1

zk = µk − rk

zk = µk + rk

(37)

where | · | is the element-wise absolute value operator. Propagating bounds through any element-wise
monotonic activation function (e.g., ReLU, tanh, sigmoid) is trivial. Concretely, if hk is an element-wise
increasing function, we have:

zk = hk(zk−1)

zk = hk(zk−1)
(38)

3.4. Maueuvering Strategy Generation Algorithm OutLine

The algorithm framework is composed of the aerial combat environment model, SA-DDPG,
policy generation of the target, and reward shaping modules. The overall framework of the
maneuvering strategy generation algorithm is shown in Figure 3.

In Figure 3, the inputs of the module of the aerial combat environment model are the actions of
both the UCAVs, and the output is the next state and the reward value. The module of SA-DDPG
contains an actor and a critic.

The actor’s input is the state vector described in Section 2.2.1, and the output is the action vector
described in Section 2.2.3. In order to improve the stability of the learning process, two neural networks
are used in the actor, one as the target network and the other as the evaluation network. The structures
of the two networks are the same, but the update methods are different. The evaluation network uses
the deterministic policy gradient for updating, and the target network copies the online network’s
parameters through soft updates.

The critic’s input is the state vector and the action vector, and the output is the Q(s, a) value.
Like the actor, there are two neural networks in the critic—one for the target network and the other for
the evaluation network. The update method is also similar to that used in the case of the actor.

The input of the reward-shaping module includes the state vector, the action vector, and the next
state. The shaping reward is a designed reward that is received from the aerial combat environment.
The specific method of designing the shaping reward using MaxEnt IRL is explained in Section 5.

Electronics 2020, 9, 1121 12 of 24

Air Combat
 Simulation

Platform
Agent

Aircraft

 Air Combat Environment

 State-Adversarial Deep Deterministic Policy Gradient

Opponent
Aircraft

Actor

Evaluation

Target

Replay memory

Update

Optimizer

Update Policy Grad.
SA Loss Grad.

Critic

Evaluation

Target

Update

Optimizer

Update

Target Q

Q Grad.
Q Grad.

Action

Action

Action
+

Random
noise

Aircraft Maneuver Generation
using Minimax Search Tree

Expert Features
Calc.

Trajectory
Gen.

Action

Feature Expection

MaxEnt
IRL

(, 𝑎, 𝑅,)𝑆𝑡 𝑆𝑡+1

 Maximum Entropy Inverse Reinforcement Learning

Sample

𝑁 ∗ (, 𝑎, 𝑅 + ,)𝑆𝑡 𝑅𝑅𝑆 𝑆𝑡+1

𝑅𝑅𝑆

(, 𝑎,)𝑆𝑡 𝑆𝑡+1

Figure 3. Aerial combat maueuvering strategy generation algorithm using SA-DDPG.

4. Reward Shaping Using Inverse Reinforcement Learning

4.1. Reward Shaping

Due to the learning efficiency of deep reinforcement learning, reinforcement learning has
been restricting its practical application. Therefore, shortening the training time has become an
important issue.

Reward shaping is a common technique to improve learning performance in reinforcement
learning tasks [32]. The concept of reward shaping is to provide complementary incentives to agents to
encourage them to move to a higher-paid status in the environment. These rewards and punishments,
if applied arbitrarily, may divert agents from their intended objectives. In this case, agents converge to
the optimal strategy in the case of reward formation, but they are suboptimal in the primary task.

Reward shaping accelerates the convergence rate of reinforcement learning by introducing
additional rewards in an attempt to obtain more accurate rewards than those in the original
environment. In general, the shaping reward function is expressed as follows:

RP(s) = RRS(s) +R(s) (39)

whereR(s) denotes the binary reward function of the aerial combat environment in which the primary
task owns. RRS(s) denotes the shaping reward function.

4.2. Nonparameterized Features of Aerial Combat

The design of the shaping reward function is difficult because the behavior of pilots in aerial
combat is difficult to describe. The shaping reward function also varies from pilot to pilot and may
even change over time. A common way to design a shaping reward function is to represent it manually
chosen non parameterized features. The nonparameterized features Φ(s) are functions of the states
of aerial combat. We consider shaping reward functions as a linear combination of features in the
following form:

Electronics 2020, 9, 1121 13 of 24

RRS(s; w) = wTΦ(s) (40)

where w is the weight vector, and Φ(s) is the feature vector with each component representing a
nonparameterized feature of aerial combat. In order to improve the efficiency of the SA-DDPG
algorithm, the nonparametric features of air combat selected in this paper are all continuous scalar
functions sensitive to air combat state. In this work, we define the nonparameterized features in
Table 2.

Table 2. The nonparameterized features of aerial combat.

Nonparameterized Feature Description

|ρ| The relative distance between blue and red aircrafts
|AA| The absolute value of aspect angle
|ATA| The absolute value of antenna train angle
|va − vo| The relative velocity between blue and red aircrafts

One can design the weight vector w to encourage or penalize certain features using the given
reward function, and then use reinforcement learning to learn the corresponding optimal policy by
maximizing the total reward.

