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Abstract: We investigate the application of the orthogonality sampling method (OSM) in microwave
imaging for a fast localization of small anomalies from measured scattering parameters. For this
purpose, we design an indicator function of OSM defined on a Lebesgue space to test the orthogonality
relation between the Hankel function and the scattering parameters. This is based on an application
of the Born approximation and the integral equation formula for scattering parameters in the
presence of a small anomaly. We then prove that the indicator function consists of a combination
of an infinite series of Bessel functions of integer order, an antenna configuration, and material
properties. Simulation results with synthetic data are presented to show the feasibility and limitations
of designed OSM.

Keywords: microwave imaging; orthogonality relation; orthogonality sampling method; scattering
parameter; simulation results

1. Introduction

Localization or imaging of unknown targets from measured scattered fields or scattering
parameter data is an old but interesting inverse scattering problem. This problem has a wide range of
applications, for example, breast-cancer detection in biomedical imaging [1–3], anti-personnel mine
detection, synthetic aperture radar (SAR), ground penetrating radar (GPR) in geoscience and remote
sensing [4–6], and damage detection in civil structures [7–9]. We also refer to [10–12] for various
applications of the inverse scattering problem.

Various techniques for solving this problem have been developed mostly based on iterative
schemes, e.g., the Newton or Gauss-Newton, Levenberg-Marquadt, level-set, and optimal control
approaches ([13], Table II). It is well known that the successful performance of an iteration-based
scheme depends strongly on starting the iteration procedure with a good initial guess [14,15]. Therefore,
generating a good initial guess close to the unknown target must be considered before the beginning
of the iteration process. Various non-iterative algorithms have been investigated for this purpose and
successfully applied to various inverse scattering problems.

The orthogonality sampling method (OSM) has been investigated recently in connection with
the problem of localizing small targets and imaging the geometric features of arbitrarily shaped
ones (compared to the operating wavelength) from measured scattered fields or far-field data.
Pioneering research [16] has confirmed that OSM is a simple and stable technique, capable of
perceiving an outline shape of small targets within a single incident field. In addition, OSM has
been applied and extended to various inverse scattering problems, for example, multi-frequency
imaging [17], the near-field orthogonality sampling method (NOSM) [18] and its improvement [19],
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three-dimensional problems modeled by Maxwell’s equations [20], and identification of sound-soft
arcs in limited-aperture inverse acoustic problems [21]. Moreover, new imaging capability of OSM has
been investigated in [22], and NOSM was successfully applied to cross-borehole ground penetrating
radar (GPR) imaging [23].

Various non-iterative techniques were also applied recently to microwave imaging when
the measurement data are scattering parameters (S-parameters). Examples include the MUltiple
SIgnal Classification (MUSIC) algorithm [24], subspace migration [25], Kirchhoff migration [26],
and direct sampling method [27]. Among them, subspace migration [28], direct sampling method [29],
and factorization method [30] were applied to real-world microwave imaging. However, little research
was conducted regarding the application of OSM to microwave imaging when the measurement data
are S-parameters. This provides motivation for research on the application of OSM in microwave
imaging and analysis of the indicator function for determining its feasibility and limitations.

The purpose of this paper is to design an indicator function of OSM for localizing small anomalies
from measured S-parameters with a single transmitter and explore the mathematical structure of
that indicator function by constructing a relationship with an infinite series of Bessel functions of
integer order of the first kind, an antenna configuration, and material properties of the anomalies.
This is based on the analytical expression of the integral representation formula for the scattered
field S-parameters in the presence of anomalies [31] and application of the Born approximation [32].
From the explored structure of the indicator function, we can investigate whether the imaging
performance of designed indicator function is significantly influenced by the antenna configuration
(total number and array), material properties of anomalies (size, permittivity, and conductivity),
and the location of the transmitter.

