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Abstract: Embedded software has properties dependent on hardware (direct operation of address
spaces, memory mapped I/O, interruption, etc.). Therefore, demands about the established method
of formal verifications corresponding to those properties are increasing from the point of view of
shorter development and high reliability. Our study aims at enabling a formal verification with
Satisfiability Modulo Theories-Based Bounded Model Checking (SMT-Based BMC) of safety for
embedded assembly codes. Our proposed method generates models of assembly codes in detail
with the fixed-sized bit-vectors theory. The models generated by our method include interrupts,
and the size of the models is reduced using Interrupt Handler Execution Reduction (IHER) technique.
In this paper, we have developed the verification method of safety properties of embedded assembly
program by combining SMT-Based Bounded Model Checking and Reduction of Interrupt Handler
Executions. Moreover, we show the evaluation of our method by experiments using prototype
model checker.

Keywords: embedded assembly program; SMT; bounded model checking; safety; reduction of
interrupt handler executions

1. Introduction

1.1. Background

Embedded systems are widely used, and the complexity of hardware and software advances
with many functionalization. Also, embedded systems similar to those in Reference [1] based on
microcontrollers, which are employed in airplanes, cars and mobile phones, have been targeted.
The software of embedded systems has to be tested extensively because errors such as stack overflows
and exception handlings may lead to severe or even fatal events as loss of reputation as in the case
of the Toyota Prius bug [2]. The embedded software is mostly written in C or in assembly language.
Removing errors in embedded software is difficult because deploying the updates is complicated and
cost intensive. Testing of microcontroller software is often not possible because it is too time consuming
for the desired time-to-market or too expensive. Also, testing is not sufficient for embedded systems
as there are errors that are difficult to find by testing. There are standards such as IEC61508 [3] that
recommend the application of formal methods such as formal verification methods. Formal verification
methods, especially model checking [4] is very promising. In this paper, we focus on model checking.
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Verifying C codes was not successful for embedded systems because the existing C code model
checkers aim at the verification of hardware-independent ANSI C code [5]. In order to verify embedded
systems, we must verify more features such as hardware-dependent constructs and interrupt handlers.
All these features are not handled by the existing C code model checkers [5].

Verifying assembly codes is required. For example, we explain interruptions as follows. As one
statement of C code supports plural instructions of assembly code, we can not verify interruptions
because we cannot treat the timing when the interrupt enters well. When we verify assembly code
with interruptions, the state space explosion problem occurs as each block of Control Flow Graph
(CFG) [6,7] consists of one instruction. There is a possibility that an interrupt may be generated for
each assembly instruction. Since there is a call to the interrupt processing routine for each instruction of
the assembly, a state explosion occurs. In order to reduce the number of interruptions, B. Schlich et al.
developed Interrupt Handler Execution Reduction (IHER) [8]. B. Schlich et al. have developed IHER,
which reduces the number of Interrupt Handler (IH) executions by blocking IHs at program locations
where there is no dependency between certain IHs and the program. There is a dependency if either
one influences the other or the visible behavior of the program is changed. In order to reduce the
number of blocks, we propose the method of making the block of codes, at which interruptions do not
occur. We call the block Assembly Code Block (ACB).

Despite the high importance of assembly code verification, studies on verifying assembly codes,
other than B. Schlich’s study, almost do not exist [1]. Also, we show the advantage of the verification
of assembly program that B. Schlich pointed out as follows [1].

1. All errors (e.g., stack overflows, arithmetic overflows, interrupt handling errors, and writing reserved
registers) introduced during the complete development process are consequently included in assembly
program outcome, but by analyzing only the assembly program it is not possible to find and detect
the roots of the assembly outcome.

2. Assembly language usually has a clean and well-documented semantics. Vendors of microcontrollers
provide documentation describing the semantics of the provided assembly constructs.

3. Recently, bounded model checking of software using SMT solvers attracts attention [9]. SMT Solvers
check the satisfiability of first-order formulas containing operations from various theories such
as the Booleans, bit-vectors, arithmetic, arrays, and recursive datatypes. When model checking
assembly program using SMT, the model checker does not have to exploit the compiler behavior,
hardware-dependent constructs can be handled, and the source code (C code) of the software is not
required. Hence, even programs that use libraries not available in source code can be analyzed.
On the other hand, L.C. Cordeiro et al. have developed bounded model checking of C program
using SMT [10], but bounded model checking of the assembly program using SMT has not existed.

4. Programs consisting of components written in different programming languages can be verified.
When model checking the source code, only single components can be verified, and for each
programming language used, a specific model checker has to be utilized.

1.2. Outline of This Paper

In this paper, we develop the verification method of safety properties by combining SMT-Based
Bounded Model Checking [9] and Reduction of Interrupt Handler Executions [8].

We model registers and values of assembly codes using Fixed-Size Bit-Vector theory, and construct
a transition system. Finally we verify the transition system using SMT-Based Bounded Model
Checking. Also we construct the transition system including interrupts. We reduce state spaces
using IHER [8]. IHER reduces the number of Interrupt Handler executions by blocking Interrupt
Handlers at program locations where there is no dependency between certain Interrupt Handlers and
the program [8]. We propose Assembly Code Block (ACB) by extending Basic Block of Control Flow
Graph (CFG) [6,7] using IHER [8] in order to reduce state spaces. Moreover we show our proposed
method effective by implementing the prototype. To the best of our knowledge, there have been no
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previous studies of SMT-Based Bounded Model Checking of embedded assembly program including
interrupts. The outline of this research has been published at a domestic conference [11] and an
international conference [12]. This paper is an extension of the previous work in References [11,12].

1.3. Related Work

Our paper is related to both SMT model checking of assembly program and reduction of
interruption handlings. In particular, this paper is based on the model checking of assembly
program [1,13], SMT-Based Bounded Model Checking [9] and Interrupt Handler Execution
Reduction [8]. Therefore, this subsection presents related work regarding assembly program
model checking first and then related work regarding SMT model checking and reduction of
interruption handlings.

1. B. Schlich studied a new approach to model checking software for microcontrollers, which verifies
the assembly code of the software [1]. The state space is built using a tailored simulator
based on static analysis, which abstracts from time, handles nondeterminism, and creates an
overapproximation of the behavior shown by the real microcontroller. On the other hand, we have
developed model checker by both static analysis and dynamic program analysis such as undefined
values [13].