4.3. Shaping Reward Modeling Using Maximum Entropy Inverse Reinforcement Learning

However, the weight vector of Equation (40) of the features set by hand is hard, and the weight
vector of a bad setting may affect the optimality of the aerial combat maneuvering strategy. Therefore,
this paper uses another method; it learned from the experience of aerial combat expert weight vector w
based on inverse reinforcement learning (IRL) algorithm [33]. IRL can be defined as a reverse procedure
of RL problems, which assumes that the demonstrations from experts are generated from the optimal
policy. In the IRL problem, one is given a number of time histories of the agent’s behaviors consisting
of past states and actions. These past states and actions are often referred to as demonstrations.
Ziebart [34] first applies the maximum entropy principle to solve the inverse reinforcement learning
problem, for cases where the reward function depends only on the current state and represented
via a linear combination of feature functions, namely in Equation (40). Formally, IRL considers the
case in MDP, where the reward function is unknown. Correspondingly, there is a demonstration set
D = {ξ1, ξ2, ..., ξN}, which is composed of expert demonstration trajectories. Each demonstration
trajectory includes a set of state-action pairs, which are ξi = {s0, a0, s1, a1, ..., sT , aT}. Thus, we define
an MDP/R process with no reward function, defined as tuple S, A, T, γ, D. Inverse reinforcement
learning aims to learn the potential reward functionR.

Jaynes first proposed the principle of maximum entropy, and since then, it has been used in
many areas of computer science and statistical learning [35]. In the basic maximum entropy formula,
we give a set of samples of the target distribution and a set of constraints on the distribution, and then
we estimate the distribution using the maximum entropy distribution that satisfies these constraints.
The probability of a demonstration ξ over all paths of duration T is calculated:

P(ξ|w) =
1

Z(w)
e∑s∈ξ wTΦ(s) (41)

where the partition function Z(w) is a normalization constant, and it provides the solutions
corresponding to a deterministic MDP, where the future state can be uniquely determined with
the given action at the present state.

The goal of IRL is to find the optimal weight of w∗, such that the likelihood of the observed
demonstrations is maximal under the distribution in Equation (41). The entropy of the path distribution
under the constraint of maximizing the features of the observed data means the possibility of
maximizing the observed data under the maximum entropy distribution we deduced above.

Electronics 2020, 9, 1121 14 of 24

w∗ = arg max L(w) = arg max logP(ξ|w) (42)

This function is a convex function of deterministic MDPs, and the optimal solution can be obtained
using the gradient optimization method. The gradient is the difference between expected empirical
feature counts and the learner’s expected feature counts, which can be expressed by the expected state
visitation frequencies Dsi ,

∇L(w) = Φ̃ξ −∑
si

Dsi Φ(si) (43)

where Φ̃ξ := 1
N ∑ξ∈D Φξ is the expected empirical feature count and Φξ = ∑s∈ξ Φ(s).

From Equation (43), when the expected state frequencies Dsi is given, the gradient can easily be
computed Equation (43) for optimization. The algorithm to approximate the state frequencies is
proposed in [34]. The algorithm approximates the state frequencies for the infinite time horizon using
a large fixed time horizon. It recursively "backs up" from each possible terminal state and computes
the probability mass associated with each branch along the way by computing the partition function
for Equation (41) at each action and state. These branching values yield local action probabilities,
from which state frequencies in each timestep can be computed and summed for the total state
frequency counts. The algorithm of approximating expected empirical feature count is shown in
Algorithm 2.

Algorithm 2 Approximate expected empirical feature count.

1: Zsi ,0 → 1
2: for j = 1 to N do
3: Zai,j → ∑k P(sk|si, ai,j)eRRS(si ;w)Zsk

4: Zsi → ∑ai,j

5: end for
6: P(ai,j|si)→

Zai,j
Zsi

7: Dsk ,1 = P(Si = Sinitial)

8: for t = 1 to N do
9: Dsi ,t+1 = ∑ai,j ∑k Dsk ,tP(ai,j|si)P(sk|ai,j, si)

10: end for
11: Dsi = ∑t Dsi ,t

Since the state space and action space in the aerial combat model are continuous, it is impossible
to use Algorithm 2 to estimate the expected empirical feature count. Therefore, in this paper, the state
space and action space in the aerial combat model are discretized, and each parameter is divided into
multiple discrete values.

5. Simulation and Analysis

5.1. Platform Setting

5.1.1. Aerial Combat Simulation Platform Construction

The aerial combat simulation platform was built using the HARFANG 3D framework [36],
which is a software framework used for the development of modern multimedia applications and
for modeling the shapes of aircraft. The HARFANG framework can manage and display complex 3D
scenes, play sounds and music, and virtual reality (VR) devices. It is a new multimedia application
development framework, which is highly suitable for the development of games. Nowadays,
ground controllers use VR equipment to control the UAVs; hence, we adopted the HARFANG 3D
framework for our proposed aerial combat simulation platform.