The remainder of this paper is organized as follows. Section 2 introduces the basic concept and
integral equation formula for the scattered field S-parameters and describes the design of the indicator
function of OSM. Section 3 presents a mathematical analysis of the structure of the designed indicator
function and examines the feasibility and limitations of OSM in microwave imaging. Section 4 exhibits
several simulation results with synthetic data that support the theoretical results. Section 5 contains a
short conclusion and draws a future work.

Let us underline that some non-iterative algorithms such as MUSIC and subspace migration are
also based on orthogonality relations between measurement data and an appropriate test function.
However, the biggest difference from OSM is that a large number of incident fields with various
directions are needed to apply, refer to [33–37]. Since OSM requires either one or a small number of
fields with incident directions, obtained results via OSM will be poorer than MUSIC and subspace
migration. Investigation of a detailed relationship between OSM and existing methods is interesting
and important, but it lies outside the scope of this research.

2. Scattered Field S-Parameters and Indicator Function of Orthogonality Sampling Method

2.1. Maxwell’s Equation and Scattered Field S-Parameters

Let Ω be the region of interest (ROI) and Σ ⊂ Ω a small anomaly enclosed by a simple circular
array consisting of N transmitting (Tx)—receiving (Rx) dipole antennas dn, n = 1, 2, · · ·, N. Throughout
this paper, we assume that Σ can be represented as

Σ = r? + ρB,

where r? and ρ characterize the location and the size, respectively, and B denotes a simply connected
domain that describes the shape of Σ.

Throughout this paper, we assume that the background medium and anomaly are non-magnetic.
This implies that the value of the magnetic permeability is constant µ(r) = µb ≡ 1.256× 10−6 H/m
and, correspondingly, that they are characterized by the values of their dielectric permittivity and
electrical conductivity at a given angular frequency ω = 2π f . We designate ε? = εr? · ε0 and
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εb = εrb · ε0 as the permittivity of Σ and the background, respectively. Here, ε0 = 8.854× 10−12 F/m
is the vacuum permittivity. Conductivities σ? and σb can be defined analogously. Given these facts,
we introduce the piecewise constant permittivity ε(r) and conductivity σ(r) as follows:

ε(r) =

{
ε? if r ∈ Σ,
εb if r ∈ Ω\Σ,

and σ(r) =

{
σ? if r ∈ Σ,
σb if r ∈ Ω\Σ,

respectively. For the sake, we assume that ε? > εb > 0 and σ? > σb > 0. With this, we designate k as
the background wavenumber that satisfies

k2 = ω2µb

(
εb + i

σb
ω

)
.

The measurement data are scattered field S-parameters between a fixed transmitter m and receiver
n, say, {Sscat(n, m) : n = 1, 2, · · ·, N}, where Sscat(n, m) is obtained by subtracting the S-parameters
with and without an anomaly Σ, refer to [24,27–29,31,38]. On the basis of [31], Sscat(n, m) is given by
the following integral equation formula

Sscat(n, m) =
ik2

4ωµb

∫
Ω

χ(r)Einc(dm, r) · Etot(r, dn)dr, (1)

where χ(r) is the objective function

χ(r) =
ε(r)− εb

εb
+ i

σ(r)− σb
ωεb

,

H is the magnetic field, Einc(dm, r) is the incident electric field in a homogeneous medium due to
the point current density at dm

∇× Einc(dm, r) = −iωµbH(dm, r) and ∇×H(dm, r) = (σb + iωεb)Einc(dm, r),

and Etot(r, dn) is the corresponding total field in the presence of Σ measured at the dn

∇× Etot(r, dn) = −iωµbH(r, dn) and ∇×H(r, dn) = (σ(r) + iωε(r))Etot(r, dn),

with transmission conditions on the boundary of Σ. Throughout this paper, time dependence e−iωt is
assumed. This representation plays a key role in the design of the indicator function of OSM.

