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Abstract: Malicious codes, such as advanced persistent threat (APT) attacks, do not operate 
immediately after infecting the system, but after receiving commands from the attacker’s command 
and control (C&C) server. The system infected by the malicious code tries to communicate with the 
C&C server through the IP address or domain address of the C&C server. If the IP address or 
domain address is hard-coded inside the malicious code, it can analyze the malicious code to obtain 
the address and block access to the C&C server through security policy. In order to circumvent this 
address blocking technique, domain generation algorithms are included in the malware to 
dynamically generate domain addresses. The domain generation algorithm (DGA) generates 
domains randomly, so it is very difficult to identify and block malicious domains. Therefore, this 
paper effectively detects and classifies unknown DGA domains. We extract features that are 
effective for TextCNN-based label prediction, and add additional domain knowledge-based 
features to improve our model for detecting and classifying DGA-generated malicious domains. 
The proposed model achieved 99.19% accuracy for DGA classification and 88.77% accuracy for DGA 
class classification. We expect that the proposed model can be applied to effectively detect and block 
DGA-generated domains. 

Keywords: security; domain generation algorithm; TextCNN; domain features; classification 
 

1. Introduction 

1.1. Background 

Most cyberattacks use malicious codes, and according to AV-TEST, more than 1 billion malicious 
codes are expected to emerge in 2020 [1]. Unlike the recent distribution of malicious codes to a large 
number of unspecified people, advanced persistent threat (APT) attacks are attempted after targeting 
one target. The APT attacks are characterized by the fact that they do not stop the attack by producing 
dense and systematic security threats based on various IT technologies and attack methods until the 
successful intrusion inside. In addition, APT attacks are mainly targeted at government agencies or 
corporations, and they are difficult to detect because they are infiltrated into the system and 
continuously attacked. Figure 1 shows the APT attack cycle. 
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Figure 1. Advanced persistent threat (APT) attack cycle. 

In the first step, the APT attacker infects the malicious code through a website or email visited 
by an internal user to create an internally infected PC. Step 2 collects infrastructure information, such 
as the organization’s internal network. Step 3 invades vulnerable systems and servers through 
account information theft and malware infections. The fourth stage consists of steps such as internal 
information leakage and system destruction under the command of the attacker. Some malicious 
codes, such as APT attacks, operate after receiving commands from a remote command and control 
(C&C) server after being installed on the device. Botnet is a collection of malware-infected machines 
or bots. It has become the main means for cyber-criminals to send spam mails, steal personal data, 
and launch distributed denial of service attacks [2]. Most bots today rely on a domain generation 
algorithm (DGA) to generate a list of candidate domain names in the attempt to connect with the so-
called C&C server. 

According to Nominum’s domain name system (DNS) security trend analysis report [3], more 
than 90% of attacks by malicious codes are using a domain name system (DNS). A DNS-generated 
DNS is especially used to infect/update new hosts and communicate with C&C servers. To perform 
the desired action by the attacker, the C&C server is used to communicate in real time with the 
malicious code. In order for the malicious code to receive commands from the C&C server, it must 
first connect to the server. For communication on the internet, the client PC needs to know the IP 
address of the server in order for the client to access the server. Since accessed in this way, the 
malicious code must have the IP address or domain address of the C&C server inside. If the malicious 
code hides the IP address or domain address of the C&C server by hard coding, security equipment 
or law enforcement agencies can block the IP address or the domain address to prevent the malware-
infected device from accessing the C&C server. However, malware creators use DGA to circumvent 
these access blocking techniques. 

Attackers use DGA for the purpose of hiding C&C servers. DGA is supposed to randomly 
generate numerous domain addresses every day. Since DGA is able to predict the domain address 
generated on a specific date, an attacker operating a C&C server must register one of the domain 
addresses that can be generated on a specific date through appropriate registration procedures in 
advance. This is called IP/DNS fast flux. This way, an attacker can change the mapping of DNS to IP 
every 10 s. However, as many studies related to fast flux detection have been conducted, access 
control policies, such as blacklist management for anomaly DNS, can be established [4,5]. As a result, 
attackers have developed DGA and changed DNS mapping with C&C servers in short time intervals, 
neutralizing the existing blacklist policy and making C&C server blocking very difficult until recently. 