This paper and Reference [1] use different approaches as follows:

(a) In Reference [1], if the model checker requests successors of a state which are not created
yet, the state space uses the simulator to create the successors on-the-fly.

(b) On the other hand, in this paper, the verification system completes the state transition
system and passes it to the SMT solver. By using SMT’s background theory such as bit
vector, bit-level assembly instructions can be easily expressed as functions of background
theory and can be directly input to the SMT solver for verification.

2. B. Schlich et al. studied IHER in order to reduce the number of Interrupt Handler executions [8].
Also B. Schlich et al. studied various abstraction techniques based on static program analysis [14].
We propose Assembly Code Block (ACB) by extending Basic Block of CFG [6,7] using IHER [8].

3. L.C. Cordeiro et al. studied SMT-Based Bounded Model Checking of embedded ANSI-C
program [10]. On the other hand, we study SMT-Based Bounded Model Checking of embedded
assembly program. The background theory of the bit vector is effective for assembly program.
Similar to model checking of C program, the background theory of the bit vector is expected to be
effective in model checking of assembly program. In this study, we use the background theory of
the bit vector for the assembly program, and construct the state space by representing register as
a data type of a fixed length bit vector and representing the address space as a function of fixed
bit vector mapping from address to value.

4. Recently, L. Lihao et al. proposed effective verification of low-level embedded C software with
nested interrupts based on both partial-order encoding and symbolic execution [15]. On the other
hand, in this paper, we merge basic blocks generated by interrupt processings based on reducing
the number of interrupt handlers by IHER, and verify assembly program based on SMT Bounded
model checking. If the method of Lihao Liang et al. is adopted, nested interrupts can be effectively
handled in our paper as well.

1.4. The History of Model Checking

Model checking methods have been categorized into four categories such as (1) classical model
checking, (2) Binary Decision Diagram (BDD) based symbolic model checking, (3) SATisfiability
problem (SAT) based symbol model checking, and (4) SMT based model checking. Also, model
checking methods have evolved from (1) to (4).
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1. First, the evolution from (1) to (2) is in Reference [16]. The system is encoded in BDD without
implementing the system directly in the adjacency list and so forth, realizing the verification of
the large scale system.

2. Second, the evolution from (2) to (3) is in Reference [17]. We avoid the exponential state explosion
of BDD, and encode the system into propositional logic rather than BDD to realize SAT verification
with bounded model checking.

3. Finally, the evolution from (3) to (4) is in Reference [9]. SMT model checking is realized by
expanding the scope of the verification by using the background theory by encoding the system
into the predicate logic expression without the quantification symbol, not the propositional logic.
Furthermore, SMT model checking can use a general-purpose SMT solver [18], and there is also
future development. Our study is based on SMT model checking.

In this paper, in the scope of our survey, it is the first study on SMT based symbolic model checking
with bounded model checking using the background theory of the bit vectors of assembly program.

1.5. Structure of This Paper

The rest of the paper is organized as follows. We first give a brief introduction to SMT-Based
Bounded Model Checking, and in Section 3 we present SMT-Based Bounded Model Checking of assembly
program. We next give a brief introduction to IHER, and in Section 5 we present ACB by extending Basic
Block of CFG using IHER. Finally, we present the prototype model checker and the experiment.

2. Introduction to SMT-Based Bounded Model Checking

2.1. Overview

SMT generalizes boolean satisfiability (SAT) by adding equality reasoning, arithmetic, fixed-size
bit-vectors, arrays, quantifiers, and other useful first-order theories [18]. A SMT solver is a tool for
deciding the satisfiability of formulas in these theories.

On the other hand, model checking verifies whether a model M satisfies a property Φ or not.
SMT solvers enable SMT-Based Bounded Model Checking over infinite domains. The idea of Bounded
Model Checking is to check the negation of a given property at a given depth [19].

2.2. Program Verification by SMT-Based Bounded Model Checking

In BMC, the program to be analyzed is modelled as a state transition system, which is extracted
from the control-flow graph (CFG) [6,7] as shown in Figure 1. In Figure 1, l0, l1 and l2 are a set of states,
T0, T1 and T2 are a set of transition relations such as T0 = {(l0, l1)}, T1 = {(l1, l1)} and T2 = {(l1, l2)}.
This graph is built as part of a translation process from program text to single static assignment (SSA)
form. A node in the CFG represents either a (non-) deterministic assignment or a conditional statement,
while an edge in the CFG represents a possible change in the program’s control location.

A state transition system M = (S, T, S0) is a machine that consists of a set of states S of basic
blocks, where S0 ⊆ S represents the set of initial states, and T ⊆ S × S is the transition relation,
that is, pairs of states specifying how the system can move from state to state. A state s ∈ S consists
of the value of the program counter PC and the values of all program variables of a basic block.
An initial state s0 assigns the initial program location of the CFG to the PC. We identify each transition
γ = (si, si+1) ∈ T between two states si and si+1 with a logical formula γ(si, si+1) that captures the
constraints on the corresponding values of the program counter and the program variables.

Given a transition system M, a property Φ, and a bound k, BMC unrolls the system k times and
translates it into a VC (Verification Condition) ψk such that ψk can be satisfied if and only if for some
i ≤ k there exists a reachable state at time step i in which Φ is violated. The VC is a quantifier-free
formula in a decidable subset of first-order logic, which is then checked for satisfiability by an SMT
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solver. In this work, we are interested in checking safety properties of single-threaded programs.
The associated model checking problem is formulated by constructing the following logical formula:

ψk = I(s0) ∧
k∨

i=0

i−1∧
j=0

γ(sj, sj+1) ∧Φ(si). (1)

Here, Φ is a safety property, I the set of initial states of M and γ(sj, sj+1) the transition relation
of M between time steps j and j + 1 of basic blocks. Hence, I(s0) ∧

∧i−1
j=0 γ(sj, sj+1) represents the

executions of M of length i and Equation (1) can be satisfied if and only if for some i ≤ k there exists a
reachable state at time step i in which Φ is violated. If Equation (1) is satisfiable, then the SMT solver
provides a satisfying assignment, from which we can extract the values of the program variables to
construct a counterexample. A counterexample for a property Φ is a sequence of states s0, s1, . . . , sk
with s0 ∈ S0, sk ∈ S, and γ(si, si+1) for 0 ≤ i < k. If Equation (1) is unsatisfiable, we can conclude that
no error state is reachable in k steps or less [10].