Electronics 2020, 9, 1121 15 of 24

The platform was able to simulate the aerial combat in certain airspaces, use the dynamic equation
refer in Section 3.2 to simulate the flight characteristics of aircraft, and set the performance parameters.
The platform was also able to reserve the aerial combat strategy interface of the two aircraft, thereby
obtaining the aircraft control signals from the external environment. The platform could also support
human control, where the interface received input from a keyboard or hands-on throttle and stick
system (HOTS). The graph user interface of the aerial combat simulation platform is shown in Figure 4.

(a) Main view (b) Top view

Figure 4. The graph user interface of the aerial combat simulation platform.

The main interface of the aerial combat simulation platform is depicted in Figure 4. The interface
presents a real-time combat situation of the aircraft, and the five positions on the screen display the
health value, altitude and speed, radar image, attitude angle, and all the speed components.

5.1.2. Initial Setting for 1-vs-1 WVR Aerial Combat Engagement

As in Reference [37], Figure 5 shows the four different initial situation of the WVR aerial combat
engagement based on the initial relative positions and orientations of the UCAVs. The initial position of
the attacker concerning target in the horizontal direction is randomly chosen to be between 350 m and
1050 m in the offensive, defensive, and neutral cases. The two aircraft are at the same height initially.

90o

(a)
Offensive
situation

90o

(b) Opposite
situation

90o

(c) Defensive
situation

90o

(d) Neutral
situation

Figure 5. The four different initial situation of the WVR aerial combat engagement.

5.1.3. Aircraft Performance Parameters Setting

For experimental comparison, two different aircraft performance parameters were considered in
this paper. Variation of the performance capabilities focuses on the following parameters: maximum
thrust and maximum angular rates, as presented in Table 3. The dominant aircraft performance

Electronics 2020, 9, 1121 16 of 24

parameters are called the “advantage” parameters, and the non-dominant aircraft performance
parameters are called the “disadvantage” parameters. The masses of both the aircraft are the same and
equal to 10,000 kg each and the speed range of both the aircraft is [50, 250] meters per second.

Table 3. The aircraft performance parameters setting.

Parameter Advantage Value Disadvantage Value

Roll maximum rate (deg/s) 140 110
Maximum thrust (N) 100,000 80,000

5.1.4. Evaluation Metrics of Aerial Combat Strategy

The most direct method to evaluate an aerial combat strategy is to conduct an aerial combat
confrontation with other aerial combat strategies and then determine the winner. We can also determine
if the flight track generated by an aerial combat strategy is reasonable by observing the aircraft’s flight
tracks from both sides of the combat.

To quantitatively and accurately analyze the intelligence degree of an aerial combat strategy,
this study proposes four metrics: intercept time TI , defensive time TD, offensive time TO, and winning
probability PW . Intercept time is measured from the aerial combat simulation’s beginning until an
aircraft has a position of advantage. The position of advantage is the termination condition of the
aerial combat, expressed in Equation (21). Defensive time is when a UCAV is at |AA| > 90◦ during
aerial combat. Offensive time is when a UCAV is at |ATA| < 90◦ during aerial combat. The winning
probability is the ratio of aerial combat simulations and the total number of aerial combat simulations.

5.1.5. Opponent Maueuvering Strategy

In this paper, the maneuver strategy of the target is designed using the Minimax Search Tree
method (MST). The MST method simplifies and models the combat engagement between two players
as a chess-type tree, a model-based method. See the schematic plot in Figure 6. The MST idea models
the aircraft to following certain predefined candidate maneuvers. The candidate maneuvers include
seven actions: max load factor left turn, max load factor right turn, max long acceleration, steady flight,
max long deceleration, max load factor pull up, and max load factor pull over.

Agent
Agent

Agent

Opponent OpponentOpponent Opponent

Agent Agent Agent

Lo
ok

 A
he

ad
 L

ev
el

Maximum

Minimum

Left turn

Right turn Acc.
Dec.

Figure 6. A schematic plot of the MST. Agent and Opponent indicate two aircraft.

At each decision point, both aircraft are assumed to take actions that are prespecified as the seven
elemental maneuvers. The end states of both aircraft are obtained by numerically integrating the

Electronics 2020, 9, 1121 17 of 24

motion equations. Given the seven potential options from each player, the terminating condition
consists of 49 possibilities, represented by a seven-by-seven square matrix. Based on the terminate
orientation, range, velocity, and terrain, a scoring function is defined for each index in the matrix.
One player thus is to take actions that maximize the terminate score, while the other to minimize it.

The scoring function is composed of contributions consisting of an orientation score, a relative
range score, and a velocity score. The contributions and the method of combining them were developed
by incorporating various candidate functions into the program, performing numerous computer
simulations, and studying the aircraft performance. The scoring function is defined in Equation (44).

Score(S) =
[

1− |AA|/π + |ATA|/π

2

]
e−(|ρ|−RD)/(kπ) (44)

where RD is the expected attacking range of weapons, and k is a coefficient adjusting the influence of
Score(S) in the total score.