2.2. Design of the Indicator Function of OSM

OSM is based on the orthogonality relation between the measurement data and the test function.
Thus, defining an indicator function of OSM requires choosing an appropriate test function. For this
purpose, we explore carefully the structure of Sscat(n, m) to assist us in selecting an appropriate
test function.

Following the simulation configuration in Figure 1, only the z-component of the incident and total
fields can be handled [38]. Thus, based on mathematical treatment of the scattering of time-harmonic
electromagnetic waves from thin infinitely long cylindrical obstacles [39], this problem can be reduced
to a two-dimensional one. Denoting the z-component of the incident field Einc as E(z)

inc yields Sscat(n, m)

of Equation (1)

Sscat(n, m) =
ik2

4ωµb

∫
Ω

χ(r)E(z)
inc(dm, r)E(z)

tot (r, dn)dr. (2)
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Previously, we assumed that Σ is a small anomaly. In detail, assume that ρ, ε?, and εb satisfy

refractive index× diameter of Σ =

√
ε?
εb
× ρ < λ = wavelength.

Then, following [32], we can apply the Born approximation to Equation (2). Then, applying the
Born approximation and reciprocity property of the incident field, we can approximate Sscat(n, m) as

Sscat(n, m) =
ik2

4ωµb

∫
Σ

χ(r)E(z)
inc(dm, r)E(z)

tot (r, dn)dr

≈ ik2 area(Σ)
4ωµb

χ(r?)E
(z)
inc(dm, r?)E

(z)
inc(r?, dn)

=
ik2 area(Σ)

4ωµb
χ(r?)E

(z)
inc(dm, r?)E

(z)
inc(dn, r?).

(3)

Based on the representation formula for Sscat(n, m) of Equation (3), it is natural to test the
orthogonality relation between the scattered S−parameter Sscat(n, m) and the z-component of the
incident field E(z)

inc(dn, r) when m is fixed. Since the total number of dipole antennas N is not sufficiently
large, the indicator function of OSM should be designed on the Lebesgue space `2 as follows: for fixed
m, letR be the set of antennas dn for receiving signals. Then,

fOSM(r, m) =
∣∣∣〈Sscat(n, m), E(z)

inc(dn, r)
〉
`2(R)

∣∣∣ = ∣∣∣∣∣ N

∑
n=1

Sscat(n, m)E(z)
inc(dn, r)

∣∣∣∣∣ , r ∈ Ω. (4)

The map of fOSM(r) will contain a peak of large magnitude at r = r? ∈ Σ thereby enabling
identification of the location of r? ∈ Σ.

3. Feasibility and Limitation of the Orthogonality Sampling Method

In this section, we investigate the theoretical reasons for the feasibility of the designed indicator
function fOSM(r, m) and some of its properties and limitations.

Theorem 1 (Structure of the indicator function: single anomaly). Let r− r? = |r− r?|[cos φ?, sin φ?]T ,
θn = dn/|dn| = [cos θn, sin θn]T , and |dn| = R for all n. If dn satisfies |dn − r| � 1/4|k| for n =

1, 2, · · · , N and k = k1 + ik2, k1, k2 > 0, then the following relation holds uniformly:

fOSM(r, m) ≈
∣∣∣∣
√

k(1 + i) area(Σ)

128Rωµb
√

π3

e−ik|r?−rm |√
|r? − rm|

(
ε? − εb

εb
+ i

σ? − σb
ωεb

)

× N
(

J0(k|r− r?|) +
1
N

N

∑
n=1

∑
s∈Z

is Js(k|r− r?|)eis(φ?−θn)

)∣∣∣∣, r ∈ Ω, (5)

where Js denotes the Bessel function of integer order s of the first kind and Z = Z∪ {−∞, ∞} \ {0}. Here, Z is
the set of integer number.