Figure 1. Unrolling the system from Control Flow Graph (CFG).

3. Proposal of Modeling Assembly Codes

We construct logical formulas by modeling assembly codes using SMT (Satisfiability Modulo Theories).

3.1. Defining States of Assembly Codes

A state is defined by values of registers and memory in microcontroller, and the values are
represented as Bit-Vector.

In this paper, we model values of 16-bit registers and memory assigned address in the 16-bit
by Fixed-Size Bit-Vector theory in SMT [18]. As some assembly instruction operates bits, Fixed-Size
Bit-Vector theory is effective. We define registers by Fixed-Size Bit-Vector typed variables, and define
memory by the function of Fixed-Size Bit-Vector mapping a 16-bit address to a 8-bit value. We construct
states by Fixed-Size Bit-Vector typed variables and the function. Fixed-Size Bit-Vector theory consists
of functions and predicates of Fixed-Size Bit-Vector. Functions consist of concat, extract, bvadd, bvsub,
where function concat concatenates two bit vectors, function extract extracts bits, function bvadd adds
two bits, function bvsub subtracts bits from bits. Fixed-Size Bit-Vector theory is defined by SMT-LIB
2.0, which is an international initiative aimed at facilitating research and development in Satisfiability
Modulo Theories (SMT) [20,21], and is implemented by SMT solvers.

3.2. Defining State Transitions of Assembly Codes

First as IH might be invoked at every assembly instruction, we represent an assembly program
by state transitions via Control Flow Automata (CFA) with the idea of Berkeley Lazy Abstraction
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Software verification Tool (BLAST) [22,23] instead of CFG. A CFA is a directed graph, with locations
corresponding to control points of the assembly program, and edges corresponding to program
operations. The transition relation γ(sCFA

j, sCFA
j+1) is defined by G(sCFA

j) ∧ IS(sCFA
j, sCFA

j+1) as
shown in Figure 2, where sCFA

j (j = 0, 1, 2, )̇ is a state generated by one assembly instruction based on
CFA. If there is a branch instruction in sCFA

j, the state of the transition destination is sCFA
j+1. In this

case, the transition relation is defined by the same γ(sCFA
j, sCFA

j+1). The case of ACB (in Section 5.3)
can be defined similarly.

Figure 2. State transition of assembly code.

In this paper, we use standard Fixed-Size Bit-Vector theory [18]. In the description of CFGs,
we use two kinds of equation symbols for clarity, == for guard conditions and = for assignments.
When passing formulas to the SMT solver, both symbols are translated as the equation symbol of the
Bit-Vector theory.

By the way, the transition relation γ(sj, sj+1) in Equation (1) is generated from CFG. On the other
hand, the transition relation γ(sCFA

j, sCFA
j+1) is generated from CFA. γ(sCFA

j, sCFA
j+1) is different

from γ(sj, sj+1).

1. First a transition condition G(sCFA
j) is the equation using PC (Program Counter). For PC0 ==

0x0000, if the PC0 is 0x0000, this means that the instructions of the Static Single Assignment form
(SSA) format are executed. PC1 = 0x0001 means to assign 0x0001 to PC1.

2. Next after executing assembly codes at sCFA
j, the transition from sCFA

j to sCFA
j+1 occurs. The next

state sCFA
j+1 is defined by a instruction constraint IS(sCFA

j, sCFA
j+1). CFA is constructed

from assembly codes. Each node consists of assembly code, and each edge is caused by a
instruction constraint IS(sCFA

j, sCFA
j+1). An instruction constraint IS(sCFA

j, sCFA
j+1) is represented

by predicate formulas. There are instructions such as data transfer, arithmetic operation, extraction
and concatenation [24]. The logical formula of state transition γ(sCFA

j, sCFA
j+1) is represented by a

instruction constraint IS(sCFA
j, sCFA

j+1). All instructions can be transformed into IS(sCFA
j, sCFA

j+1).

Also, in Figure 2, for all registers that are not assigned in a state (for example, ER), a constraint
such as ERp+1 = ERp is set to IS(sCFA

j, sCFA
j+1), where p ∈ {0, 1, 2, . . .}. All variables that appear

in the left-hand sides of SSA are distinguished by introducing a fresh variable for each assignment.
We use the subscript p to represent these variables. p is used for variables with distinct names.

Here we show three IS(sCFA
j, sCFA

j+1) of MOV and ADD instructions as follows.
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1. The instruction constraint IS(sCFA
j, sCFA

j+1) of data transfer instruction MOV ERs, ERd is
represented by the equation between ERs and ERd as follows.

ERdp+1 = ERsp (2)

where ERsp represents the value of ERs at sCFA
j, and ERdp+1 represents the value of ERs at sCFA

j+1.
2. The instruction constraint IS(sCFA

j, sCFA
j+1) of Fixed-Size Bit-Vector operation, for example ADD

ERs, ERd is represented by the equation between an operation result and a destination register.
The following Equation (3) represents adding ERs and ERd, and storing it in ERd using bvadd.

ERdp+1 = bvadd ERdp ERsp. (3)

3. The instructions (a) MOV a©AR, ERd and (b) MOV ERs, a©AR are represented by functions
_extract and concat of bits as follows. Here a© denotes register indirect addressing. Access to
address space is defined by a function AS and the argument of the function is indirect address.

(a) The instruction constraint IS(sCFA
j, sCFA

j+1) of the instruction MOV a©AR, ERd is
represented by Equation (4) using concat as shown in Figure 3. The value of 16-bit register
AR is interpreted as memory address, and the value that is stored at the address is stored
into ERd.

ERdp+1 = (concat ASp (ARp)

ASp (bvadd ARp ]x0001)).
(4)

Figure 3. MOV a©AR, ERd.

