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Abstract: This paper proposes an LC (Inductor and Capacitor) impedance source bi-directional
DC–DC converter by redesigning after rearranging the reduced number of components of a switched
boost bi-directional DC–DC converter. This new converter with a conventional modulation scheme
offers several unique features, such as a) a lower number of components and b) reduced voltage
stress on the capacitor compared to existing topologies. The reduction of capacitor voltage stress
has the potential of improving the reliability and enhancing converter lifespan. An analysis of
the proposed converter was completed with the help of a mathematical model and state-space
averaging models. The converter performance under different test conditions is compared with
the conventional bi-directional DC–DC converter, Z-source converter, discontinuous current quasi
Z-source converter, continuous current quasi Z-source converter, improved Z-source converter,
switched boost converter, current-fed switched boost converter, and quasi switched boost converter
in the Matlab Simulink environment. MATLAB/Simulink results demonstrate that the proposed
converter has lesser components count and reduced capacitors’ voltage stresses when compared
to the topologies mentioned above. A 24 V to 18 V LC-impedance source bi-directional converter
and a conventional bidirectional converter are built to investigate the feasibility and benefits of the
proposed topology. Experimental results reveal that capacitor voltage stresses, in the case of proposed
topology are reduced by 75.00% and 35.80% in both boost and buck modes, respectively, compared to
the conventional converter circuit.

Keywords: bi-directional converter; LC impedance source converter; DC–DC power converter;
bi-directional power flow

1. Introduction

The study, development, and applications of bidirectional power converters are gaining a lot of
attention due to their vital role in areas like renewable energy systems, DC microgrids, hybrid energy
storage systems, smart mobility, etc. A bidirectional DC-DC converter (BDC) allows power flow in both
directions. This functionality is not available in a traditional unidirectional DC-DC converter. Because
of this flexibility, BDCs are widely used in several applications, such as battery-powered electric
vehicles (BEVs) or hybrid electric vehicles (HEVs), power trains, uninterruptable power supplies
(UPS), smart grids, charging stations for BEVs and plug-in hybrid electric vehicles (PHEV), aerospace,
defense, aerospace, and non-conventional energy sources such as photovoltaic (PV) arrays, fuel cells
(FCs), and wind turbines. Specifically, BDCs are widely adopted by the electric vehicle industry to
achieve objectives, such as battery charging/discharging and energy recovery during regeneration
modes of operation in electric vehicles. In case of the BEVs, electric energy needs to flow in both
directions, i.e., from the motor to the battery and vice versa in regenerative mode. To avoid pollutant
emissions, the electric vehicle must be powered only by batteries or other electrical sources (fuel
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cells, solar panels, etc.) [1–4]. In all the above-mentioned applications, a BDC is preferred for saving
space by eliminating a separate boost and buck converter. A BDC can offer some benefits, like cost
reduction, improved power density, and effective utilization of the converter [4]. Figure 1 shows the
typical structure of the bidirectional DC–DC converters. The BDC, shown in Figure 2, helps to enhance
the system efficiency and performance by interfacing with power and energy storage devices [5].
It also avoids a couple of individual unidirectional converters for achieving bidirectional power flow.
The BDC’s mode of operation (buck or boost) is mainly decided by power flow direction and voltage
levels of sources/energy storage elements. Accordingly, the controller must be designed to regulate
the voltage/current of the system. While designing DC–DC converters, the main functional objectives
are high power density and high efficiency. The high density can be achieved by increasing the
switching frequency [6] due to the reduction in reactive components size. However, the problem is that
increasing the switching frequency increases the switching losses, which leads to efficiency reduction.
This problem can be addressed by adopting wide-bandgap power devices along with suitable gate
drivers instead of conventional Si devices.
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Figure 1. Structure of bi-directional DC–DC converters.
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Figure 2. Conventional bidirectional converter (BDC).

In general, conventional step-up DC–DC converters are classified into isolated and non-isolated
converters. Isolated converters like fly-back, push–pull, forward, half-bridge, and full-bridge converters
have a high voltage gain by keeping a high enough transformer turns ratio. However, there is a problem
with voltage spikes due to transformer leakage inductance, which leads to high power losses across
the switch. On the other hand, in non-isolated converters, a high duty cycle is required to get a high
voltage gain, which leads to decreasing efficiency due to reverse recovery problems [7]. In addition,
non-isolated converters also have the problem of voltage stress nearly equal to the output voltage,
causing a reduction of the device’s reliability. Many DC–DC converter topologies are introduced to
mitigate the problems mentioned above, such as interleaving topologies for the reduction of current
ripple [8,9], soft-switching techniques to mitigate voltage spikes and efficiency improvement [10],
and cascading boost converters [11] and incorporating a coupled inductor [12] in the conventional
boost topology to get a high conversion gain. Input current ripples are reduced with the help of an
interleaving concept, which leads to improving the source life. Additionally, it offers the flexibility of
current sharing to enhance the power handling capacity [8,9].