Proof. Based on several studies [24,28,29], the incident field E(z)
inc(r, r′) can be written as

E(z)
inc(r, r′) =

i
4

H(2)
0 (k|r− r′|), r 6= r′.
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Here, H(2)
0 is the Hankel function of order 0 of the second kind. Then,

N

∑
n=1

Sscat(n, m)E(z)
inc(dn, r) ≈ ik2 area(Σ)

4ωµb
χ(r?)E

(z)
inc(r?, dm)

N

∑
n=1

E(z)
inc(dn, r?)E

(z)
inc(dn, r)

=
k2 area(Σ)

256ωµb
χ(r?)H(2)

0 (k|r? − dm|)
N

∑
n=1

H(2)
0 (k|dn − r?|)H(2)

0 (k|dn − r|). (6)

Since ε? > εb, σ? > σb, and |dn − r| � 1/4|k| for n = 1, 2, · · ·, N, we can see that −2π <

arg(k|dn − r|) < π for all r ∈ Ω with the result that the following asymptotic forms hold:

H(2)
0 (k|r? − rm|) ≈

1 + i√
kπ|r? − rm|

e−ik|r?−rm | and H(2)
0 (k|dn − r|) ≈ 1 + i√

kπ|dn − r|
e−ik|dn−r|.

Since ([12] Theorem 2.5, for instance)

|dn − r| =
√
|dn|2 − 2dn · r + |r|2 = |dn| −

dn

|dn|
· r + O

(
1
|dn|

)
= |dn| − θn · r + O

(
1
R

)
,

we can see that

H(2)
0 (k|dn − r|) ≈ (1 + i)e−ik|dn |√

kπ|dn|
eikθn ·r

and correspondingly,

H(2)
0 (k|dn − r?|)H(2)

0 (k|dn − r|) ≈ 2
kπR

eikθn ·(r−r?).

Hence, the following term from Equation (6) becomes

N

∑
n=1

Sscat(n, m)E(z)
inc(dn, r) ≈

√
k(1 + i) area(Σ)

128Rωµb
√

π3

e−ik|r?−rm |√
|r? − rm|

χ(r?)
N

∑
n=1

eikθn ·(r−r?). (7)

Since the following Jacobi-Anger expansion holds uniformly,

eix cos θ =
∞

∑
s=−∞

is Js(x)eisθ = J0(x) + ∑
s∈Z

is Js(x)eisθ ,

we immediately obtain

N

∑
n=1

eikθn ·(r−r?) =
N

∑
n=1

eik|r−r? | cos(φ?−θn) = N

(
J0(k|r− r?|) +

1
N

N

∑
n=1

∑
s∈Z

is Js(k|r− r?|)eis(φ?−θn)

)
. (8)

By combining Equations (7) and (8), we can derive Equation (5). This completes the proof.

As with the proof of Theorem 1, we can derive the following result, which implies that OSM can
be applied to the identification of multiple anomalies.

Corollary 1 (Structure of the indicator function: multiple anomalies case). Assume that there exist
multiple anomalies Σl = rl + ρlBl with permittivity ε l(>εb) and conductivity σl(>σb), l = 1, 2, · · ·, L.
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Let rl − r = |rl − r|[cos φl , sin φl ]
T , θn = dn/|dn| = [cos θn, sin θn]T , and |dn| = R, for all n. Then,

the following relation holds uniformly:

fOSM(r, m) ≈
∣∣∣∣ L

∑
l=1

√
k(1 + i) area(Σl)

128Rωµb
√

π3

e−ik|rl−rm |√
|rl − rm|

(
ε l − εb

εb
+ i

σl − σb
ωεb

)

× N
(

J0(k|r− rl |) +
1
N

N

∑
n=1

∑
s∈Z

is Js(k|r− rl |)eis(φl−θn)

)∣∣∣∣, r ∈ Ω. (9)

Based on the identified structures (5) and (9), we can examine some properties of the indicator
function fOSM(r, m).

Property 1 (Availability of localization). Since

lim
r→rl

J0(k|r− rl |) = 1 and lim
r→rl

Js(k|r− rl |) = 0 for s ∈ Z,

the local maxima of the fOSM(r, m) will indicate the location of the anomalies Σl for all k. Moreover, based on
the oscillating property of Bessel functions, several artifacts also appear in the map of fOSM(r, m).