5.2. Shaping Reward Experiment

5.2.1. Experiment Settings

Before using the SA-DDPG algorithm to obtain aerial combat maneuver strategy, the MaxEnt
IRL algorithm is required to obtain shaping reward in order to provide the SA-DDPG algorithm.
To complete the experiment, we used the aerial combat simulation platform to collect 500 different
aerial combat counter trajectories manually. The initial states of these aerial combat trajectories are
generated randomly, and the target uses the MST method for confrontation, and its look ahead level is
set to 4.

Each component of the aerial combat features defined in Table 2 is divided into 20 parts on average,
and each component of the action space is divided into five parts on average. Gradient descent method
is used to solve w∗ in Equation (42), and the learning rate is 0.01. The initial weight is set to −0.25.

5.2.2. Experiment Result and Analysis

The curve of weight w of the linear combination of features is shown in Figure 7. As can be
seen from the figure, the curve showed a trend of convergence, and the weights all converge to some
negative value after 6000 steps of learning. The optimal weight w∗ are shown in Table 4.

In Table 4, the weight components are all negative, which indicates that the principle of aerial
combat strategy used by aerial combat experts is to reduce |ρ|, |AA|, |ATA| and |va − vo| as much as
possible to complete the aerial combat, which is intuitively reasonable.

Table 4. The optimal weight w∗ of the linear combination of aerial combat features.

Feature |ρ| |AA| |ATA| |va − vo|

Optimal Weight −0.046 −0.416 −0.515 −0.023

In order to quantitatively determine the effects of the four features of the aerial combat on the total
shaping reward, the color map of the shaping reward using |AA| and |ATA| features and the color map
of the shaping reward using |ρ| and |va − vo| features are respectively drawn in Figure 8a. In Figure 8b,
the influence of |AA| and |ATA| on shaping reward is far greater than that of |ρ| and |va − vo| on
shaping reward. Therefore, it is more important to have the advantage of a relative angle than the
advantage of relative distance and speed in aerial combat, especially in short-range aerial combat.

Electronics 2020, 9, 1121 18 of 24

0 1000 2000 3000 4000 5000 6000

Steps

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

W
ei

gh
ts

 o
f t

he
 a

ir
co

m
ba

t f
ea

tu
re

s

Figure 7. The convergence curve of weight w of the linear combination of aerial combat features.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(a) The color map of the shaping reward using
|AA| and |ATA| features

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

(b) The color map of the shaping reward using
|ρ| and |va − vo| features

Figure 8. The effects of the 4 features of the aerial combat on the shaping reward.

5.3. Performance of Training Process

5.3.1. Experiment Settings

In this section, a comparative analysis of the training methods is performed. The five training
algorithms are the DDPG algorithm without reward shaping (DDPG), the DDPG algorithm with
reward shaping (RS-DDPG), the SA-DDPG algorithm with reward shaping, and the learning rate κ in
Equation (33) is set to 0.1 (RS-SA-DDPG-0.1), the SA-DDPG algorithm with reward shaping and the
learning rate κ is set to 1 (RS-SA-DDPG-1), and the SA-DDPG algorithm with reward shaping and the
learning rate κ is set to 10 (RS-SA-DDPG-10) to training the aerial combat maneuver strategy.

When training the aerial combat strategies, the initial states of the two aircraft are randomly
generated according to the four situations described in Section 5.1.2. At the same time, to prevent
the two aircraft from falling into the “boring” Nash equilibrium of “biting the tail” during training,
the performance parameters of the two aircraft to be different from one another: the attacker uses the
“advantage” performance parameters, and the target uses the “disadvantage” performance parameters.
The target uses the MST method for confrontation, and its look ahead level is set to 4.

The length of the actor network’s input vector is 14, and that of the output vector is 3. The length
of the critic network’s input vector is 17, and that of the output vector is 1. The online actor-network,
target actor-network, online critic network, and target critic network are constructed using three layers

Electronics 2020, 9, 1121 19 of 24

fully connected neural network, and the nodes number of the hidden layer is 64. The output layer
of the actor-network and the critic network have no activation function; furthermore, the input and
hidden layers are all ReLU layers. The learning rate of the network is 0.01, and the discount factor γ is
0.9. The soft update factor of the target network is 0.01.

Additionally, the weight of the initialized neural network can be adjusted to be using the Xavier
initializer. The batch size of the updating network is 1024, and the size of the experience replay memory
is set to 106. The perturbation range ε for all normalized state components is 0.1.

5.3.2. Experiment Result and Analysis

The curve of the average reward of the aircraft shown in Figure 9. This curve is the average
reward of all steps in every 500 episodes. Besides DDPG, which has only the original reward signal,
the rewards of the other four algorithms all contain the shaping reward signal.

0 1000 2000 3000 4000 5000 6000 7000

Episodes

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

S
te

p
A

ve
ra

ge
 T

ot
al

 R
ew

ar
d

DDPG
RS-DDPG
RS-SA-DDPG-0.1
RS-SA-DDPG-1
RS-SA-DDPG-10

Figure 9. The convergence curve of weight w of the linear combination of aerial combat features.