On the other hand, several other converter topologies are suggested in the literature; most of
these are designed to meet the various objectives, such as reliability, capacitor voltage reduction,
and input current ripple reductions, by placing an impedance network between input DC source and
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switching network in various fashions. An X-shaped LC impedance network, as shown in Figure 3a,
is placed to get the voltage boosting capability by operating a switching network in the shoot-through
mode [13]. As an alternative to the Z-source converter, the same authors proposed a quasi Z-source
(qZS) converter in two variants based on input current, namely continuous input current q-ZS (qZS-CC)
and discontinuous input current q-ZS (qZS-DC) [14,15] with a reduced current and capacitor voltage
stresses, respectively. The main variation between these two topologies is the input side inductor
connection with the supply. In case of qZS-CC, the inductor is placed directly in series with the source,
and it tries to always maintain constant input current, whereas the source current is of discontinuous
nature in the case of qZS-DC, which increases the stress on the source [15]. Later, Yu Tang et al.
proposed an improved Z-source (IZS) converter [16] with reduced capacitor stresses. In this paper,
the authors claim that the utilization of a low voltage capacitor reduces the inrush current, the resonance
between the Z-source inductor and capacitors, and the cost and volume of the system compared to
a conventional Z-source converter [17]. The switched boost converter is proposed with a reduced
passive components count, achieved by replacing one pair of LCs with power semi-conductor devices
to have the same kind of buck-boost conversion, as shown in Figure 3b [18]. However, this topology
uses more power semiconductor devices compared to the topologies mentioned above.
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Figure 3. Impedance DC–DC converters. (a) Z-source DC–DC converter, (b) switched boost
DC–DC converter.

A SL-ZS converter is proposed with an enhanced gain by placing switched inductors instead of
inductors in the impedance network [19]. However, this topology suffers from a large component
count (six power diodes and two inductors higher than the ZS converter) in the switching network.
Alternatively, the SL-qZS converter proposed in [20], consists of switched inductors in place of
standard inductors in the qZS converter to reduce the capacitor voltage and startup inrush current
compared to the SL-ZS converter. However, the downside of this topology is a higher component count.
Hossein Fathi et al. [21] proposed an enhanced boost ZS converter (EB-ZSC), achieved by replacing
the impedance network with switched impedance to enhance the conversion gain further. Although
this topology increases gain, it suffers from a higher component count (four inductors, four capacitors,
and five power diodes). Additionally, this topology suffers from the usage of sophisticated control
platforms to achieve smoother voltage control in the case of adjustable speed-controlled drive
applications. Moreover, with a similar concept of variations in the impedance network either in ZS or
qZS as discussed above, there are several other impedance source topologies, such as a diode-assisted
qZS (DA-qZS) converter [22], a capacitor-assisted qZS (CS-qZS) converter [22], and an enhanced boost
quasi ZS (EB-qZS) converter [23], which are proposed in the literature. Though these topologies are
mainly proposed for DC–AC power conversion applications due to high reliability (operation during
shoot-through mode), they are equally applicable for bi-directional applications and are widely used
in micro/nano-grid applications [18,23].

For most of these topologies, it has been suggested to incorporate switched-inductor,
switched-capacitor, and hybrid switched-capacitor/switched-inductor structures resulting in high
boosting factors. However, the effect of nonlinearity can be increased by increasing the energy storage
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elements in the circuit, which leads to a higher output current and voltage distortion [24]. Additionally,
introducing more energy storage elements in the circuit affects the control complexity, total cost, size,
volume, losses, and weight of the converter [25,26]. Moreover, these topologies are suffering from
the usage of more capacitors and higher capacitor voltage stresses. Additionally, the voltage across
most of the capacitors is generally more than the supply voltage in the case of impedance source
topologies in order to perform the voltage boost functionality. Hence, high-voltage Z-capacitors should
be used, which may increase the volume and system cost. Capacitors are prone to failure in the
field operation of power electronic converters [27]. Hence, due to the stricter reliability constraints
brought by aerospace, automotive, defense, space, and energy industries, the stresses and usage of
capacitors should be reduced to enhance the converter’s reliability [28]. Therefore, to enhance the life
and converter reliability, either reduction in capacitors usage or voltage stresses on the capacitor is
highly recommended [29,30].

In this paper, the LC impedance bi-directional DC–DC converter (LC-BDC) is proposed by placing
one inductor between source and half-bridge, and one capacitor between source and the load, as shown
in Figure 4 [31]. These small passive components are arranged in such a way that the converter offers
several features, such as lower capacitor voltages, which in turn reduces the cost, size, and volume of
the converter and also increases the reliability while achieving the desired functionality. This topology
reduces the voltage stresses on the device due to the usage of small passive components compared
to existing converters in the case of SiC converters, which are less immune to parasitic components.
The paper is organized as follows: the working principle, modes of operation, mathematical modeling,
and state-space average models of the proposed topology are discussed in Section 2. The concept
validation using simulation and experimentation, along with the respective results, are presented
in Section 3. Additionally, to demonstrate the effectiveness of the proposed topology, a detailed
comparative analysis of the proposed converter and conventional converter is carried out along with
the results of the proposed converter. Moreover, a separate simulation-based comparative analysis of
the proposed LC converter with eight similar boost/buck-boost converter topologies is presented in
Section 4. Finally, conclusions are presented in Section 5 of this paper.
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Figure 4. LC impedance bi-directional DC–DC converter (LC-BDC).