(b) The instruction constraint IS(sCFA
j, sCFA

j+1) of the instruction MOV ERs, a©AR is
represented by Equation (5) using _extract as shown in Figure 4. The value of 16-bit
register AR is interpreted as memory address, and the value of ERs is stored into the
address AR.

( (ASp+1 (ARp))

= ((_extract 15 8) ERsp)

∧
((ASp+1 (bvadd ARp ]x0001))

= ((_extract 7 0) ERsp)).

(5)
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Figure 4. MOV ERs, a©AR.

Because all including the update of PC and status registers may not be stated clearly for an operand,
we add update of the PC and the status registers to the instruction constraint IS(sCFA

j, sCFA
j+1) in

consideration of both the structure of the microcomputer and the syntax of assembly code.
Also in consideration of interrupts, we must compose program and Interrupt Handler (IH).

Composing program and Interrupt Handler may cause the state space explosion. But in the case of
a routine controlling permission and prohibition of interrupts, we need not add interrupts into the
program location when interrupts are prohibited. Therefore we can reduce the state space of program
using B. Schlich et al.’s method [8].

4. Introduction to Interrupt Handler Execution Reduction (IHER)

B. Schlich et al. have developed an abstraction technique called IHER, which reduces the number
of IH executions by blocking IHs at program locations where there is no dependency between certain
IHs and the program [8]. Here there is a dependency if either one influences the other or the visible
behavior of the program is changed. An IH influences a program location if it writes a memory location
that is accessed by the program location, and on the other hand, a program location influences an IH if
it enables or disables interrupts.

In this paper, we reduce the number of IH executions using B. Schlich et al.’s IHER.
B. Schlich et al.’s IHER consists of four steps. According to B. Schlich et al.’s paper [8], we briefly

explain the four steps as follows.

1. Detect Dependencies between IHs:

i, j ∈ IH depend on each other, if one of the following conditions holds:

• one enables or disables the other,
• one writes a memory location accessed by the other, or
• one writes a memory location. Writing a memory location or a register is an atomic proposition,

where an atomic proposition is appeared in temporal logic formulas. In other words, writing a
value to a variable is used as the atomic proposition in a temporal logic formula that describes a
property to be verified.

2. Detect Dependencies between Program and IHs:

To detect the dependencies between the program and the IHs, we mark specific program locations
with the following two labels: execution and barrier. The label execution implies that there exists
a dependency between the preceding program location and an IH, and thus, this IH needs to
be executed eventually. The label barrier denotes that there exists a dependency between that
program location and an IH, and therefore, this IH needs to be executed before the instruction at
that location is executed.

Let program location k be a direct predecessor of program location l.
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• Label execution:

For each i ∈ IH, l is labeled with executioni if one of the following conditions is satisfied:

– k enables or disables i,
– k writes a memory location that is accessed by i, or
– k writes a memory location that is used in an atomic proposition.

• Label barrier:

For each i ∈ IH, a program location l is labeled with barrieri if one of the following
conditions holds:

– i writes a memory location that is accessed by l,
– l enables or disables i,
– l writes a memory location that is accessed by i, or
– l writes a memory location that is used in an atomic proposition.

3. Refine Labelings:

In the refinement step, we try to reduce state spaces further by moving executioni labels until
their execution is actually required. We move labels executioni forward until one of the following
conditions holds:

• a program location labeled with barrieri is reached,
• a loop entry is found, or
• a loop exit is found.

4. Label Blocking Locations:

In the last step, all program locations are labeled with IHs that can be blocked at the corresponding
program location. An IH can be blocked at a program location if its execution is not required.
Thus, a program location is labeled with blockingi if it is not labeled with executioni.

IHER reduces the number of program locations at which the possible execution of interrupt
handlers (IHs) has to be considered. In this paper, we reduce state spaces using IHER. B. Schilich’s paper
proves that model checking of CTL∗−X is valid, even if IHER reduces the number of program locations
at which the possible execution of interrupt handlers (IHs) has to be considered. Here CTL∗ − X is
defined by disallowing the nexttime operator X in CTL∗ formulas [25]. In this paper, as we verify
assembly codes using subclass of CTL∗ − X such as safety properties, our verifications are valid even
if IHER reduces the number of assembly program locations.

5. Proposal of Assembly Code Block (ACB) of CFG Using IHER (in Other Words, Combining
SMT-Based Bounded Model Checking and Reduction of Interrupt Handler Executions)

5.1. Introduction to ACB

In this paper, we reduce the number of IH executions by blocking IHs at program locations
using IHER, and make a set of basic blocks from assembly codes blocking IHs. We propose this set of
blocks, what we call ACB. By the same method as partitioning program codes into basic blocks [6,7],
we partition assembly codes into blocks. Therefore there are no jumps into the middle of the block.
Also control will leave the block without halting or branching, except possibly at the last instruction in
the block. The blocks become the nodes of CFG, whose edges indicate which blocks can follow which
other blocks.

The start point satisfies one of the following conditions:

• A start node of program
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• A branch destination node
• An execution node

Also the end point satisfies one of the following conditions:

• An end node of program, which has return instruction
• A node, which has branch instruction

The consecutive nodes from the start point of the block to the end point becomes one node.

5.2. ACB (Assembly Code Block)

We propose ACB by extending basic blocks [6,7]. In ACB, assembly codes, at which IHs are
blocked, are collected, and one block is made. ACB is built as part of a translation process from
assembly program text to SSA (static single assignment) form [6,7] as shown in Figure 5, where sj is
generated by a basic block of CFG, and sACB

q is generated by ACB of CFG.

Figure 5. Transition of Assembly Code Block (ACB).