As can be seen from Figure 9, Except DDPG, the other four algorithms tend to converge.
This indicated that after the introduction of the shaping reward, the algorithm’s efficiency in learning
aerial combat maneuver strategy was significantly improved. By comparing the RS-DDPG algorithm
with the 4 RS-SA-DDPG algorithms, it can be determined that the training convergence speed of
the RS-SA-DDPG algorithms is slightly better than that of the RS-DDPG algorithm, and the final
convergence result of RS-SA-DDPG algorithms is better than the RS-DDPG algorithm. By comparing
the convergence curves of three RS-SA-DDPG algorithms with different κ parameters, the convergence
speed will be slightly slower with the increase of κ, and it can converge to a better result, to obtain a
better aerial combat maneuver strategy.

5.4. Testing Aerial Combat Maneuver Strategy

5.4.1. Experiment Settings

In this section, the intelligence degree of aerial combat maneuver strategy obtained using the
RS-SA-DDPG-1 algorithm is evaluated against the target using the uniform linear motion maneuver
strategy and four look-ahead MST maneuver strategy. The performance parameters of aircraft on
both sides are kept at “Advantage” to ensure that the performance of the two aircraft is the same.
The perturbation range ε is 0.1. Meanwhile, the initial situation of the attacker is set to “Defensive”
when the attacker conducts aerial combat with the target with the uniform linear motion maneuver

Electronics 2020, 9, 1121 20 of 24

strategy; the initial situation of the attacker is set to “Opposite” when the attacker conducts aerial
combat with the target with the MST maneuver strategy.

5.4.2. Experiment Result and Analysis

The results of the simulation scenario against the uniform linear motion maneuver strategy are
presented in Figure 10. The trajectories are depicted at intervals of 1 second. The downward-pointing
triangle points at the trajectory represent the initial position. The cross points at the trajectory represent
the end position of the aerial combat and, the circular points are marked every 10 s. To gain the
situational advantage in aerial combat, the attacker performs a somersault maneuver to allow the
target to overshoot it for about 30 s quickly. Then, the attacker speeds up to catch up with the opponent
and, finally, slows down to prevent overshoot and steadily tracks the target. As a result, the target
was successfully destroyed in 50 s by gunshot. It can also be seen from Figure 10 that the overall
features of the attacker relative to the target increases from the initial positive value to zero, and there
are some oscillations in the middle, but in the end, it can be stably maintained at zero, i.e., in an
advantageous situation.

1500
1500

2000

1000
2500

z(
m

)

500 2000

2500

y(m)

0 1500

x(m)

1000

3000

-500
500

-1000 0
-1500 -500

Agent aircraft
Opponent aircraft

(a) The trajectory of
aerial combat

-500 0 500 1000 1500 2000 2500

x(m)

1500

2000

2500

3000

z(
m

)

Agent aircraft
Opponent aircraft

(b) The projection of the
trajectory on X-Z plane

5 10 15 20 25 30 35 40 45 50

Steps

0

2

5 10 15 20 25 30 35 40 45 50

Steps

0

2

5 10 15 20 25 30 35 40 45 50

Steps

200

400

600

800

5 10 15 20 25 30 35 40 45 50

Steps

0

50

(c) The result of the
features in aerial combat

Figure 10. The simulation results of the aerial combat maneuver strategy using the
RS-SA-DDPG-1algorithm against the uniform linear motion maneuver strategy.

The results of the simulation scenario against the four look-ahead MST maneuver strategy are
presented in Figure 11. The attacker first accelerates to approach the target and overshoot quickly for
about 20 s, and the target takes an advantageous situation. Then at 30 s, the attacker makes the left
turn to bring the aircraft into the opposite situation. After 50 s, the attacker takes an advantageous
position. Although the target adopted a series of maneuvers of acceleration or turning to try to get rid
of it, the agent aircraft is still in an advantageous situation and gradually stabilized tracking.

1500

1000

2000

500
1000

z(
m

)

y(m)

5000

2500

x(m)

0
-500

-500

3000

-1000 -1000

Agent aircraft
Opponent aircraft

(a) The trajectory of
aerial combat

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

x(m)

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

z(
m

)

Agent aircraft
Opponent aircraft

(b) The projection of the
trajectory on X-Z plane

10 20 30 40 50 60 70 80 90 100

Steps

0

1

2

10 20 30 40 50 60 70 80 90 100

Steps

0

1

2

10 20 30 40 50 60 70 80 90 100

Steps

0

1000

10 20 30 40 50 60 70 80 90 100

Steps

0

50

(c) The result of the
features in aerial combat

Figure 11. The simulation results of the aerial combat maneuver strategy using the RS-SA-DDPG-1
algorithm against the uniform linear motion maneuver strategy.