2. Proposed System

The LC bidirectional converter shown in Figure 4 is an advanced version of a conventional
bidirectional converter and switched boost bidirectional converter, designed to reduce the voltage
stresses on the capacitor. The primary function of the inductor is to store energy during the converter
“on” period and release the stored energy during the “off” period of the primary device. The inductor
is also used to eliminate the current ripple. Another energy storage element, the capacitor, is used to
eliminate the ripple in the output voltage in both cases, namely the conventional BDC and the proposed
BDC. Switches M1 and M2 are unidirectional switches used to realize the bidirectional power flow in
the test setup which operate in a complementary fashion. For the forward direction of power flow, M1
must be in the “on” state, and S1 acts as the main switch operating at switching frequency, while D2
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acts as a freewheeling diode. Similarly, M2 must be in the “on” position for the reverse direction of
power flow, and S2 acts as the main switch, which operates at switching frequency, while D1 acts as a
freewheeling diode. VLV and RHV are source and load in boost mode, and VHV and RLV are source and
load in buck mode. The gating signals for boost switch (G1) and buck switch (G2) complement each
other. The duty cycle of boost switch (S1) and buck switch (S2) is denoted as δ1 and δ2, respectively. Ts

represents the switching period of switches S1 and S2.

2.1. Boost Operation

The equivalent circuit and idealized waveforms in boost mode of the LC-BDC converter are
depicted in Figures 5 and 6, respectively. The converter operation is considered to be in boost mode,
during which the switch (S1) is pulse-modulated and the diode D2 freewheels. The boost mode
operation is further categorized into two sub-modes of operation over a switching period, and the
equivalent circuit of each sub-mode is depicted as shown in Figure 7.
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Figure 7. Equivalent circuit of boost operation (a) in mode 1 and (b) in mode 2.

2.1.1. Mode 1 (t0 < t < t1): (S1 ON, D2 OFF)

In this mode, switch S1 is turned on by applying a gate signal. The inductor L starts charging
linearly through switch S1, and the capacitor C will discharge through load RHV. Hence, the diode D2
goes into the “off” state. The equivalent circuit during this mode of operation is shown in Figure 7a.
The current through the inductor L(iL) and the voltage across the capacitor C are given by

VL = VLV = L
diL
dt

(1)

iL(t) =
VLV

L
(t− t0) + iL(t0) (2)

iC = −
vHV

RHV
(3)

vC(t) = iHV(t)RHV −VLV (4)

This mode of operation ends when the gate pulses to switch S1 are withdrawn.

2.1.2. Mode 2 (t1 < t < t2): (S1 OFF, D2 ON)

At the instant when the gate pulses of switch S1 are removed, the switch S1 goes into the “off”
state due to which the voltage across the inductor brings the diode D2 into the forward-biased state.
The equivalent circuit during this mode is shown in Figure 7b. In this mode, both inductor and source
feed power to the load, and the inductor charges the capacitor. Hence, there is a formation of the
LC tank in this mode, which can offer zero voltage switching to the upper switch with the proper
selection of the snubber capacitor. In this mode, the current through L(iL) reaches its minimum value.
The current flowing through the inductor L(iL) and the voltage across the capacitor C are given by

VL = VLV −VHV = L
diL
dt

(5)

iL(t) =
VLV −VHV

L
(t− t1) + iL(t1) (6)

vC(t) = iHV(t)RHV −VLV (7)

iCc(t) = iL(t) − iHV(t) (8)

This mode ends at t = Ts when the gate signal is provided to S1 in the next switching cycle. Similar
operation (Mode 1 and Mode 2) continues for several switching cycles until a power flow is required in
the forward direction
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2.2. Buck Mode of Operation of LC-BDC Converter

BDC operates in buck mode when there is a requirement of power flow in the reverse direction,
and its equivalent circuit is shown in Figure 8. The converter operation is considered to be in reverse
buck mode, during which the switch S2 is pulse-modulated and the diode D1 in a freewheeling mode.
The buck mode of operation is further categorized into two sub-modes (i.e., mode 3 and mode 4) of
operation over a switching period. The operating mode from mode 3 to mode 4 in buck mode is
similar to the mode 2 to mode 1 of the boost mode of operation, respectively. Figure 9 illustrates the
characteristic waveforms of the converter in buck mode, and its equivalent circuits in each sub-mode
are depicted as shown in Figure 10.
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Figure 10. Equivalent circuit of buck operation (a) in mode 3 and (b) in mode 4.

2.2.1. Mode 3 (t3 < t < t4): (S2 ON, D1 OFF)

This mode starts at t = t3 when the gate signal is given to S2. At this instant, the main switch
S2 comes into conduction, and the diode D1 goes into the “off” state. The supply VHV then directly
energizes the inductor L. The capacitor is also discharged through the inductor. It leads to the formation
of the LC tank, as shown in Figure 10a, similar to mode 2. This feature offers the resonating switching
functionality to the upper switch. The current flowing through L(iL) and the voltage across capacitor C
(vC) are given as

vLb(t) = VHV − vLV (9)

iLb(t) =
VHV − vLV

L
(t− t3) + iLb(t3) (10)

vC(t) = VHV − iLV(t)RLV (11)

iC(t) = iinb(t) − ILb(t) (12)

This mode continues until the gate pulse of S2 is withdrawn at t = t4.