Basic blocks γ(sj+m, sj+m+1) = G(sj+m) ∧ IS(sj+m, sj+m+1) (m = 0, . . . , L − 1) is defined
by transforming assembly program into SSA form and then into the quantifier-free formula,
where L is the number of instructions merged from basic blocks to ACB in program including
interrupt routines. ACB based on IHER reduces the number of logical formulas of a transition
γ(sACB

q, sACB
q+1), where γ(sACB

q, sACB
q+1) = G(sACB

q) ∧ IS(sACB
q, sACB

q+1) as shown in Figure 5,
where q ∈ {0, 1, 2, . . .} represents the order in which sACB

q is generated. sACB
q consists of the values

of variables of the bit vector type representing the values of the program counter, program variables
and registers. Each sACB

q is defined by the values of common state variables. If no assignment is
made to a register, an expression is added to indicate that the value of ER0p+1 = ER0p in state sj+1
does not change. But we omit the expression in Figure 5 and all figures in this paper. In Figure 5,
we denote variables such as PCp and ER1p+1 by SSA notation. Figure 5 shows a method of constructing
ACB(sACB

q, sACB
q+1) from the basic blocks γ(sj, sj+1) and γ(sj+1, sj+2). Here PCp == 0x0000 means

that if PCp is equal to 0x0000, the following instructions will be executed, and PCp+1 = 0x0000 means
to substitute 0x0000 into PCp+1. PCp and PCp+1 are SSA forms of a single state variable PC, and PCp

and PCp+1 correspond to a state variable PC. In Figure 5, each set of variables used in sj, sj+1, sj+2 and
sACB

q, sACB
q+1 is the following subset:

{PCp, PCp+1, ER0p, PCp+2, ER1p, ER1p+1}
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1. G(sACB
q) is the conditional statement using PC value of the first instruction.

2. IS(sACB
q, sACB

q+1) is the conjunction of logical formulas representing update of registers and
locations by executing instructions. As shown in Figure 5, the number of logical formulas of ACB
is smaller than the number of logical formulas of basic block.

The generation procedure of ACB formula such as γ(sACB
q, sACB

q+1) = G(sACB
q)∧ IS(sACB

q, sACB
q+1),

is as follows.

Description 1.

(1) Since the first instruction of ACB is a guard instruction, a predicate logical expression G(sACB
q) with a

conditional expression == is generated.
(2) Since the instruction after the first is an assignment statement to a register or a memory, a logical expression

is generated in the usual SSA format [7].
(3) Repeat (2) to generate these logical products.
(4) Finally generate a logical product of (1) and (3).

Here we describe “the condition of a basic block” [6,7] as follows. A basic block is a sequence of
instructions, satisfying “the condition of a basic block” such that the flow of control can enter the basic
block through the first instruction and control will leave the basic block without halting or branching
except at the last instruction in the basic block.

Finally we define Algorithm 1 to generate from basic blocks to ACB.

Algorithm 1 Algorithm to generate from CFA to ACB

1: Input : CFA of assembly program
2: Output : CFG of ACB
3: Method : By the following procedures of (1), (2) and (3), ACB is generated from assembly program.

Description 2.

(1) First, as IH might be invoked at every instruction and IH is called for all instructions in CFA [22,23],
we embed IH call in every instruction.

Next, as shown in Figure 6, for all instructions, by making both an edge from IH to an instruction and an
edge from the instruction to IH, we generate CFG using commonly used techniques in compiler [6,7].

(2) First, as shown in Figure 7, we delete unnecessary IH calls using IHER [8].

Next, after deleting unnecessary IH calls, we reconfigure CFG for basic blocks.
(3) After IHER removes unnecessary IH calls, there are some basic blocks where IH branches are deleted.

The basic blocks where the branches are deleted can be merged, so we merge and configure a new basic
block, what is called ACB as shown in Figure 8, as follows:

Generating from basic blocks to ACB is performed by depth-first search from the basic block of the CFG
root as follows:

Description 3.

(a) The following processing is performed on the next basic block connected by an edge from the basic block:

Description 4.

(a)-1 Merge basic blocks if “the condition of a basic block” is satisfied. However, we do not merge with
basic blocks that have already been merged with other basic blocks. Two ACBs can meet the same
block when merging and bifurcation exist in the CFG.

(a)-2 Otherwise, do not merge, and the basic block becomes ACB.
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Figure 6. Usual CFG.

Figure 7. CFG of IHER.
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Figure 8. CFG of ACB.

5.3. Program Verification Based on ACB

In order to verify program using SMT-Based Bounded Model Checking based on ACB, first the
assembly program is modeled as a state transition system, which is extracted from CFG consisting
of ACBs, instead of CFG consisting of basic blocks [6,7]. Usual CFG is a graph with basic blocks as
nodes [6,7], on the other hand, CFG here is a graph with ACBs as nodes. A node in the CFG consisting
of ACBs represents either a (non-) deterministic assignment or a conditional statement, while an
edge in the CFG represents a possible change in the assembly program’s control location. Given a
transition system M, a property Φ, and a bound k, Bounded Model Checking unrolls the system k
times and translates it into a verification condition ψk such that ψk is satisfiable if and only if Φ has a
counterexample of depth k or less. The verification condition ψk is constructed from the CFG consisting
of ACBs, and given by Equation (6).

As ACB(sACB
q, sACB

q+1) is constructed by composing basic blocks such as γ(sj, sj+1),
γ(sj+1, sj+2), . . ., Equation (6). can compute the larger number of reachable states than Equation (1)

ψk = I(sACB
0)∧

k∨
i=0

(
i−1∧
q=0

ACB(sACB
q, sACB

q+1) ∧Φ(sACB
i)).

(6)

Verification property Φ is intended to be re-given (abstracted by block granularity) in the CFG
after blocking with ACB.

An example of merging from two basic blocks to ACB is shown below. Sometimes it merges
from two or more basic blocks to the ACB. When the number of instructions of ACB is L,
ACB(sACB

q, sACB
q+1) is represented by Equation (7) as shown in Figure 5.

ACB(sACB
q, sACB

q+1) :=

G(sACB
q) ∧ IS(sACB

q, sACB
q+1).

(7)
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ACB(sACB
q, sACB

q+1) is the conjunction of a transition condition G(sACB
q) and an instruction

constraint IS(sACB
q, sACB

q+1). An instruction constraint IS(sACB
q, sACB

q+1) is the logical formula
representing effect by executing the instruction.

We suggest thefollowing:

1. When instructions included in one ACB are few, the effect of reducing state spaces is not
provided enough.

2. As the length of logical formula ACB(sACB
q, sACB

q+1) is long, verification time is long by
SMT solver.