Electronics 2020, 9, 1121 21 of 24

From the above two simulation results, it can be concluded that the aerial combat maneuver
strategy using the RS-SA-DDPG-1 algorithm is effective. Besides, 1000 times Monte-Carlo simulations
with the randomly initial situations were performed to ensure the universal validity of the performance
in air combats between the strategies of the RS-SA-DDPG-1 algorithm and the four look-ahead MST
method. The results are presented in Figure 12. As can be seen from Figure 12, regardless of the initial
aerial combat situations, RS-SA-DDPG-1 strategy wins the air combats with a high probability, and the
total probability of winning reaches 63.01%, and the average intercept time is 60.09 s.

Defensive Neutral Opposite Offensives
0

50

100

150

200

250

300

T
he

 n
um

be
r

of
 c

as
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Win
Draw
Lose
Win prob.
Draw prob.
Lose prob.

(a) Winning probability of the aerial combat
simulations

Defensive Neutral Opposite Offensives
0

20

40

60

80

100

120

140

160

180

Intercept time
Defensive time
Offensive time

(b) Intercept time, defensive time, and
offensive time of the aerial combat
simulations

Figure 12. The results of the 1000 times aerial combat simulations.

5.5. Robustness Evaluation of the Aerial Combat Maneuver Strategy

5.5.1. Experiment Settings

In this section, in order to test the robustness of the aerial combat strategy, two experiments are
designed. First, we modified the perturbation range ε to evaluate the impact on the effectiveness of
aerial combat strategies obtained by RS-SA-DDPG-1 and RS-DDPG algorithms. The perturbation
range ε is set to {0, 0.1, 0.2, 0.3, 0.4}. For each perturbation range, we will conduct 1000 aerial combat
simulations, and the initial aerial combat states are randomly generated to record the result of each
aerial combat. Then, we modified the look ahead level of the aerial combat strategy of the target using
the MST method to evaluate the impact on the effectiveness of aerial combat strategies obtained by
RS-SA-DDPG-1 and RS-DDPG algorithms. The look-ahead level is set from 1 to 6. For each look ahead
level, we will conduct 1000 aerial combat simulations, and the initial aerial combat states are randomly
generated to record the result of each aerial combat.

5.5.2. Experiment Result and Analysis

The result of the experiment is shown in Figure 13. Firstly, the robustness of the airial combat
strategy on the perturbation range of observation error is analyzed. In Figure 13a, when the
perturbation range ε is 0, the winning rate of aerial combat strategies obtained by RS-SA-DDPG-1
and RS-DDPG algorithms are relatively high, about 0.8. This shows that the introduction of the
regularization of robustness will not affect the performance of the airial combat strategy network.
With the increase of the perturbation range ε, the winning rate of aerial combat strategies obtained by
RS-SA-DDPG-1 algorithm remained relatively stable, and the winning rate of aerial combat strategies
obtained by RS-DDPG algorithm gradually declined to about 40%. This shows that the robustness of
the policy network with regularization is better than that without regularization. Then, the robustness
of the airial combat strategy on the target intelligence level is analyzed. In Figure 13b, with the

Electronics 2020, 9, 1121 22 of 24

increase of the look ahead level of target, the winning rate of aerial combat strategies obtained by
RS-SA-DDPG-1 and RS-DDPG algorithm gradually decrease simultaneously, but the rate of decline of
RS-SA-DDPG-1 is less than the rate of decline of RS-DDPG. Through these two experiments, it can be
found that the robustness of the aerial combat strategies obtained by the RS-SA-DDPG-1 algorithm is
better than that of the aerial combat strategies obtained by the RS-DDPG algorithm no matter changing
the perturbation range ε or the intelligence degree of the target.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Win prob. of SA-DDPG
Draw prob. of SA-DDPG
Loss prob. of SA-DDPG
Win prob. of DDPG
Draw prob. of DDPG
Loss prob. of DDPG

(a) Winning probability of the aerial combat
simulations

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Win prob. of SA-DDPG
Draw prob. of SA-DDPG
Loss prob. of SA-DDPG
Win prob. of DDPG
Draw prob. of DDPG
Loss prob. of DDPG

(b) Intercept time, defensive time, and
offensive time of the aerial combat simulations

Figure 13. The results for robustness evaluation of the aerial combat maneuver strategy.

6. Conclusions

In order to generate intelligent and robust aerial combat maneuver strategy, an algorithm for
generating the aircraft’s autonomous maneuver strategy based on the SA-DDPG algorithm and inverse
reinforcement learning algorithm is proposed in this paper. In order to model the measurement
errors of the sensors of aircraft in aerial combat, the process of aerial combat is modeled as SA-MDP.
As can be seen from the experimental results above, the shaping reward obtained through the inverse
reinforcement learning algorithm can effectively improve the speed of the aerial combat strategy
learning. Meanwhile, through the comparison of aerial combat simulation results of the aerial combat
strategies obtained by DDPG, SA-DDPG algorithm, it can be found that the aerial combat strategies
obtained by the SA-DDPG algorithm have strong robustness. In this paper, only the decision of aircraft
maneuver is studied, but the control strategy of weapon and sensor is not discussed, which needs
study in the future.