2.2.2. Mode 4 (t4 < t < t5): (S2 OFF, D1 ON)

This mode starts at t = t4 when the gate pulses to the main switch are removed. Hence S2 goes into
the “off” state. The voltage across the inductor brings diode D1 into “on” state, and it continues until
t = t5. The energy stored in inductor L discharges through the load. The capacitor charges from the
source. During this mode, the current flowing through the inductor L and voltage across the capacitor
C can be expressed as

vLb(t) = −iLV(t)RHV (13)

iLb(t) =
−vLV

L
(t− t4) + iLb(t4) (14)

vC(t) = VHV − iLV(t)RLV (15)

iC(t) = iinb(t) (16)

This mode ends at t = Ts when the gate signal is given to S2 in the next switching cycle. Similar
operation of mode 3 and mode 4 continues, for several switching cycles, until power flow is required
in the reverse direction.

2.3. State Space Analysis

This section presents the development of a small-signal AC model followed by the derivation of
the state-space model equations for one complete switching cycle. For this analysis, few assumptions
are considered; (i) the converter is operating in continuous conduction mode, and (ii) there is no trace
resistance. For the proposed converter, the state variables are the current through the inductor iL
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and the voltage across the coupling capacitor VC. A complete derivation of the state-space model
and small-signal analysis for boost mode is presented. A similar derivation method can also be used
for buck mode. With the inclusion of the parasitic components during both “on” and “off” states,
the system can be represented with the help of the state-space model as follows. diL

dt
dvC
dt

 =
 − (ron+rL)

L 0
0 −

1
C(R+rC)

[ iL
vC

]
+

 1
L 0
0 −R

(R+rC)C

[ VLV

iLoad

]
(17)

during “off” state: diL
dt

dvC
dt

 =


(
−Rrc

(R+rC)
− rL

)
1
L

−R
(R+rC)

1
L

R
(R+rC)C

1
(R+rC)C


[

iL
vC

]
+

 1
L

Rrc
(R+rC)

0 −R
(R+rC)

[ VLV

iLoad

]
(18)

Here, ron—on-state resistance of switching device, rL—the equivalent series resistance of the
inductor, and rC—equivalent series resistance of the capacitor.

The state-space average model of the converter can be written as follows.

.
x = [A1δ1 + A2(1− δ1)]x + [B1δ1 + B2(1− δ1)]U (19)

Here, x =

[
iL
vcc

]
, A1 =

 − (ron+rL)
L 0

0 −
1

C(R+rC)

, B1 =

 1
L 0
0 −R

(R+rC)C

, A2 =
(
−Rrc

(R+rC)
− rL

)
1
L

−R
(R+rC)

1
L

R
(R+rC)C

1
(R+rC)C

, B2 =

 1
L

Rrc
(R+rC)

0 −R
(R+rC)

, u =

[
VLV

iLoad

]
Define:

δ1Ts = t1 − t0&t2 − t1 = (1− δ1)Ts (20)

The duty ratio of the main switch S1 is defined as

δ1 =
t1 − t0

t2
(21)

The turn-off duty cycle of the main switch S1 is

δ′1 =
t2 − t1

t2
(22)

Substituting the duty ratio values from (20)–(22) in Equations (17)–(19) and then incorporating
the perturbation effect into the state variables and other variables around the steady-state values gives

iL = IL + îL, vLV = VLV + v̂LV, vC = VC + v̂C, vHV = VHV + v̂HV, δ1 = D1 + d1 (23)

where D1 is the duty ratio of the main switch under steady-state condition. After solving the above
state-space equation, the steady-state gains of the converter can be obtained as

VC =
D1VLV

1−D1
&IL =

IHV

1−D1
(24)

Comparing small-signal AC parameters while ignoring the considerably very small second-order
quantities, and then solving the equations gives the following two transfer functions.
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2.3.1. Control-to-Output Transfer Function

From the small-signal AC model, the control-to-output (output voltage to duty ratio) transfer
function can be found under the condition of v̂in = 0&îL = 0, which is shown in Equation (25).

v̂o
1−d̂1

=

[−R(R+rc)×(1+CSrc)×


RVLVrL −R2VLVD1

2
−R2VLV + RVLVron + VLVrLrc + VLVrcron + 2R2VLVD1 + 2IloadR2rL

+IloadR2rc + IloadR2ron − 2IloadR2D1(rL + rc) + IloadR2D1
2rc − IloadR2D1

2ron + LRSVLV

+LSVLVrc + 2IloadRrLrc + IloadRrcron + IloadLR2S + IloadLRSrc − 2IloadRD1rLrc − IloadLR2SD1