1.2. Domain Generation Algorithm 

DGA generates a random string by inputting a predetermined seed value and combines second-
level domain (SLD) and top-level domain (TLD) to generate a domain address. The DGA generates 
millions of domains, but the attacker can predict which domain the DGA will create because it uses 
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time series data, such as time or exchange rates, that the attacker can know at the same time as a seed 
value. The attacker calculates the domain address to be generated by the DGA in advance and 
registers and uses the domain address of the C&C server through legitimate procedures. Figure 2 
shows the process of malicious code connecting to the C&C server through DGA. Table 1 shows 
examples of known DGA types, DGA technologies, and DGA-generated domain names. DGA 
technology represents the SEED used by DGA. 

 
Figure 2. Overall domain generation algorithm (DGA) operation process. 

Table 1. Summary of Existing DGA Techniques and Examples. 

DGA. DGA techniques Example Domain Names 

Zeus 
MD5 of the year, month, day, and a sequence 

number between 0 and 999 

krhafeobleyhiy-
trwuduzlbucutwt, 
vsmfabubenvib-
wolvgilhirvmz 

Conficker 
GMT data as the seed of the random number 

generator 
fabdpdri, sfqzqigzs, 

whakxpvb 

Kraken a random string of 6 to 11 characters 
rhxqccwdhwg, 

huwoyvagozu, gmkxtm 

Srizbi data transformation using XOR operations 
wqpyygsq, tqdaourf, 

aqforugp 

Torpig 
current date and number 8 as the seed of the 

random number generator 

16ah4a9ax0apra, 
12ah4a6abx5apra, 
3ah0a16ax0apra 

Kwyjibo Markov process on English syllables 
overloadable, refillingman, 

multible 

The SEED value for Zeus’s domain generation works using the MD5 hash of the year, month, 
day, and a sequence number between 0 and 999. The right-most 5 bit of the generated MD5 hash are 
added to the hexadecimal value of the letter ‘a.’ Then, it converts the numbers to alphabetical 
characters. All generated alphabetical characters are concatenated to form a domain name. The Srizbi 
botnet has infected around 450,000 computers to send spam [6]. It performs exclusive or (XOR) 
operations using specific days, months, and years, and divides, changes, and concatenates. As a result, 
four domain names are generated daily for one year. Torpig stole about 500,000 online bank accounts, 
as well as financial information, such as credit cards. Similarly, this algorithm generates a domain 
name every day using the current date. Kwyjibo creates a dictionary of random words that are short 
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and easy to pronounce [7]. Moreover, it uses a hyphenation algorithm to separate dictionary words 
into 2–4 syllables [8]. 

As such, there are various DGAs, and there are various technologies for generating domains. 
Existing domains or IP blocking methods are limited because verifying whether the DGA generated 
millions of domain addresses is malicious or not is very expensive. Therefore, in this paper, we 
propose a technique to detect malicious domains generated by DGA and classify DGA groups using 
AI-based TextCNN and additional features that can be automatically determined. Our proposed 
model can efficiently detect malicious domain addresses among numerous domain addresses. We 
expect to be able to effectively neutralize malicious codes using C&C servers by using the detected 
domain address in the blocking policy. 

1.3. Contribution 

1.3.1. Binary and Multi-class Classification are Possible with One Model 

Tran et al. [9] detected a malicious domain with the DGA binary classification model, and 
created a new multi-class classification model with the detected malicious domain. This study 
proposed an LSTM multi-input (LSTM.MI) model that combines two models used for binary 
classification and multi-class classification. However, the technique proposed in this paper is capable 
of binary classification and multi-class classification in one model. When creating a multi-class 
classification model, normal domains are also learned at the same time. For example, we train by 
specifying the normal domain as class 0. If the multi-class classification model predicts zero, it points 
to the normal domain. Therefore, we propose an approach that allows binary classification and multi-
class classification in one model. 