Author Contributions: Conceptualization, W.K.; Methodology, W.K.; Data curation, Z.Y., and Y.Z.; Software,
W.K.; Formal analysis, Z.Y. ; Project administration, D.Z.; Writing—original draft, W.K.; Writing—review and
editing, Y.Z. and K.Z.; Funding acquisition, D.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China under Grant
61603299 and Grant 61612385, and in part by the Fundamental Research Funds for the Central Universities under
Grant 3102019ZX016.

Conflicts of Interest: The authors declare no conflicts of interest.

Electronics 2020, 9, 1121 23 of 24

References

1. Skjervold, E. Autonomous, Cooperative UAV Operations using COTS Consumer Drones and Custom
Ground Control Station. In Proceedings of the MILCOM 2018—2018 IEEE Military Communications
Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 1–6.

2. Gupta, S.G.; Ghonge, D.; Jawandhiya, P.M. Review of unmanned aircraft system (UAS). Int. J. Adv. Res.
Comput. Eng. Technol. (IJARCET) Vol. 2013, 2, 1646–1658.

3. Hebert, A.J. Fighter generations. Air Force Mag. 2008, 91, 1.
4. Ardema, M.; Rajan, N. An approach to three-dimensional aircraft pursuit–evasion. In Pursuit-Evasion

Differential Games; Elsevier: Amsterdam, The Netherlands, 1987; pp. 97–110.
5. Park, H.; Lee, B.Y.; Tahk, M.J.; Yoo, D.W. Differential game based air combat maneuver generation using

scoring function matrix. Int. J. Aeronaut. Space Sci. 2016, 17, 204–213.
6. Jarmark, B.; Hillberg, C. Pursuit-evasion between two realistic aircraft. J. Guid. Control Dyn. 1984, 7, 690–694.
7. Greenwood, N. A differential game in three dimensions: The aerial dogfight scenario. Dyn. Control 1992,

2, 161–200.
8. McGrew, J.S.; How, J.P.; Williams, B.; Roy, N. Air-combat strategy using approximate dynamic programming.

J. Guid. Control Dyn. 2010, 33, 1641–1654.
9. Shin, H.; Lee, J.; Kim, H.; Shim, D.H. An autonomous aerial combat framework for two-on-two engagements

based on basic fighter maneuvers. Aerosp. Sci. Technol. 2018, 72, 305–315.
10. Burgin, G.H.; Owens, A. An Adaptive Maneuvering Logic Computer Program for the Simulation of One-to-One

Air-to-Air Combat. Volume 2: Program Description; Technical Report; NASA: Washington, DC, USA, 1975.
11. Chappell, A.R. Knowledge-based reasoning in the Paladin tactical decision generation system.

In Proceedings of the IEEE/AIAA 11th Digital Avionics Systems Conference, Seattle, WA, USA,
5–8 October 1992; pp. 155–160.

12. Chappell, A.; Mcmanus, J.; Goodrich, K. Trial maneuver generation and selection in the PALADIN tactical
decision generation system. In Proceedings of the Astrodynamics Conference, Hilton Head, SC, USA, 10–12
August 1992; p. 4541.

13. Virtanen, K.; Raivio, T.; Hämäläinen, R.P. An influence diagram approach to one-on-one air combat.
In Proceedings of the 10th International Symposium on Differential Games and Applications, St. Petersburg,
Russia, 8–11 July 2002; Volume 2, pp. 859–864.

14. Virtanen, K.; Karelahti, J.; Raivio, T. Modeling air combat by a moving horizon influence diagram game.
J. Guid. Control Dyn. 2006, 29, 1080–1091.

15. McMahon, D.C. A neural network trained to select aircraft maneuvers during air combat: a comparison of
network and rule based performance. In Proceedings of the 1990 IJCNN International Joint Conference on
Neural Networks, San Diego, CA, USA, 17–21 June 1990; pp. 107–112.

16. Teng, T.H.; Tan, A.H.; Tan, Y.S.; Yeo, A. Self-organizing neural networks for learning air combat maneuvers.
In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia,
10–15 June 2012; pp. 1–8.

17. Bo, L.; Zheng, Q.; Liping, S.; Youbing, G.; Rui, W. Air Combat Decision Making for Coordinated Multiple
Target Attack Using Collective Intelligence. Acta Aeronaut. Astronaut. Sin. 2009, 9, E926.

18. Yang, Z.; Zhou, D.; Piao, H.; Zhang, K.; Kong, W.; Pan, Q. Evasive Maneuver Strategy for UCAV
in Beyond-Visual-Range Air Combat Based on Hierarchical Multi-Objective Evolutionary Algorithm.
IEEE Access 2020, 8, 46605–46623.

19. Yang, Q.; Zhu, Y.; Zhang, J.; Qiao, S.; Liu, J. UAV Air Combat Autonomous Maneuver Decision Based
on DDPG Algorithm. In Proceedings of the 2019 IEEE 15th International Conference on Control and
Automation (ICCA), Edinburgh, UK, 16–19 July 2019; pp. 37–42.