−IloadRD1
2rcron − IloadLRSD1rc


 RrL + Rrc + rLrc − 2R2D1 + R2

+R2D1
2
−RD1rc + RD1ron + D1rcron

×


CLR2S2
−CR2SD1rc + CronR2SD1 + CR2Src + CrLR2S + R2D1

2
− 2R2D1 + R2

+2CLRS2rc −CRSD1r2
c + 2CronRSD1rc + CRSr2

c + 2CrLRSrc + LRS−RD1rc

+ronRD1 + Rrc + rLR + CLS2r2
c + CronSD1r2

c + CrLSrc
2 + LSrc + ronD1rc + rLrc




(25)

By neglecting parasitic components, it can be simplified as

v̂HV
1−d̂1

=
RVLV−LSVLV−2RVLVD1+RVLVD1

2
−IloadLRS+IloadLRSD1

(D1−1)2(CLRS2+LS+RD1
2−2RD1+R)

⇒
vHV
1−d̂1

=
RVLV(1−D1)

2
−LSVLV−(1−D1)IloadLRS

(D1−1)2(CLRS2+LS+R(1−D1)
2)

(26)

2.3.2. Control-to-Input Transfer Function

From the small-signal AC model, the inductor current-to-control (input current to duty ratio)
transfer function can be found under the condition of v̂LV = 0&îLoad = 0, which is shown in
Equation (27).

îin
1−d̂1

=

−(R+rc)



2R2VLV − IloadR3D1
2
−RVLVrc − IloadR3 + VLVrcron + 2IloadR3D1 + 2R2VLVD1 + IlaodR2rL + IloadR2ron + IlaodRrLrc

+IloadRrcron −CR3SVLVD1 −CIloadR3SrL −CIlaodR3SrC −CR2SVLVrL −CRSVLVr2
c − 2CR2SVLVrc + CSVLVr2

c ron

−CIlaodLR3S2
−CLR2S2VLV + CR3SVLVVD1

2
−CIloadLR2SrC −CIloadR3SD1

2rC + CIloadR3SD1
2ron −CRSVLVrLrC

+CRSVLVrcron −CLRS2VLVrc + 2CIloadR3SD1rL + 2CIloadR3SD1rC + CR2SVLVD1rc + CIloadRSrLr2
c + CIloadRSr2

c ron

+CIloadR2Srcron + CIloadLR3S2D1 + 2CIloadR2SD1rLrc + CIloadLR2S2D1rc + CIloadR2SD1
2ronr + RVLVron


 RrL + Rrc + rLrc − 2R2D1 + R2

+R2D1
2
−RD1rc + RD1ron + D1rcron

×


CLR2S2
−CR2SD1rc + CronR2SD1 + CR2Src + CrLR2S + R2D1

2
− 2R2D1 + R2

+2CLRS2rc −CRSD1r2
c + 2CronRSD1rc + CRSr2

c + 2CrLRSrc + LRS−RD1rc + ronRD1

+Rrc + rLR + CLS2r2
c + CronSD1r2

c + CrLSr2
c + LSrc + ronD1rc + rLrc




(27)

By neglecting parasitic components, it can be simplified as

îin
1−d̂1

=
2VLV−IloadR(1−D1)+CRVLVS

(1−D1)(CLRS2+LS+RD1
2−2RD1+R)

⇒
iin

1−d̂1
=

RVLV(1−D1)
2
−LSVLV−Iload(1−D1)

(1−D1)(CLRS2+LS+R(1−D1)
2)

(28)

2.3.3. Step and Bode Responses of LC-BDC

From the derived transfer functions, the step responses of various variables are presented in
Figure 11. From these results, it can be understood that the variations in input currents and capacitor
voltages for both line and load disturbance are low in the case of the proposed converter compared
to the existing converter. Moreover, the step responses reveal that the proposed LC-BDC converter
response is the same for inductor current and capacitor current and capacitor voltage against the duty
ratio, whereas input current transients against duty ratio variations are reduced in LC-BDC. It can also
be noted that in the case of supply variations, the transient responses of the inductor current, output
voltage, load current, and capacitor voltage are improved.

2.3.4. Ripple Capacitor Voltage

From the charge balance equation and further simplification of the above Equation (25) in the
steady-state, the capacitor ripple voltage can be calculated as

∆vCcboost =
D1VHV

CRFS
(29)

From (29), the capacitor value can be sized to minimize the voltage ripple across the capacitor.
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3. Experimental Results and Discussion

The proposed LC impedance bi-directional dc-dc converter has been successfully validated
through experiments in both boost and buck modes. The parameters considered for the experimental
validations are summarized in Table 1. The experimental setup of the proposed converter is shown in
Figure 12. The system performance is evaluated in both steady-state and transient conditions while
feeding power to two series-connected 12 V, 50 W lamp load under various test conditions for the 18 V
DC to 24 V DC conversion in forwarding boost mode, and 24 V DC to 18 V DC conversion in reverse
buck mode. The inductor current, load current, and capacitor voltage waveforms are captured in both
boost and buck modes for both conventional and proposed converters. Comparative analysis through
experimental results was carried out, as explained below. In the case of the conventional converter,
there is a need for two capacitors (CHV plays a vital role in boost mode, and CLV plays a vital role in
buck mode), whereas, in the case of the proposed converter, there is a need for only one capacitor
C, which can take care of the functionality of the above mentioned two capacitors in the respective
modes. It can be observed that two capacitors are used in the realization of the conventional converter,
whereas only one capacitor is used for the realization of the proposed LC-BDC, as shown in Table 1.