1.3.2. Feature Refining Technology that Reflects Features Well According to Purpose 

The feature’s dimension reduction technology can help to prevent overfitting or improve the 
performance of the model [10]. Liou et al. [11] used Autoencoder for a word-to-word similarity 
analysis. This reduced the entropy through training and created a vector that can accommodate the 
meaning of words. Conversely, in this paper, the dimension was reduced by using the feature 
refining technology to suit the purpose. There are two main ways to refine features. First, it is a feature 
refinement technology that does not use labels. Typical methods are feature extraction using a 
principal component analysis (PCA) and autoencoder. In the case of the autoencoder, it is a feature 
refinement technology that is not suitable for binary classification or multi-class classification because 
the input layer and output layer are trained with the same value to extract features [12]. Second, it is 
a feature refinement technology using labels. It usually uses a hidden layer in neural networks, such 
as the artificial neural network (ANN). This extracts the node value by setting the number of features 
to be extracted as the number of nodes into one hidden layer. The difference is learning by specifying 
the label to be classified on the output layer. This is a feature refinement technique effective for binary 
classification or multi-class classification. Figure 3 shows the results of classifying the DGA class after 
refining features using a TextCNN and autoencoder in the same environment as the proposed model. 
This proves that TextCNN is more effective for classification than an autoencoder. 
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Figure 3. Comparison of TextCNN and autoencoder classification results. 

2. Related Work 

2.1. Similarity Comparison Technique for DGA Classification 

It is important to know the DGA in the security community. However, there are limitations to 
the method of detecting bots and blocking traffic based on existing blacklists. Donghyeon et al. [13] 
detected an APT attack by analyzing the similarity between DGA and DNS using an n-gram. The n-
gram extracts the characteristics of text expressed in natural language by the size of n so that it can 
be treated as a simple list of symbols. Figure 4 shows an n-gram example when n is 5. 

 
Figure 4. Example of n-gram creation (n = 5). 

The APT attack was detected by comparing the similarities of DNS generated by DGA using the 
whitelist existing in DNS. In addition, when n was 4 through verification, the model performance 
was the best, and there was the disadvantage that it was necessary to reflect an appropriate threshold. 
Therefore, machine learning techniques that generate and predict learning models using domain data 
generated by DGA are being studied [14–17]. 

2.2. Clustering Technique for DGA Classification 

Chin et al. [18] classified DGA by first using the machine learning classification algorithm J48 
and, secondly, through clustering-based DNS and similarity comparison. The machine learning 
framework applies DNS blacklist policies and detects DGA through 32 feature extractions, 
classifications, and clustering. Six of the 32 features are linguistic features, and the other 27 are 
features extracted from the DNS payload. Table 2 shows the six features for DGA classification. 
Figure 5 shows the DGA classification and clustering model. 
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Table 2. Examples of features used for DGA classification. 

Features Description 
Length It is simply the length of a domain name. 

Meaningful Word 
Ratio Measures the proportion of meaningful words in a domain name. 

Pronounceability Score Selects the substring length n (2 or 3) and counts the number of 
occurrences in the n-gram frequency text. 

Percentage of 
Numerical Characters Measures the percentage of numbers in a string. 

Percentage of the 
Length of LMS 

Measures the length of the longest meaningful string in the domain 
name. 

Levenshtein Edit 
Distance 

Measures the minimum number of single character edits between 
domains. 

 
Figure 5. Model of DGA classification and clustering. 

This compares DNS similarities based on density-based spatial clustering of applications with 
noise (DBSCAN) using domains classified with the J48 algorithm. In order to reduce false positives 
about the primary results, a secondary classification was conducted through clustering. The first 
classification using the J48 algorithm achieved 95.14%, and the second classification using DBSCAN 
clustering achieved 92.02%. 

2.3. Deep Learning Technique for DGA Classification 

DGA generates a single string: the domain. Since DGA’s operation process creates domains 
using changing time series data as SEED, there are studies that have applied recursive neural network 
(RNN) and long short-term memory (LSTM) [19] as suitable for sequential input data learning, such 
as time series data. Woodbridge et al. [20] proposes a DGA classifier that leverages the LSTM network 
for a real-time prediction of DGAs without the need for contextual information or manually created 
features. LSTM is a special kind of deep RNN, which is a neural network designed to better remember 
and learn, even if the distance between the sequential input data is long. Mainly, it has been applied 
to various applications, such as language modeling, speech recognition, and DGA botnet detection. 
As a result, a 90% detection rate has been achieved. However, Tran et al. [9] stated that although 
LSTM is effective, it is naturally sensitive to multi-class imbalance problems. Therefore, they 
proposed a new LSTM.MI algorithm for DGA botnet detection. The basic idea was to rely on both 
binary and multi-class classification models, where LSTM was adapted to include cost items into its 
backpropagation learning mechanism. In other words, LSTM.MI performed multi-class classification 
only when the binary classification result was malicious. They demonstrated that LSTM.MI provided 
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an improvement of at least 7% in terms of macro-averaging recall and precision as compared to the 
original LSTM and other state-of-the-art cost-sensitive methods. It was also able to preserve the high 
accuracy on binary classification (0.9849 F1-score), while helping to recognize five additional bot 
families. Figure 6 shows the DGA classification model utilizing the LSTM mentioned above. 