20. Zuo, Y.; Deng, K.; Yang, Y.; Huang, T. Flight Attitude Simulator Control System Design based on Model-free
Reinforcement Learning Method. In Proceedings of the 2019 IEEE 3rd Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 11–13 October
2019; pp. 355–361.

21. Radac, M.B.; Lala, T. Learning Output Reference Model Tracking for Higher-Order Nonlinear Systems with
Unknown Dynamics. Algorithms 2019, 12, 121.

Electronics 2020, 9, 1121 24 of 24

22. Qi, H.; Hu, Z.; Huang, H.; Wen, X.; Lu, Z. Energy Efficient 3-D UAV Control for Persistent Communication
Service and Fairness: A Deep Reinforcement Learning Approach. IEEE Access 2020, 36, 53172–53184.

23. Song, H.; Liu, C.C.; Lawarrée, J.; Dahlgren, R.W. Optimal electricity supply bidding by Markov decision
process. IEEE Trans. Power Syst. 2000, 15, 618–624.

24. Bernstein, D.S.; Givan, R.; Immerman, N.; Zilberstein, S. The complexity of decentralized control of Markov
decision processes. Math. Oper. Res. 2002, 27, 819–840.

25. Bellman, R. A Markovian decision process. J. Math. Mech. 1957, 6, 679–684.
26. Bellman, R. The Theory of Dynamic Programming. Bull. Amer. Math. Soc. 1954, 60, 503–515.
27. Zhang, H.; Chen, H.; Xiao, C.; Li, B.; Boning, D.; Hsieh, C.J. Robust Deep Reinforcement Learning against

Adversarial Perturbations on Observations. arXiv 2020, arXiv:2003.08938.
28. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control

with deep reinforcement learning. arXiv 2015, arXiv:1509.02971.
29. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari

with deep reinforcement learning. arXiv 2013, arXiv:1312.5602.
30. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
31. Gowal, S.; Dvijotham, K.; Stanforth, R.; Bunel, R.; Qin, C.; Uesato, J.; Arandjelovic, R.; Mann, T.; Kohli, P.

On the effectiveness of interval bound propagation for training verifiably robust models. arXiv 2018,
arXiv:1810.12715.

32. Laud, A.D. Theory and Application of Reward Shaping in Reinforcement Learning; Technical Report; 2004.
Available online: https://www.ideals.illinois.edu/handle/2142/10797 (accessed on 8 July 2020).

33. Ng, A.Y.; Russell, S.J. Algorithms for inverse reinforcement learning. In Proceedings of the International
Conference on Machine Learning (ICML), Stanford, CA, USA, 29 June–2 July 2000; Volume 1, p. 2.

34. Ziebart, B.D.; Maas, A.L.; Bagnell, J.A.; Dey, A.K. Maximum entropy inverse reinforcement learning.
In Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI), Chicago, IL, USA,
13–17 July 2008; Volume 8, pp. 1433–1438.

35. Jaynes, E.T. On the rationale of maximum-entropy methods. Proc. IEEE 1982, 70, 939–952.
36. Nichols, R.; Ryan, J.; Mumm, H.; Lonstein, W.; Carter, C.; Hood, J. Africa–World’s First Busiest Drone

Operational Proving Ground. In Unmanned Aircraft Systems in the Cyber Domain; New Prairie Press:
Manhattan, KS, USA, 2019.

37. Ramírez López, N.; Żbikowski, R. Effectiveness of autonomous decision making for unmanned combat
aerial vehicles in dogfight engagements. J. Guid. Control Dyn. 2018, 41, 1021–1024.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.ideals.illinois.edu/handle/2142/10797
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Aerial Combat Modeling
	State-Adversarial Markov Decision Process (SA-MDP)
	System Modeling
	State Transitions
	State Definition
	Action Definition
	Reward Function and Terminal Condition

	Autonomous Aerial Combat Maneuver Strategy Generation of UAV within Visual Range Based on SA-DDPG
	Deep Deterministic Policy Gradient (DDPG)
	State-Adversarial Deep Deterministic Policy Gradient (SA-DDPG)
	Interval Bound Propagation of Neural Network
	Maueuvering Strategy Generation Algorithm OutLine

	Reward Shaping Using Inverse Reinforcement Learning
	Reward Shaping
	Nonparameterized Features of Aerial Combat
	Shaping Reward Modeling Using Maximum Entropy Inverse Reinforcement Learning

	Simulation and Analysis
	Platform Setting
	Aerial Combat Simulation Platform Construction
	Initial Setting for 1-vs-1 WVR Aerial Combat Engagement
	Aircraft Performance Parameters Setting
	Evaluation Metrics of Aerial Combat Strategy
	Opponent Maueuvering Strategy

	Shaping Reward Experiment
	Experiment Settings
	Experiment Result and Analysis

	Performance of Training Process
	Experiment Settings
	Experiment Result and Analysis

	Testing Aerial Combat Maneuver Strategy
	Experiment Settings
	Experiment Result and Analysis

	Robustness Evaluation of the Aerial Combat Maneuver Strategy
	Experiment Settings
	Experiment Result and Analysis

	Conclusions
	References

