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Abstract: To solve real-time challenges, neuromorphic systems generally require deep and complex
network structures. Thus, it is crucial to search for effective solutions that can reduce network complexity,
improve energy efficiency, and maintain high accuracy. To this end, we propose unsupervised pruning
strategies that are focused on pruning neurons while training in spiking neural networks (SNNs) by
utilizing network dynamics. The importance of neurons is determined by the fact that neurons that
fire more spikes contribute more to network performance. Based on these criteria, we demonstrate
that pruning with an adaptive spike count threshold provides a simple and effective approach that
can reduce network size significantly and maintain high classification accuracy. The online adaptive
pruning shows potential for developing energy-efficient training techniques due to less memory
access and less weight-update computation. Furthermore, a parallel digital implementation scheme
is proposed to implement spiking neural networks (SNNs) on field programmable gate array (FPGA).
Notably, our proposed pruning strategies preserve the dense format of weight matrices, so the
implementation architecture remains the same after network compression. The adaptive pruning
strategy enables 2.3× reduction in memory size and 2.8× improvement on energy efficiency when
400 neurons are pruned from an 800-neuron network, while the loss of classification accuracy is
1.69%. And the best choice of pruning percentage depends on the trade-off among accuracy, memory,
and energy. Therefore, this work offers a promising solution for effective network compression and
energy-efficient hardware implementation of neuromorphic systems in real-time applications.

Keywords: neuromorphic computing; spiking neural network; neuron pruning; network compression;
unsupervised STDP learning; digital implementation; FPGA platform

1. Introduction

The human brain is considered as the most complex, energy-efficient, and intelligent control
system since it is responsible for supervising the functions of the body, interpreting external
information, taking appropriate actions and most importantly, embodies the essence of our mind [1].
These facts lead researchers to embrace brain-inspired computing as a new paradigm to deal with
increasingly complex computational problems. In recent years, neuromorphic systems built on
spiking neural networks (SNNs) have attracted significant attention due to asynchronous event-driven
computation and massively parallel architecture [2–4]. To solve real-time challenges, a quest for
improving the energy efficiency of SNNs becomes necessary [5].
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It is a general belief that neurons and synapses are produced rapidly before two years of age
in human brains [6]. Subsequently, a large number of neurons and synapses are pruned away
during the individual development process. Specifically, 40% of cortical neurons could be eliminated
during childhood [7]. Pruning is a purposeful process that improves the efficiency of information
transmission in the brain. Inspired by biological evolution, researchers have applied pruning in
artificial neural networks (ANNs) to improve network performance [8]. Pruning removes redundant
network parameters and alleviates the over-fitting problem. Furthermore, pruning reduces network
size and redundant connections, which brings down memory storage and energy consumption in
hardware. Generally, pruning can be carried out in two different ways, which are weight pruning
and neuron pruning [9]. Weight pruning removes unimportant synaptic connections by examining
their relevance to outputs. In this way, the pruned weight matrices become sparse. However,
in general, weight pruning is conducted in an unstructured way without following a specific geometry
and constraint to increase the sparsity percentage. In order to leverage the sparsity for memory
reduction, the irregular structure of the weight matrices often requires an encoding scheme to store
the non-zero weights and extra computational time to decode the sparse format before conducting
algebra operations [9]. Thus, the resulting sparsity often causes performance degradation, particularly
for highly parallel hardware architectures specialized for fast linear algebra operations on regular data
(e.g., matrix multiplications) [9]. To overcome these challenges, neuron pruning was suggested to
be a more effective approach. Neuron pruning takes away entire non-relevant neurons, which leads
to many benefits—(1) Neuron pruning reduces the network parameters significantly where all the
synapses associated with the pruned neuron are pruned as well. Thus, it provides speedup and energy
reduction; (2) Neuron pruning eliminates the entire rows/columns in the weight matrices reducing the
weight matrices’ dimensions proportionally, which could be efficiently implemented in the hardware
compared to unstructured weight pruning [9]; (3) It also provides a way to determine the optimal
number of neurons for a given network architecture [10]. Accordingly, many works have proposed
various approaches to implement neuron pruning for the pursuit of a balance between compression
ratio and accuracy [10–14].

Pruning has been extensively studied in ANNs because of its great success, whereas a very
limited amount of works have been done in SNNs [15–18]. In Reference [15], authors propose pruning
neurons by comparing their class-wise dominance with a certain threshold in a supervised way.
In Reference [17], a post-training neuron pruning method was used to reduce the network size by
comparing the spiking frequency of a neuron with average output spike frequency. In Reference [18],
a supervised pruning strategy was demonstrated by evaluating the similarity between neurons and
pruning similar neurons. However, these ideas are based on either post-training pruning or supervised
pruning. Pruning neurons during unsupervised training in SNNs has yet to be explored. The benefit
of online pruning lies in being able to improve training energy efficiency and convergence time. This
approach is crucial to developing online learning systems for real-world applications, especially in an
unsupervised way.