The domain name generated by DGA is not fixed, and the proposed deep learning models 
require a fixed length as input. Qiao et al. [21] set a fixed length using statistics on the length of the 
DGA domain name. Figure 7 shows the statistical distribution over the length of the domain name. 

Most of the domain lengths were concentrated at intervals of 10 to 20, and padding was 
performed at a total length of 54 by adding 10 to the maximum length domain. It then used 
Word2Vec’s continuous bag of word (CBOW) model to convert a domain name of 54 in length to 128 
dimensions. As a result, using the LSTM algorithm, the results of 16 multi-class classifications 
achieved 95.14% accuracy. Yu et al. [22] extracted 11 features from the domain and proposed a 
method to detect DGA domain names based on the convolutional neural network (CNN) and LSTM. 
The verification was compared with the machine learning classification algorithms K-nearest 
neighbor (KNN), support vector machine (SVM), random forest (RF), and AdaBoost. Multiple 
character ratio features can be calculated for a given text string: the domain name. Table 3 shows an 
example of creating a function from a domain name. 

 
(a) 

 
(b) 

Figure 6. DGA classification model using long short-term memory (LSTM): (a) LSTM-based DGA 
classifier without contextual information or manually created features; (b) DGA classifier based on 
LSTM.MI algorithm. 

 
Figure 7. DGA domain name length distribution. 
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Table 3. Example of features that can be extracted from the domain format. 

Features Description 

symbol character ratio 
The number of characters that do not exist in the English alphabet 

divided by the string length. 

hex character ratio The number of hexadecimal characters (A–F) divided by the string 
length. 

vowel character ratio The number of vowels divided by the string length. 

TLD hash A hash value is computed for each potential TLD and normalized to 
the range 0 to 1. 

first character digit A flag for whether the first character is or is not a numerical digit. 
Length The length of the string taken as the domain name. 

The experimental results achieved 72.89% accuracy with CNN and 74.05% with LSTM. Another 
study [23] verified little difference between CNN and RNN-based architectures. In the process of 
classifying malicious domains, CNN and LSTM were used to verify a total of five different models. 
A total of five models consisted of two models using CNN, two models using LSTM, and a hybrid 
CNN/LSTM model. The dataset was trained and evaluated with 1 million malicious domains and 1 
million normal domains. The performance was compared using the RF and multi-layer perceptron 
(MLP) algorithms with the same features as the processed approach. Table 4 shows the results of 
verifying the performance of RF and MLP to compare the performance with the five models 
mentioned above. The RF model achieved an 83% malicious domain detection rate, and deep 
learning-based CNNs and LSTMs averaged 97–98%. Therefore, it was proved that there is no 
difference between CNN and RNN-based architecture. 

Table 4. Comparison results on test data [23]. Accuracy, true positive rate (TPR), and false positive 
rate (FPR) are thresholds that give an FPR of 0.001 on the validation data. 

Model Architecture Acc TPR FPR AUC@1% 
RF Lexical features 91.51% 83.15% 0.00128 84.77% 

MLP Lexical features 73.74% 47.61% 0.00091 58.81% 
Embedding   84.29% 68.69% 0.00108 80.88% 

 LSTM CNN     
Endgame O  98.72% 97.55% 0.00102 98.03% 
Invincea  O 98.95% 98.01% 0.00109 97.47% 

CMU O  98.54% 97.18% 0.00108 98.25% 
MIT O O 98.70% 97.49% 0.00099 97.55% 
NYU  O 98.58% 97.27% 0.00116 97.93% 

3. Proposed Model 

3.1. Overview 

Recently, there have been cases in which damage is caused by various variants that can be seen 
as APT attack malware. The attackers use C&C servers to command these malicious codes. The 
attackers use DGA to conceal C&C servers. DGA is an algorithm that generates random domain 
names in malicious codes. The attacker communicates with the malicious code by registering the 
domain name generated by the DGA in the DNS in advance in the malicious code. DGA creates 
millions of domains per day. Therefore, the existing blacklist-based domain/IP blocking method is 
limited. In this paper, we propose an AI-based malicious domain detection technology. We set up a 
layer with 100 nodes in front of the output layer of TextCNN to extract 100 features that were effective 
for 20 class classification. In addition, we created 10 features of the domain knowledge base and used 
a total of 110 features in addition to the 100 features obtained earlier. Finally, DGA and DGA classes 
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were classified using the light gradient boosting model (LightGBM). Figure 8 shows the overall 
configuration of the proposed model. 