5.4. Comparison of Usual CFG, CFG of IHER, CFG of ACB

In this subsection, we compare usual CFG, CFG of IHER, CFG of ACB. In Figures 6–8, we show
the correspondence between the assembly program and the CFG with dotted arrows. The CFGs
shown in Figures 6–8 are CFGs considering loops, and include arbitrary execution paths as shown in
References [6,7,22,23]. Therefore, if this CFG is verified, it can be verified by model checking for an
arbitrary execution path.

1. Usual CFG [6,7] is used in the optimization of compiler. Every assembly instruction, an interrupt
occurs. Therefore as usual CFG with interruptions is shown in Figure 6, the state space explosion
usually occurs.

2. CFG of IHER is developed by B. Schlich et al. [8]. IHER reduces the number of Interrupt Handler
executions by blocking Interrupt Handlers at program locations where there is no dependency between
certain Interrupt Handlers and the program [8]. Therefore CFG of IHER is shown in Figure 7.

For example, in Figure 7, since the value of ER1 after executing SUB.L instruction is the same
regardless of the presence or absence of the interrupt routine, the transition to the interrupt
routine is decreasing because there is no dependency . As explained in Section 4, IHER and our
proposed method analyze even such complex dependencies.

3. We propose CFG of ACB in this paper. We propose ACB by extending Basic block of CFG [6,7]
using IHER [8] in order to reduce the state spaces. In order to reduce the number of blocks,
we propose the method of making the block of codes, at which interruptions do not occur.
Therefore CFG of ACB is shown in Figure 8. Here for example, we show sACB

q (q = 0, 1, 2, . . .),
PCp, ERp (p = 0, 1, 2, . . .) in Figure 8 as follows:

(a) sACB
0 := PC0 == 0x0000 ∧ PC1 = 0x0001 ∧ ER00 = 0x0001 ∧ PC2 = 0x0002 ∧ ER11 =

ER10 + ER10 ∧ PC3 = 0x0003∧ ER20 = 0x0001
(b) The following is repeated with a loop count n = 0, 1, 2, . . . of lines 3–5 of the program:

i. sACB
1+n := PC3+5n == 0x0003 + 5n ∧ PC4+5n = 0x0004 + 5n ∧ ER01+n =

ER00+n + ER00+n

ii. sACB
2+n := PC4+5n == 0x0004 + 5n ∧ PC5+5n = 0x0005 + 5n ∧ ER12+n = 0x001

iii. sACB
3+n := PC5+5n == 0x0005 + 5n ∧ PC6+5n = 0x0006 + 5n ∧ CCR0+n = 0x0

iv. sACB
4+n := PC6+5n == 0x0006 + 5n ∧ PC7+5n = 0x0007 + 5n ∧ ER13+n = 0x001

v. sACB
5+n := PC7+5n == 0x0007 + 5n ∧ PC8+5n = 0x0008 + 5n

(c) sACB
6+n := PC8+5n == 0x0008 + 5n ∧ PC9+5n = 0x0009 + 5n ∧ ER21 = 0x0000 ∧

PC10+5n = 0x0010 + 5n

Here, the PC on the sixth line of the program is PC9+5n = 0x0009 + 5n, and the PC on the
seventh line is PC10+5n = 0x0010 + 5n.

However, n(n = 0, 1, 2, 3, . . .) changes depending on k of bounded model check k-bound.
The larger k is, the larger n is.



Electronics 2020, 9, 1060 15 of 24

From comparison of usual CFG, CFG of IHER and CFG of ACB, our proposed ACB is effective for
the number of blocks as shown in Figures 6–8, where we omit the constraints that represent no change.

6. Prototype Model Checker

This prototype is a prototype in the sense that it realizes a subset of instructions of assembly program,
but the functions of our proposed method are realized. Therefore, experimental evaluation is general.

6.1. Verification Example

In this paper, we demonstrate the effectiveness of our proposed method for robots which carried
microcomputer H8/3687 [26,27] of Renesas company. In H8/3687 processor, all the general purpose
registers are 16 bits wide. When a general register is used as a data register, it can be accessed as a
32-bit, 16-bit, or 8-bit register. On the other hand, Control registers consist of 24-bit PC, 8-bit CCR.
When ER7 (SP) is used as an address register to access the stack area, the operand size should be word
or longword.

In this paper, we model values of 16-bit registers and memory assigned address in the 16-bit by
Fixed-Size Bit-Vector theory in SMT [18]. We define registers by Fixed-Size Bit-Vector typed variables,
and define memory by the function of Fixed-Size Bit-Vector mapping a 16-bit address to a 8-bit value.
We construct states by Fixed-Size Bit-Vector typed variables and the function. Fixed-Size Bit-Vector
theory consists of functions and predicates of Fixed-Size Bit-Vector. Functions consist of concat, extract,
bvadd, bvsub.

6.2. Example of Modeling Assembly Instructions

We transform instructions into instruction constraints as shown in Table 1. The notation of the
expression follows input form SMT-LIB2lang [20] of SMT-LIB 2.0. In Table 1, we omit implicit behaviors
about PC, and CCR, and we list only logical formulas indicating the behaviors for the operand.

1. The data transfer instruction MOV ERs, ERd is represented by the equation between source
register ERsj and destination register ERdj+1.

2. ADD.W Rs, Rd is represented by the equation between an operation result and a destination
register using _extract, concat and bvadd.

3. a© denotes register indirect addressing. MOV.B RsL a©ERd stores the low 8 bits of a source
operand RsL into the address that the value in a destination register points. Access to address
space (AS) is defined by a function, and the argument of the function is indirect address.

Table 1. Logical formulas of H8/3687 asembly instruction(SMT-LIB2 notation).

Item Instruction Operation Formula

1. MOV.L ERs, ERd ERs32→ ERd32 (ERdp+1 = ERsp)

2. ADD.W Rs, Rd Rd16 + Rs16→ Rd16 (ERdp+1 = (concat((_extract 31 16)ERdp)
(bvadd((_extract 15 0)ERdp)((_extract 15 0)ERsp))))

3. MOV.B RsL, @ERd Rs8→ @ERd ((ASp+1(_extract 15 0)ERdp)) = ((_extract 15 0)ERsp)
and ( f orall((x(_BitVec 16)))((x = (_extract 15 0)ERdp)

or((ASp+1) = (ASp))))

6.3. Configuration of Prototype Model Checker

We show the configuration of prototype model checker in Figure 9. Our prototype model
checker consists of analysis of assembly codes, generation of CFG, VC (Verification Condition) builder,
verification by SMT solver. Prototype Model Checker is written in Java 7 (7500 lines).
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Figure 9. Configuration of prototype model checker.