Table 1. Parameters of the proposed converter.

Proposed Conventional

Parameter name Boost Mode (LV to HV) Buck Mode (HV to LV) Boost Mode (LV to HV) Buck Mode (HV to LV)
Input voltage (V) 18 24 18 24

Output voltage (V) 24 18 24 18
Output voltage ripple, % ≤0.50 ≤0.50 ≤0.50 ≤0.50

Load 12 V, 50 W of 2 Lamps
in series

12 V, 50 W of 2 Lamps
in series

12 V, 50 W of 2 Lamps
in series

12 V, 50 W of 2 Lamps
in series

Output current (A) 4 3.20 4 3.20
Switching frequency (kHz) 10 10 10 10

Inductor 0.5 mH 0.5 mH

Filter capacitors 500 µF/500 V(HV Side) 500 µF/500 V
(LV Side)

500 µF/500 V
(intermediate stage)
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Figure 12. Experimental Setup of Power Converter.

The gate signal of the lower switch, inductor current, load current, and capacitor voltage for four
switching cycles are captured and presented in Figures 13–16. From Figure 14, it can be seen that the
peak value of the inductor current is 6.17 A in the conventional converter, whereas it is 6.07 A in the
proposed converter for the same load current, as shown in Figure 15. From Figure 16, it can be seen
that the voltage across the capacitor is 23.20 V in the case of the conventional converter, whereas it is
5.10 V in the case of the proposed converter. Hence, there is 78.02% of capacitor voltage reduction
in the proposed converter as compared to the conventional converter for the same input/output
voltage conversion.
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Figure 15. Load current in LC-BDC (Blue), and conventional BDC (red).
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Figure 16. Capacitor voltages in LC-BDC (Blue), and conventional BDC (Red).

In Figures 17–19, respectively, a zoomed view of respective parameters is presented during both
“on” and “off” state. From these figures, peak values during both transient and steady-state can be
measured as listed in Table 2.
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Figure 17. Inductor current of LC-BDC (blue) and conventional BDC (red) converter during (a) “on”
and (b) “off” states.
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Figure 18. Load current of LC-BDC (blue) and conventional BDC (red) converter during (a) “on” and
(b) “off” states.
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Figure 19. Capacitor voltage of LC-BDC (blue) and conventional BDC (red) converter during (a) “on”
and (b) “off” states.

Table 2. Comparison of the various parameter during both transient and steady state for the proposed
and conventional converters.

Peak Values
Conventional Proposed

Transient Steady State Transient Steady State

Capacitor voltage 23.20 V 23.20 V 4.80 V 5.20 V
Inductor current 8.80 A 6.00 A 8.80 A 6.00 A

Load Current 5.20 A 4.00 A 5.20 A 4.00 A

Form Table 3, it can be observed that the proposed converter not only offer its best performance
during steady-state conditions but also the exhibits same best performance during transient conditions
in terms of capacitor voltage stresses.

Table 3. Comparison of ripple values of capacitor voltage, inductor current and load current for the
proposed and conventional converters.

Ripples Conventional Proposed

Capacitor voltage 0.50 V 0.34 V
Input current 0.99 A 0.79 A
Load Current 0.13 A 0.13 A

For the ripple content investigation, a zoomed view of the inductor current, load current,
and capacitor voltages are presented in Figures 20–23, respectively. The summary of the ripple content
for both converter topologies is tabulated in Table 3. From this table, it can be understood that there is
a 0.4% reduction of ripple content in capacitor voltages and inductor current for the same content of
load current ripples.
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Figure 23. Zoomed view of capacitor voltage in the proposed converter for ripple analysis.

For the reverse buck mode of operation, the gating signal of the upper switch, inductor current,
load current, and capacitor voltage for four switching cycles have been captured, as presented in
Figures 24–27. From Figure 25, it can be seen that the peak value of the inductor current is 3.61 A in
the case of conventional converter, whereas it is 3.62 A in the case of the proposed converter for the
same load current as shown in Figure 26. From Figure 27, it can be seen that the voltage across the
capacitor is 16.40 V in the case of conventional converter, whereas it is 7.80 V in the case of the proposed
converter. A capacitor voltage reduction of 35.80% can be witnessed in this mode of operation.
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Figure 27. Capacitor voltages in LC-BDC (Blue), and conventional BDC (red).

For the critical investigation, results have been captured under various test conditions to assess
the proposed converter suitability for various applications like smooth turn-on, faster load turn-off,
and converter on- and off-switching with variable duty. During these conditions, captured inductor
current, load current, and capacitor voltage are shown in Figures 28–30, respectively. Moreover, in
these figures, a zoomed view of respective parameters is presented during both turn-on and turn-off.
From these figures, peak values during both transient and steady states can be measured as listed
in Table 4. Form the Table 4, and it can be observed that the proposed converter not only offers its
best performance during steady-state conditions but also exhibits the same best performance during
transient conditions in terms of capacitor voltage stresses.

Table 4. Comparison of the various parameter during both transient and steady states for the proposed
and conventional converters.