 
Figure 8. Effective DGA domain detection and classification model composition diagram combining 
TextCNN features and domain knowledge features. 

3.2. DGA Analysis Approach 

3.2.1. TextCNN based Feature Engineering 

Character-by-character embedding is required to represent the string format as a number. 
Character embedding converts each character to a unique value [24]. In order to represent the domain 
as a one-dimensional vector, we constructed a dictionary that can index a total of 69 characters, 
including all 68 characters and ‘UNK.’ ‘UNK’ indicates a character that is not in the dictionary. Table 
5a shows the character dictionary. We used a dictionary to convert characters in the domain into 
numbers. However, because the domain length was different, to apply TextCNN, it had to be 
expressed as a vector value with a fixed size. We set the appropriate fixed size using the distribution 
of domain length in the dataset. Figure 9 shows the domain length distribution in the dataset. 

  
(a) (b) 

Figure 9. Domain length distribution in dataset: (a) training dataset; (b) test dataset. 
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Table 5. Character-level embedding approach in the proposed model. (a) Character dictionary; (b) 
one-hot vector dictionary. 

(a) 
Char Index Char Index 

a 1 … … 
b 2 [ 65 
c 3 ] 66 
d 4 { 67 
e 5 } 68 

… … UNK 69 
(b) 

Index One-hot Vector 
0 [0, 0, 0, 0, …, 0, 0, 0, 0] 
1 [1, 0, 0, 0, …, 0, 0, 0, 0] 
2 [0, 1, 0, 0, …, 0, 0, 0, 0] 

… … 
68 [0, 0, 0, 0, …, 0, 0, 1, 0] 
69 [0, 0, 0, 0, …, 0, 0, 0, 1] 

The above figure shows that most domains are between 10 and 40 in length. The maximum 
domain length was 156 for the training dataset and 51 for the test dataset. We set the appropriate 
value of 100, which was the average of the maximum values for each dataset, to a fixed size. This 
removed the part where the domain length exceeded 100 and filled the insufficient length with 0 to 
convert the whole domain length equal to 100. Furthermore, the one-hot encoding method, which 
gave the size of the character dictionary 69 as a dimension of the vector, gave a value of 1 to the index 
of the character to be expressed, and 0 to the other index. To this, a vector consisting only of zero 
values was added to construct a total of 70 one-hot vectors, and a two-dimensional vector was created 
by substituting the vector corresponding to the index. Table 5b shows the one-hot vector 
corresponding to the index of the character dictionary. As a result, one domain had a 70 × 100 vector. 

We used the generated 2D vector as input to TextCNN. Noise was eliminated and key features 
were extracted through two convolution layers and two max pooling layers. A rectified linear unit 
(ReLU) was used as an activation function to partially activate by outputting 0 for sub-zero inputs 
between the convolution layer and the max pooling layer. We set the parameter of the convolution 
layer to 256 filters, the first kernel size 5 and second 3, and the rest to the default values. Then, it was 
transformed into a one-dimensional vector with the flatten function, and, finally, 100 features were 
extracted through three dense layers. The dense layer also used ReLU as the activation function, and 
0.5 was applied to the dropout function to reduce overfitting and improve generalization errors. We 
verified by applying a variety of hyper-parameters to set these optimal hyper-parameters. The goal 
in this section was to select 100 features suitable for a 20 class classification. We analyzed the process 
of changing the size of the vector by adjusting the number of convolution layers and max pooling 
layers. The more convolution layers and pooling layers, the smaller the resulting vector size. We 
designed two convolution layers and a max pooling layer each to create a vector size considering the 
domain size. Moreover, in order to select 100 features suitable for classifying 20 classes, we needed 
to set the number of dense layer nodes. We set the output layer to 20 and fixed 100 nodes to select 
100 features on the front layer. After that, we experimented by setting the number of dense layers 
and the number of nodes with various hyper-parameters. As the number of dense layers and the 
number of nodes increased, the number of parameters increased and the network processing speed 
became slower. Considering various situations, we selected the optimal hyper-parameters for the 
best results. Table 6 shows the vector sizes varying through the proposed TextCNN. As a result, 100 
features suitable for multi-class classification were extracted through the TextCNN that learned 
domain features. 
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Table 6. TextCNN’s feature extraction process. 