Property 2 (Total number of antennas). Since

fOSM(r, m) ∝

∣∣∣∣∣J0(k|r− rl |) +
1
N

N

∑
n=1

∑
s∈Z

is Js(k|r− rl |)eis(φl−θn)

∣∣∣∣∣ :=
∣∣∣∣J0(k|r− rl |) +

1
N

Ψ(r, rl , k)
∣∣∣∣ ,

the value of fOSM(r, m) depends strongly on the total number of dipole antennas N. Notice that since the
term Ψ(r, rl , k) disturbs the localizing of Σl , the local maxima of the fOSM(r, m) cannot be used to localize Σl ,
owing to the appearance of artifacts with large magnitudes if N is small. On the contrary, if N is sufficiently
large, the indicator function of Equation (9) can be written as

fOSM(r, m) ≈
∣∣∣∣∣ L

∑
l=1

N
√

k(1 + i) area(Σl)

128Rωµb
√

π3

e−ik|rl−rm |√
|rl − rm|

(
ε l − εb

εb
+ i

σl − σb
ωεb

)
J0(k|r− rl |)

∣∣∣∣∣ .

Thus, it will be possible to obtain a good result because the disturbing term Ψ(r, rl , k) was eliminated.
Notice that this is almost the same result previously identified in previous studies [16,22].

Property 3 (Material properties). Since

fOSM(r, m) ∝

∣∣∣∣∣ L

∑
l=1

area(Σl)

(
ε l − εb

εb
+ i

σl − σb
ωεb

)∣∣∣∣∣ ,

the value of fOSM(r, m) depends also on the size, permittivity, and conductivity (i.e., material properties)
of anomalies. For example, if the sizes and conductivities of anomalies are the same and ε l � ε l′ ,
then fOSM(rl , m)� fOSM(rl′ , m). In such a case, the location of Σl can be identified via the map of fOSM(r, m),
while Σl′ cannot.

Property 4 (Location of the transmitter). Since

fOSM(r, m) ∝
L

∑
l=1

1√
|rl − rm|

,
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the identification depends significantly on the distance between the location of the transmitter dm and the
anomalies rl . For example, if two anomalies Σl and Σl′ have same material properties but Σl is close to dm and
Σl′ is far from dm, then only Σl will be identified through the map of fOSM(r, m).

4. Simulation Results

We now exhibit simulation results to support the theoretical result and show the feasibility and
limitations of OSM. For this, we set N = 16 dipole antennas dn, n = 1, 2, · · ·, N such that

dn = 0.09 m
[

cos
(

3π

2
− 2π(n− 1)

N

)
, sin

(
3π

2
− 2π(n− 1)

N

)]T
.

We refer to Figure 1a for illustration. For the background permittivity and conductivity values,
the parameters are set to εrb = 20 and σb = 0.2 S/m, respectively, at f = 1.2 GHz, and Ω was selected
as a ball of radius 0.08 m centered at the origin with a step size r for evaluating fOSM(r, m) set to
0.001 m. The measurement data Sscat(n, m) of Equation (2) were generated using CST STUDIO SUITE.
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Figure 1. Illustration of simulation configuration.

Example 1 (General result: localization of a single anomaly). First, let us consider the simulation results for
a single anomaly whose radius, location, permittivity, and conductivity are ρ = 0.01 m, r? = [0.01 m, 0.03 m]T ,
εr? = 55, and σ? = 1.2 S/m, respectively at f = 1.2 GHz; see Figure 1b. Figure 2 shows the maps of
fOSM(r, m) with various selections of values of m. Throughout the results, we can observe that the imaging
performance depends strongly on the location of the transmission antenna dm, because the location r? was
retrieved when m = 1, 5, 9 but not when m = 13. Furthermore, the pattern of the unexpected artifacts is
quietly different from the traditional results [16,17], because the total number of measurement data is not
sufficiently large.