Peak Values
Conventional Proposed

Transient Steady State Transient Steady State

Capacitor voltage 5.60 V 16.40 V 6.20 V 7.80 V
Inductor current 4.54 A 3.65 A 4.62 A 3.68 A

Load Current 4.54 A 3.65 A 4.62 A 3.68 A
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Figure 28. Inductor current of LC-BDC (blue) and conventional BDC (red) converter during (a) turn on
(b) turn off.
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Figure 29. Load current of LC-BDC (blue) and conventional BDC (red) converter during (a) turn on
and (b) turn off.
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Figure 30. Capacitor voltage of LC-BDC (blue) and conventional BDC (red) converter during (a) turn
on and (b) turn off.

For the ripple content investigation, a zoomed view of the inductor current, load current, and
capacitor voltages are presented in Figures 31–34, respectively. The summary of the ripple content
in both the converters is tabulated in Table 5. From this table, it can be extracted that there is a 0.3%
reduction of ripple content in capacitor voltages ripples for the same load current.

Table 5. Comparison of Ripple Values for The Proposed and Conventional Converters in Buck Mode.

Ripples Conventional Proposed

Capacitor voltage 1.40% 1.10%
Inductor current 16.65% 16.65%
Load Current 4.70% 5.00%
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Figure 31. Zoomed view of inductor current for ripple analysis LC-BDC (blue), and conventional
converter (red).
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4. Comparative Analysis

Another set of simulations is performed to investigate the performance of the above topologies,
and simulation parameters are listed in Table 6 as mentioned below. By using these sets of simulations,
various performance parameters such as voltage gains, capacitor voltages, and losses were investigated.
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These simulations are carried out for various output voltages ranging from 36 V to 108 V with the dc
input voltage of 24 V, i.e., voltage gain ranging from 1.5 to 4.5. With the help of this data, a comparative
analysis is presented in the following subsections.

Table 6. Parameters considered for comparative analysis.

Parameter Value

Input DC Voltage 24 V
Switching Frequency 10 kHz

Output line voltage (RMS) 36 V–108 V
Load Power 500 W

4.1. No. of Components

As mentioned earlier, by changing the impedance network configurations, various topologies are
proposed, and hence each topology has a different number of components. The number of components
used for different topologies are listed and presented as a bar chart shown in Figure 35. From this chart,
it is clear that the proposed converter and conventional BDC require fewer components compared to
other topologies.
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4.2. Capacitor Voltage Stress

Since capacitors used in various topologies are different, total voltage stresses in all capacitors are
calculated for comparison purposes. Here in Figure 36, the total capacitor stresses are plotted, while
24 V DC is converted into a range of DC voltage ranging from 36 V to 108 V. From this figure, it is clear
that capacitor stresses are low in the case of the proposed converter.
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4.3. Efficiency Analysis and Loss Comparison

To perform the converter efficiency analysis, the parasitic resistance of inductors and capacitors,
and the diode forward conduction losses are considered in this paper. The parasitic resistance of
inductor and capacitor are rL and rC, respectively, and forward conduction loss of diode due to forward
voltage (VF) was assumed to be the same in all topologies for comparative analysis. The impact of
the parasitic resistances and the forward voltage drop of the main power devices (MOSFETs) are
also considered in this manuscript. Equivalent circuits of all the considered buck-boost bi-directional
converters with the inclusion of various parasitic components are presented in Figure 37 for the
efficiency calculations. Formulas derived for losses and efficiencies are presented in Table 7.
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Table 7. Comparison of various parameters (device, inductor and capacitor RMS currents, overall losses, and efficiency) of existing and proposed topologies.

Topology Equivalent Circuit Diagram RMS Currents of Various Components Parameters

Conv-BDC
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Table 7. Cont.

Topology Equivalent Circuit Diagram RMS Currents of Various Components Parameters
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Electronics 2020, 9, x FOR PEER REVIEW 24 of 27 

S
B

-B
D

C
 

1 2
o

Srms

I D
I

D




 
 

1/2
1

1 2
Drms o

D
I I

D






1

1 2
Lrms oI I

D




 
 

2 1

1 2
Crms o

D D
I I

D






 

 
 

 

 

 

2 2

2

2

1

21 12 2

1 21 2 1 2
1

1 4 (1 )

1 2 1 2

fDs F

o LL

o

cL
s o L

L L

VD DDr R

D V RD R D
P

rr D D
F C R

D R RD

 
  

  
  

  
   

       

 

 
 

 
 

 

 

 

2 2

2

2

1

21 12 2

1 21 2 1 2
1 2

1 4 (1 )

1 2 1 2

VDS

fDs F

o LL

o

cL
s o L

L L

D
M

VD DDr R

D V RD R D
D P

rr D D
F C R

D R RD




  
  

  
  

   
       

C
F

S
B

-B
D

C
 

1 2
o

Srms

I D
I

D



 

 
 

1/2
1

1 2
Drms o

D
I I

D






1

1 2
Lrms oI I

D




 
 

2 1

1 2
Crms o

D D
I I

D






 

 
 

 

 

 

2 2

2

2

1

21 12 2

1 21 2 1 2
1

1 4 (1 )