Layer Output 
Input [None, 100] 

Embedding [None, 100, 69] 
Convolution1 [None, 96, 256] 
Max Pooling1 [None, 48, 256] 
Convolution2 [None, 46, 256] 
Max Pooling2 [None, 23, 256] 

Flatten [None, 5888] 
Dense1 [None, 512] 
Dense2 [None, 512] 
Dense3 [None, 100] 
Output [None, 20] 

3.2.2. Knowledge based Feature Engineering 

An IP address is required to connect to the network. However, because it is difficult to remember 
the IP address that is trying to be accessed, DNS allows connection by domain name instead. The 
structure of the domain address basically consists of a combination of subdomain, domain name, 
SLD, and TLD. The subdomain and domain name are flexible because the user can register with any 
character string. The SLD and TLD indicate the purpose or type of domain and information of the 
country in which it belongs, and one of the fixed lists is located at the end of the domain address. 
DGA-generated domain names are randomly generated using a combination of lowercase letters and 
numbers. Then, a domain format is created by pasting one from the restricted SLD or TLD list. It can 
use a unique value for SLD or TLD. We found that most of the malicious domains created by DGA 
were created with a fixed length and the number of dots was two or less. In addition, we expected 
that many vowels would appear in the malicious domain and the entropy would be calculated as 
high. Based on this, the structured format of domain addresses was analyzed to extract 10 features. 
Here are the 10 features extracted from domain names: 

1. Whether the letters and numbers were mixed: this feature represents 1 if the domain name 
contains alphanumeric characters and 0 otherwise. 

2. Number count: this feature shows the number of numbers in the domain name. 
3. Number of dots: this feature indicates the number of dots in the domain name. 
4. Length: this feature indicates the length of the domain name. 
5. Number of vowels: this feature represents the number of vowels in the domain name. 
6. Vowel ratio: this feature represents the vowel rate of the domain name. The method for 

calculating the vowel ratio is as shown in Equation (1). V = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑤𝑒𝑙𝑠 (𝑑𝑜𝑚𝑎𝑖𝑛 𝑛𝑎𝑚𝑒)𝐿𝑒𝑛𝑔𝑡ℎ (𝑑𝑜𝑚𝑎𝑖𝑛 𝑛𝑎𝑚𝑒)  (1) 

7. Information entropy: this feature shows the information entropy value of the domain name. Equation (2), 
which was used to obtain information entropy from all domain names except SLD and TLD, is 
as follows: 

H = − ෍ 𝑝௞logଶ 𝑝௞௄
௞ୀ଴  (2) 

8. TLD: this feature shows the unique value for each TLD. 
9. SLD: this feature shows the unique value for each SLD. 
10. TLD type: this feature shows the unique value for each TLD type. 

From 1 to 7, we used the features that appeared in the domain name. We could get a feature for 
whether the domain was a mixture of numbers and letters, or for the number of numbers, the number 
of dots, and the length of the domain. Moreover, malicious domains are difficult to pronounce by 
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creating random domains. This allowed us to get the vowel count and vowel ratio from the domain 
name. In addition, since the malicious domains were randomly distributed, the entropy values could 
be obtained to express uncertainty. Figure 10 shows the entropy calculation function. Table 7 shows 
the average of the extracted feature values in the malicious domain and the normal domain. The main 
difference between malicious and normal domains was the number count and length. This meant 
that normal domains contained more numbers than malicious domains, and they were longer. 

 
Figure 10. Information Entropy calculation pseudo-code. 

Table 7. Average of extracted feature values. 

Feature No. Contents DGA Domain Normal Domain 
1 Whether letters and numbers are mixed 0.1671 0.3333 
2 Number Count 0.2395 3.6437 
3 Number of DOTs 1.319 1.0446 
4 Length 11.3472 15.8952 
5 Number of vowels 0.3487 0.2041 
6 Vowel ratio 3.9829 2.8458 
7 Information entropy 2.7387 3.2068 

From 8 to 10, the characteristics of SLD and TLD were used. We created a TLD dictionary for the 
training data to obtain a unique value of the TLD. Figure 11 shows a part of the table analyzing the 
relationship between TLD and DGA classes. We proved that the TLD used for each DGA was 
different. It can be seen that a specific TLD appeared for each DGA except for a normal domain with 
a class value of 0. 