1. Lexer and Parser:

Lexer performs lexical analysis, and parser performs syntax analysis of assembly codes of H8/3687
microcomputer. Lexer and Parser output analyzed codes (syntax tree) and memory map from
assembly codes. We use JFlex [28] and BYACC/J [29] for Java in order to develop Lexer and Parser.

2. CFG generator:

CFG generator constructs CFG from syntax tree. First CFG generator composes interrupts. After that
it constructs CFG using IHER. CFG consists of both ACBs and the transitions between ACBs.

3. VC builder:

VC builder generates verification conditions. VC builder generates logical formulas of an initial
condition and transition relations from CFG. Given a property Φ and a bound k, the verification
condition ψk is gnerated such as Equation (6).

4. SMT solver: We verify the verification condition ψk using SMT solver Z3 4.3 [30]. In this paper,
we use Fixed-Size Bit-Vector theory in SMT [18,24].

7. Verification Experiments

7.1. Overview of Verification Experiments

Prototype model checker verifies assembly codes of H8/3687 microcomputer. We prepare two
programs. Two programs satisfy each verification condition. We verify programs using only IHER and
using both IHER and ACB. As SMT solver may not terminate in a realistic time, we stop verification in
a time limit.

We verify whether the following property composed of the conjunction of three conditions
φ1(sACB

q), φ2(sACB
q) and φ3(sACB

q) is satisfied. Thought the property is a liveness property correctly
if infinite k-bound, we verify whether there is a counterexample until finite k-bound. Namely we
verify the following liveness property as a safety property.

1. φ1(sACB
q): Program reaches RTS instruction.

2. φ2(sACB
q): The value of stack pointer after reaching RTS is equal to the value of stack pointer

before executing the routine.
3. φ3(sACB

q): The value of PC after executing RTS is equal to return address.
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For verifying the above property, the set of initial states is given by initial conditions as follows.

1. I1(sACB
0): The initial value of PC is set.

2. I2(sACB
0): The initial value of stack pointer is equal to the value of stack pointer before calling

this routine.
3. I3(sACB

0): The return address is stored in the stack at the time of the routine start.

In accordance with the above, we give the set of initial states I(sACB
o) and the verification property

Φ(sACB
i) in the verification conditional Equation (6) verified in this experiment concretely in SSA form.

1. When the initial value of PC is set to ]x0100 and the return destination address is set to ]x0116 in
program 1, the set of initial states I(sACB

0) is defined as follows:

I(sACB
0) = I1(sACB

0) ∧ I2(sACB
0) ∧ I3(sACB

0), where I1(sACB
0) = (PC0 = ]x0100), I2(sACB

0) =

(ER70 = ]xFF78), I3(sACB
0) = (AS0(ER70) = ]x0001) ∧ AS0(ER70 + 1) = ]x0016).

Here I1(sACB
0) is an expression defining the initial value of the program counter PC

(corresponding to the initial condition 1), I2(sACB
0) is an expression defining that the initial value

of stack pointer is equal to the value of stack pointer before calling this routine (corresponding to
the initial condition 2), and I3(sACB

0) is an expression defining that the return address is stored in
the stack at the time of the routine start.

2. When the address of ReTurn from Subroutine (RTS) instruction is ]x010E, the return destination
address is ]x0116, and the stack pointer register ER7 is ]xFF78 in program 1, the verification
property Φ(sACB

q) is defined, where q = 6 + n and p = 11 + 5n as follows:

Φ(sACB
q) = φ1(sACB

q) ∧ φ2(sACB
q) ∧ φ3(sACB

q), where φ1(sACB
q) = (PC10+5n == ]x010E),

φ2(sACB
q) = (ER70 == ]xFF78), φ3(sACB

q) = (PC11+5n == ]x0116).

As shown in Figure 8, a verifier specify Φ(sACB
q) including q = 6 + n and p = 11 + 5n using the

correspondence between the assembly program and the CFG with dotted arrows, where n is the
number of loops of program.

Here φ1(sACB
q) is an expression defining that Program reaches RTS instruction (corresponding to

the property 1), φ2(sACB
q) is an expression defining that the value of stack pointer after reaching

RTS is equal to the value of stack pointer before executing the routine (corresponding to the
property 2), and φ3(sACB

q) is an expression defining that the value of PC after executing RTS is
equal to return address (corresponding to the property 3).

As a general theory, in embedded software, assembly language description is included in the
interface part with hardware, so programming with C program alone is impossible. Therefore,
in embedded software, verification of the assembly program is necessary. Also, since one line of the
C program is compiled into the assembly program 2–3 lines, it can not be verified accurately by C
program verification for interrupt processing occurring for each assembly program line. Also, it can
not be verified that it is not an assembly program that the stack is not destroyed. The points concerning
the evaluation experiment are as follows.

1. The verification property that the stack pointer before the function call is equal to the stack
pointer immediately after returning from the called function can be verified only by the assembly
program. By this verification property we verify whether the stack is not destroyed.

2. The verification property that the return address saved before the function call is equal to the
address after execution of the RTS instruction of the called function can be verified only by the
assembly program. By this verification property we verify whether the stack is not destroyed, too.

7.2. Which Programs Are Verified ?

We prepare two programs consisting of main routine and interrupt routines. They are the essential
part of typical embedded programs implemented in e-nuvo WHEEL [31].
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Program 1 consists of routine _testCode and interrupt _testIntr as shown in Figure 10. _testCode
repeats the addition of register ER0 until the value of register ER1 except 0 is stored. _testIntr renews
contents of the stack while storing a value in register ER1. That is, this program is a program that
continues adding until an interrupt occurs and does not stop. Also, assuming that an interrupt is
disabled in program 1 in the initial state, the interrupt is enabled by setting a value to the 6th bit in
the address indicated by the interrupt status register Inputbuffer Control Register (ICR). As the above
verification property is satisfied, model checker outputs UNSATisfiable (UNSAT).We stop verification
in a time limit.