Example 2 (Effects of the transmitter location). Now we examine the effects of the transmitter location. Based
on the mathematical structure (5) and discussion in Property 4, the imaging performance must be influenced
significantly by the location of the transmitter. To examine this, consider the imaging results of fOSM(r, m) for
m = 8 or m = 10 in Figure 3. In contrast with the results in Example 1, the location of r? was clearly retrieved.
The locations of d8 and d10 are close to the anomaly location r?, and it is known from the experimental results
that a good result can be obtained if the location of the transmitter is close to the anomaly. On the other hand,
it is very difficult to identify the location of r? if the location of transmitter is far from the location r?; see the
maps of fOSM(r, m) for m = 4 or m = 16.
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Example 3 (Localization of multiple anomalies with the same material properties). Based on previous
studies and Corollary 1, OSM can be applied directly to multiple anomalies. Now, we apply OSM to the
localization of multiple small anomalies Σl , l = 1, 2, with the same radii ρl = 0.01 m, permittivity εr1 =

εr2 = 55, and conductivity σl = 1.2 S/m at f = 1.2 GHz, but different locations r1 = [0.01 m, 0.03 m]T

and r2 = [−0.04 m,−0.02 m]T ; see Figure 4a. Figure 5 shows maps of fOSM(r, m) with various values of m.
As with the localization of single anomaly, an anomaly whose location is sufficiently close to the transmitter
dm can be recognized even while another anomaly cannot be identified using the map of fOSM(r, m). Moreover,
owing to the appearance of several artifacts, identifying all anomalies is very difficult. Following [16], the possible
method to overcome this difficulty would be application of multiple incident fields or frequencies.
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Figure 2. (Example 1) Maps of fOSM(r, m). The black-colored dashed circle describes the anomaly boundary.

Example 4 (Localization of multiple anomalies with different material properties). For the final result,
consider the application of OSM to the localization of multiple anomalies Σl , l = 1, 2, with the same radii
ρl = 0.01 m. The material properties of Σ1 are the same as those in Example 3, and the location of Σ2 is the
same as that in Example 3, while the permittivity and conductivity are set to εr2 = 45 and σ2 = 1.0 S/m,
respectively (see Figure 4b). Figure 6 shows maps of fOSM(r, m) with various values of m. As with the results in
Example 3, it is difficult to identify all of the anomalies using the map of fOSM(r, m). It is interesting to observe
that in contrast to the results in Example 3, the locations of two anomalies are identified well through the map of
fOSM(r, 5) and the location of Σ1 was clearly identified using the map of fOSM(r, 1). These results reveal that
imaging performance depends on the material properties (such as permittivity and conductivity) and supports
the accuracy of the identified structure (9).
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Figure 3. (Example 2) Maps of fOSM(r, m). The black-colored dashed circle describes the
anomaly boundary.
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Figure 5. (Example 3) Maps of fOSM(r, m). Black-colored dashed circles describe the boundary
of anomalies.
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Figure 6. (Example 4) Maps of fOSM(r, m). Black-colored dashed circles describe the boundary
of anomalies.

5. Conclusions

In this paper, we designed and applied OSM to identify the locations of small anomalies from
measured scattered field S-parameters. Based on the established structure of the indicator function,
we verified that the identification performance of the indicator function of OSM depends strongly
on the applied frequency, total number of measurement data, location of the transmitting antenna,
and material properties of each anomaly. Simulation results with synthetic data demonstrated the
feasibility and limitations of OSM in microwave imaging. Application of OSM to real-world microwave
imaging, improvement of the imaging/detecting performance, and development of the corresponding
mathematical theory are left to future work. Finally, we considered the application of OSM in the
two-dimensional problem. Extension to the three-dimensional problem will be also an interesting
research topic; refer to [40–44] for related work.
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