 
Figure 11. Example of distribution for top-level domain (TLD) used by each DGA. 
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The TLD feature assigned a number to each TLD using a pre-configured TLD list and used a 
number corresponding to the TLD of the domain. There were a total of 742 TLDs in the dataset, so 
the values were from 1 to 742. We used the value divided by 10 to eliminate the possibility that the 
value would overwhelm the learning. The SLD feature, like the TLD, also used the pre-configured 
list to number the SLD, and used the number corresponding to the SLD of the domain. Since we had 
an index from 1 to 729, we used the value divided by 10. The TLD type feature divided the TLD type 
into gTLD, grTLD, sTLD, ccTLD, tTLD, new gTLD, proposed gTLDs, and numbers 1 to 7, and used 
numbers corresponding to the TLD type. 

3.2.3. Classification 

In Section 3.2.1, we extracted 100 features suitable for the 20 class classification using TextCNN. 
Moreover, in Section 3.2.2, we extracted 10 features of the domain knowledge base. We added them 
to classify DGA and DGA classes using a total of 110 features and the LightGBM algorithm. 
LightGBM is one of the boosting models of the ensemble learning technique that trains multiple 
models in machine learning and uses the prediction results of these models to predict better values 
than on the model. Boosting is the concept of creating multiple tresses (or other models) and 
gradually adding up existing models. LightGBM and eXtreme Gradient Boosting (XGBoost) are 
typical forms of gradient boosting. Gradient boosting is a method of training a new model by 
reducing residual errors in the model before training. In this paper, LightGBM was used to 
compensate for the shortcoming of XGBoost’s hyper-parameters and slow learning time. The 
proposed model had a boosting round of 1000 and an output class number of 20. The rest of the 
parameters were set as default values. LightGBM had the advantage of being able to process large 
amounts of data and using fewer resources than other algorithms. Figure 12 shows a graph of 
performance comparison with other gradient boosting [25]. LightGBM had the fastest convergence 
and no longer wastes resources because it has the ability to stop learning when verification accuracy 
no longer improves. 

 
Figure 12. LightGBM performance comparison graph. 

4. Experiment 

4.1. Dataset 

The proposed technique was validated for performance and results using a public dataset. This 
was the dataset provided by the Korea Internet & Security Agency (KISA) in 2019 [26]. The dataset 
consisted of domain, DGA, and class. In the DGA column, 0 is normal and 1 is malignant. The class 
column has a total of 20, which means a family of malicious domains. The dataset was composed of 
4 million pieces in total: 3.6 million pieces of data were used for training, and 400,000 pieces of data 



Electronics 2020, 9, 1070 14 of 18 

 

were used for testing. The training data consisted of 2.67 million malicious domains and 930,000 
normal domains, and the test data consisted of 370,000 malicious domains and 30,000 normal 
domains. Table 8 shows examples of the dataset contents and dataset configurations. 

Table 8. (a) Dataset contents examples; (b) dataset configurations. 

(a) 
Domain DGA Class 

fbcfdlcnlaaakffb.info 1 11 
firstbike.kr 0 0 

foreignsmell.ru 1 16 
booklog.kyobobook.co.kr 0 0 

(b) 

  DGA Domain Normal Domain 

Train Data 2,670,000 930,000 
Test Data 370,000 30,000 

4.2. Analysis Environments 

The PC environment used in the experiment used an Intel(R) Core(TM) i7-7700K CPU 3.60GHz 
and 64GB RAM. The proposed model implemented TextCNN using version 3.6 of Python and Keras, 
version 2.1.5 of Python deep learning library, and version 2.3.1 of LightGBM library with Python. The 
time it took to analyze one domain was approximately 0.00076 s, which analyzed about 1303 domains 
per second. This was the time from the creation of 110 features to classification using LightGBM. 
Table 9 shows the running time of the proposed model. GPU was not used. If GPU is used, the 
running time is shortened. Furthermore, if the focus is on running time rather than accuracy, it can 
only be classified as TextCNN. 

Table 9. Running time of the proposed model. 