Program 2 consists of routine _sci_txbu f _set and interrupt _int_sci, which are implemented in
e-nuvo WHEEL [31] as shown in Figure 11. _sci_txbu f _set sets a value in a transfer buffer of serial
communication interface (SCI3). This _sci_txbu f _set controls an interrupt at the time of the transfer
by SCI3, and the transfer processing in interrupt routine _int_sci is prohibited during executing this
routine. We stop verification in a time limit.

Figure 10. Program 1.

Figure 11. Program 2.
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7.3. Results of Experiments

We verify programs in the following experiment environment as shown in Table 2. We stop
verification in ten minutes of SMT solver. If verification time is longer than 3600 s after verification,
verification is aborted.

Table 2. Environment of verification.

CPU Windows 7 Professional 64 bit
OS Core i7-3770 CPU @3.40 GHz

Memory 16 GB
SMT solver Microsoft Z3 v4.3.0 [30]

Java Ver. 1.7.0_45
Prototype 8400 lines

By the introduction of ACB, both the number of interruption codes and the number of blocks are
reduced, but the number of codes in a block is increased. The cost of verification is determined by the
multiplication of the number of blocks and the size of blocks. Therefore in ACB, the verification cost of each
block has a bigger cost. But the overall verification cost decreases because there is little number of blocks.
At first, we verify the program with k = 1, then we increase k one by one and repeat program verification.

7.3.1. Verification Results of Program 1

We show verification results of program 1 using existing IHER and using our proposed ACB as
shown in Table 3. When comparing with the same verification time, it is better to use ACB rather than
IHER to include more assembly code lines (number of instructions) as shown in Table 3. In Table 3,
the column name nodes of IHER is the number of basic blocks and the column name nodes of ACB is
the number of ACB blocks. The number of nodes of ACB in the Table 3 was calculated by generating
CFG. As ψk is unsatisfiable using SMT solver, Φ is satisfied, and does not have a counterexample of
depth k.

Table 3. Verification result of program 1.

Model Nodes Result Time (s) k-Bound Assembly [Lines]

IHER 10 UNSAT 3673 57 3536

ACB 5 UNSAT 4075 52 4682

Also we show verification lines of program 1 for verification time in Figure 12. The vertical axis
“Lines” in Figure 12 is the number of lines of the verified assembly code, and it was measured with our
verification tool. For all state transition sequences obtained with the number of state transitions less
than the given bound, the sum of the number of code lines executed by the program corresponding to
each state transition sequence is assembly [lines] in Tables 3 and 4 . When we use ACB, the number
of lines which we can verify in 3600 s increases from 3500 lines to 4500 lines. Therefore from the
viewpoint of a bound k, our proposed ACB is superior to existing IHER. In the verification results of
Program 1, both IHER and ACB output UNSAT. As the tool answers UNSAT, the behavior shown by
the real microcontroller is safe under general conditions such as initial conditions.

Table 4. Verification result of program 2.

Model Nodes Result Time (s) k-Bound Assembly [Lines]

IHER 73 UNSAT 43,656 33 4485

ACB 43 UNSAT 43,789 22 9704
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Figure 12. Verification lines of program 1 for verification time.

7.3.2. Verification Results of Program 2

We show verification results of program 2 using existing IHER and using our proposed ACB as
shown in Table 4. In Table 4, the column name nodes of IHER is the number of basic blocks and the
column name nodes of ACB is the number of ACB blocks. When ψk is satisfiable using SMT solver,
Φ has a counterexample of depth k.

In the verification results of Program 2, both IHER and ACB output UNSAT. Therefore it was
confirmed that the stack was used correctly in the execution path that was verified up to each maximum
step. Since interrupts are prohibited from line 6 to line 29 of _sci_txbu f _set , the reduction of nodes
due to blocking was remarkable. Figure 13 is a graph showing the change in the number of verified
code lines per verification time. The number of verification lines per second is always higher than that
of our ACB model, and the effect of blocking was confirmed, and the efficiency of verification time is
considered to be higher for our ACB model.

Figure 13. Verification lines of program 2 for verification time.
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7.4. Comparison with Classical Model Checking

7.4.1. Comparison with the Classical Model Checker SPIN

We compare SPIN [32] with our proposed method by program 1. We can verify Program 1 using
SPIN in less time than using our proposed method as shown in Figure 14.
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Figure 14. Comparison of SPIN and proposed Tool.

We can verify a system in polynomial time for the size of the system using SPIN. Also, SPIN has
the following several optimisation algorithms to make verification runs more effective:

1. partial order reduction
2. bitstate hashing
3. minimised automaton encoding of states (not in a hashtable)
4. state vector compression
5. dataflow analysis
6. slicing algorithm

On the other hand, SMT-based model checking is convenient because it can use a general purpose
theorem provers, but deciding the satisfiability of formulas with respect to decidable background
theories is usually in NP-complete [18].

7.4.2. Examples That Can Not Be Verified by Classical Model Checking

Here we consider Program 3 in Figure 15. As function _ f is not defined in Program 3, we can not
verify Program 3 by SPIN [32] . On the other hand, we can verify Program 3 using the following SMT
theory of undefined function [18] by our proposed method.

(x1 = y1) ∧ (x2 = y2) implies F(x1, x2) = F(y1, y2).

This is one of advantages of SMT-based model checker.
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Figure 15. Program 3.

8. Conclusions and Future Works

In this paper, we proposed the verification method of safety properties using ACB (Assembly
Code Block) by combining SMT-Based Bounded Model Checking [9] and Reduction of Interrupt
Handler Executions [8]. Also we implemented prototype model checker by Java 7500 lines, and show
effective our proposed method. We model registers and values of assembly codes using Fixed-Size
Bit-Vector theory, and construct a transition system. Also we construct the transition system including
interrupts. We reduce state spaces using ACB.

In this paper, we developed a prototype model checker for demonstrating our proposed methods.
We cannot specify verification properties without looking at generated CFG of ACBs. But if we extend our
prototype model checker, we can specify verification properties with looking only at assembly program.

We are now extending our prototype model checker for specifying verification properties with
looking only at assembly program. We are currently verifying other examples and properties using
our proposed method. Also we develop verifying liveness properties.
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