1 2 1 2

fDs F

o LL

o

cL
s o L

L L

VD DDr R

D V RD R D
P

rr D D
F C R

D R RD

 
  

  
  

  
   

       

 

 
 

 
 

 

 

 

2 2

2

2

1

21 12 2

1 21 2 1 2
1 2

1 4 (1 )

1 2 1 2

VDS

fDs F

o LL

o

cL
s o L

L L

D
M

VD DDr R

D V RD R D
D P

rr D D
F C R

D R RD




  
  

  
  

   
       

BS
D

inV

Ci



Di

ini iv

Li

Si 1L1Lr

1
C

1
Cr

FV

Fr

FV

Fr

S

Oi

oR

D
S

r

D
S

r

ISrms =
Io
√

D
1−2D

IDrms =
(1−D)1/2

(1−2D)
Io

ILrms =
1

1−2D Io

ICrms =
2
√

D(1−D)

(1−2D)
Io

η = 1

1+


2DrDs

(1−2D)2RL
+

(1−D)
(1−2D)

2V f
Vo

+
(1−D)

(1−2D)2
2RF
RL

+FsCoRL +
(

1
1−2D

)2 rL
RL

+
4D(1−D)

(1−2D)2
rc
RL

Po

MVDS =
(1−D)

(1−2D)


2DrDs

(1−2D)2RL
+

(1−D)
(1−2D)

2V f
Vo

+
(1−D)

(1−2D)2
2RF
RL

+FsCoRL +
(

1
1−2D

)2 rL
RL

+
4D(1−D)

(1−2D)2
rc
RL

Po

CFSB-BDC

Electronics 2020, 9, x FOR PEER REVIEW 24 of 27 

S
B

-B
D

C
 

1 2
o

Srms

I D
I

D




 
 

1/2
1

1 2
Drms o

D
I I

D






1

1 2
Lrms oI I

D




 
 

2 1

1 2
Crms o

D D
I I

D






 

 
 

 

 

 

2 2

2

2

1

21 12 2

1 21 2 1 2
1

1 4 (1 )

1 2 1 2

fDs F

o LL

o

cL
s o L

L L

VD DDr R

D V RD R D
P

rr D D
F C R

D R RD

 
  

  
  

  
   

       

 

 
 

 
 

 

 

 

2 2

2

2

1

21 12 2

1 21 2 1 2
1 2

1 4 (1 )

1 2 1 2

VDS

fDs F

o LL

o

cL
s o L

L L

D
M

VD DDr R

D V RD R D
D P

rr D D
F C R

D R RD




  
  

  
  

   
       

C
F

S
B

-B
D

C
 

1 2
o

Srms

I D
I

D



 

 
 

1/2
1

1 2
Drms o

D
I I

D






1

1 2
Lrms oI I

D




 
 

2 1

1 2
Crms o

D D
I I

D






 

 
 

 

 

 

2 2

2

2

1

21 12 2

1 21 2 1 2
1

1 4 (1 )

1 2 1 2

fDs F

o LL

o

cL
s o L

L L

VD DDr R

D V RD R D
P

rr D D
F C R

D R RD

 
  

  
  

  
   

       

 

 
 

 
 

 

 

 

2 2

2

2

1

21 12 2

1 21 2 1 2
1 2

1 4 (1 )

1 2 1 2

VDS

fDs F

o LL

o

cL
s o L

L L

D
M

VD DDr R

D V RD R D
D P

rr D D
F C R

D R RD




  
  

  
  

   
       

inV

Ci


ini
iv

Li

Si

bD

Dai

BS

Dbi

1L1Lr

1
C

1
Cr

aD

F V

Fr

D
S

r

S

Oi

oR

D
S

r

FV

F r

ISrms =
Io
√

D
1−2D

IDrms =
(1−D)1/2

(1−2D)
Io

ILrms =
1

1−2D Io

ICrms =
2
√

D(1−D)

(1−2D)
Io

η = 1

1+


2DrDs

(1−2D)2RL
+

(1−D)
(1−2D)

2V f
Vo

+
(1−D)

(1−2D)2
2RF
RL

+FsCoRL +
(

1
1−2D

)2 rL
RL

+
4D(1−D)

(1−2D)2
rc
RL

Po

MVDS =
(1−D)

(1−2D)


2DrDs

(1−2D)2RL
+

(1−D)
(1−2D)

2V f
Vo

+
(1−D)

(1−2D)2
2RF
RL

+FsCoRL +
(

1
1−2D

)2 rL
RL

+
4D(1−D)

(1−2D)2
rc
RL

Po



Electronics 2020, 9, 1062 24 of 26

By using the above-derived formulas, the efficiencies and non-ideal voltage conversion ratios of
each topology with respect to gain are presented in Figures 37 and 38, respectively. From these results,
it can be observed that the efficiency is higher in conventional BDC and LC-BDC compared to other
existing topologies. Moreover, it can be seen that the voltage conversion ratio is more linear in the
case of conventional BDC, and the proposed converter compared to other existing topologies. In all
existing topologies (except conventional BDC), it can be noted that the performance of the converter is
becoming poor as the gain is increased further from the designed gain value.
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