Unit (Second) TextC
NN 

Knowled
ge LightGBM Analysis per Domain 

(Second) 
Analysis per Second 

(Domain Count) 
Training 2289 242 1796 0.0012019 832 

Test 254 29 24 0.0007675 1303 

4.3. DGA Classification Results 

This section shows the results of whether the domain was malicious or normal. The proposed 
model was compared with the DGA class prediction results using domains and DGA labels in the 
dataset. We needed to make sure that the proposed model had a positive impact. Therefore, we 
compared the four cases in which the proposed model was separated. Table 10 shows the results for 
the four cases. In the first case, DGA was classified as simple TextCNN, and in the second case, it was 
classified as LightGBM using 100 features extracted through TextCNN. In the third case, 10 features 
of the domain knowledge base were classified as LightGBM, and in the last case, it was a proposed 
model that classified LightGBM into a total of 110 features by adding 100 features extracted through 
TextCNN and 10 features based on domain knowledge. Simple TextCNN achieved good accuracy, 
but the proposed model showed the best accuracy by adding an additional 10 features based on 
domain knowledge. This showed an increase of 0.372% compared to the case where 10 features were 
not added at 99.192% accuracy. Therefore, the use of additional features had a slightly positive effect 
on model improvement. Figure 13 shows the ROC curve for the results of experiments with the 
proposed model, and Figure 14 shows the confusion matrix. 
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Table 10. Comparison result of evaluating the proposed model. 

Type Precision Recall F1-Score Accuracy 
TextCNN 98.719 99.0 99.36 98.82 

TextCNN(100 Feature) + LightGBM 99.744 99.035 99.388 98.872 
Domain knowledge(10 Feature) + LightGBM 99.253 95.988 97.593 95.621 

Proposed Model 99.681 99.445 99.563 99.192 

 
Figure 13. ROC curve for model evaluation. 

 
Figure 14. Confusion matrix for model evaluation. 

4.4. DGA Class Classification Results 

This section shows the results of the DGA class classification. In the dataset, the proposed model 
was classified into 20 classes using the domain and DGA class. One in 20 represented a normal 
domain. We needed to make sure that the proposed model had a positive impact. Therefore, four 
cases were compared in the same way as in Section 4.3. Table 11 shows the results for the four cases. 
Simple TextCNN achieved good accuracy, but the proposed model showed the best accuracy by 
adding an additional 10 features based on domain knowledge. This showed an increase of 0.835% 
compared to the case where 10 features were not added at 88.77% accuracy. Therefore, the use of 
additional features had a slightly positive effect on model improvement. Figure 15 shows the ROC 
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curve for the results of the experiments with the proposed model, and Figure 16 shows the confusion 
matrix. In addition, Figure 17 shows the top 10 features of the proposed model. Of the 100 features 
extracted through TextCNN, the 63rd was used as the most important feature, and among the 10 
features of domain knowledge, the domain length, TLD, and entropy features were in the top  
10 features. 

Table 11. Comparison result of evaluating the proposed classification model. 

Type Precision Recall F1-Score Accuracy 
TextCNN 88.532 87.935 87.683 87.935 

TextCNN (100 Feature) + LightGBM 88.61 88.392 88.219 88.392 
Domain knowledge (10 Feature) + LightGBM 82.664 81.833 81.219 81.833 

Proposed Model 89.01 88.77 88.695 88.77 

 
Figure 15. ROC curve for classification model evaluation. 

 
Figure 16. Confusion matrix for classification model evaluation. 
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Figure 17. Top 10 important features in the proposed model. 

5. Conclusions 

Intelligent malware is increasing, and the damage caused by malware is also increasing. Most 
malicious codes operate by receiving an attacker’s command after infecting the system. Attackers use 
C&C servers to issue commands to malware. The malware needs to know the IP address or domain 
address of the C&C server to communicate with these C&C servers. If the malicious code has a C&C 
server’s IP address in a hard-coded manner, security equipment or law enforcement agencies can 
black the IP address or domain address to prevent the malicious code from receiving C&C 
commands. However, the attacker bypasses this access blacking technique and randomly generates 
domain addresses using DGA to conceal C&C servers. It is very efficient because only the attacker 
knows how the DGA works, the domain is registered in advance, and the malware will be connected 
at some point. In order to predict and block the domains generated by these DGAs in advance, this 
paper combines the TextCNN technique with additional features suitable for the domain format to 
detect DGA-generated malicious domains and classify the DGA class. As a result of the experiment, 
the proposed model achieved 99.19% accuracy for DGA classification and 88.77% accuracy for DGA 
class classification. We expect to be able to effectively detect and block DGA-generated domains by 
applying the proposed technology. 
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