In this paper, we propose different strategies for pruning neurons during unsupervised training
in SNNs and digital implementations to demonstrate significantly reduced memory size and improved
energy efficiency. The main contributions of this paper are summarized as follows:

1. Three different strategies for pruning neurons are proposed by exploiting network dynamics in
unsupervised SNNs. An adaptive neuron online pruning strategy can effectively reduce network
size and maintain high classification accuracy.

2. The adaptive neuron online pruning strategy outperforms post-training pruning, which shows
significant potential for online training by improving both training energy efficiency and
classification accuracy.

3. A parallel digital implementation scheme is presented. The adaptive neuron pruning strategy
enables significant memory size reduction and energy efficiency improvement.
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4. The proposed pruning strategies preserve the dense structure of the weight matrix. No additional
compression technique is required for the implementation of pruned SNNs.

2. Pruning Strategies

In this section, we will introduce SNN architecture and propose three different strategies to prune
neurons while training, namely, (1) online constant pruning, (2) online constant-threshold pruning,
and (3) online adaptive pruning. During training, the neuron pruning process will be repeated
multiple times by dividing a whole dataset into multiple batches. The batch size is selected as 5000
under the consideration of pruning frequency.

2.1. Network Architecture

In this paper, the architecture of an SNN is illustrated in Figure 1. The network consists of an
input layer and a processing layer. In our experiments, hand-written digit images from the Modified
National Institute of Standards and Technology (MNIST) dataset are used as inputs [19]. The dataset
is divided into 60,000 training images and 10,000 testing images. The input layer has 784 (28 × 28)
neurons which are corresponding to all the pixels in one digit image. Each input neuron produces a
Poisson spike train with an arrival rate proportional to the corresponding pixel intensity in the input
image. The processing layer is built in a winner-take-all (WTA) network where excitatory neurons
are connected to inhibitory neurons in a one-to-one fashion. Each inhibitory neuron sends spikes to
all the excitatory neurons except for the one it receives spikes from, which imposes lateral inhibition
onto excitatory neurons. The number of excitatory neurons is chosen depending on the required
classification accuracy of MNIST dataset, according to [20]. In this work, the networks with 100 and
800 excitatory neurons are selected to study the impact of network size on our proposed methods.

Figure 1. The architecture of a spiking neural network (SNN). The network consists of an input layer
and a processing layer that is based on a winner-take-all (WTA) network with excitatory (Exc) neurons
connected with inhibitory (Inh) neurons to induce lateral inhibition. An example image of digit 7 is
taken from MNIST dataset.

SNNs are usually built with the leaky integrate-and-fire (LIF) neuron models for their simplicity
and computational efficiency [3,4,21,22]. The model consists of one first-order linear differential
equation that defines the dynamics of membrane potential and a threshold condition that determines
the generation of spikes [23]. As for synapses, the conductance-based synaptic model is adopted to
transmit information between layers with excitatory and inhibitory ionic channels [20].

Regarding the learning rule, a triplet-based spike-timing-dependent plasticity (STDP) model is
considered. The triplet-based STDP model considers three spike traces (one presynaptic trace and two
postsynaptic traces) to overcome the limitation of the paired-based STDP models to accommodate
the dependence on the repetition frequency of the pairs of spike. It was shown that the triplet rule is
more biological plausible where its response can fit the experimental data from the visual cortical slices
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and hippocampal cultures [24]. In addition, applying triplet-based STDP for unsupervised training of
SNNs shows a higher classification accuracy [20]. In addition, a threshold adaption scheme is applied
together with the WTA layer to induce the competition for activation among neurons. The model
parameters used in the simulation are listed in Table 1. The parameters are configured through an
optimization process to achieve the best accuracy. Each time step in the simulation is taken as 0.5 ms.
The simulation process of SNNs is carried out in Python program.

Table 1. Model parameters used in the simulation. During the simulation, the unit for the time
constants is ms, and the unit for the threshold adaption constant is mV.

Parameters Value

The time constant for membrane potential update 100
The time constant for the presynaptic trace in the STDP model 4
The time constants for fast and slow postsynaptic traces in the STDP model respectively 8, 16
The time constant for the excitatory conductance 1
The time constant for the inhibitory conductance 2
The learning rates for presynaptic and postsynaptic update in the STDP model respectively 0.0001, 0.01
Threshold adaption constant 0.01

2.2. When to Start Neuron Pruning?

Before delving into the details of neuron pruning, we need to find out when to start the pruning
process. If the neuron pruning process starts too early, important neurons that have a profound impact
on the output could be mistakenly pruned away, which will deteriorate network performance. On the
other hand, if it starts too late, the network might not have enough training cycles to compensate
for the accuracy loss. Thus, it is crucial to determine when to start the pruning process. To find
this critical point, we have observed how the network dynamics evolve with time by monitoring
firing activities and weight updates of output neurons, as shown in Figure 2. Firing activity directly
reflects the response of neurons to input patterns. As neurons start to fire regularly after training
over 30,000 images, the network has learned the major input features and starts to adjust for small
details. This is also confirmed by the statistics of weight updates over time, as shown in Figure 2b.
The synchronization happens due to the STDP learning rule that links firing activity and weight updates
together. Therefore, we choose to start the neuron pruning process after training over 30,000 images.

(a) Firing activity (b) Weight updates

Figure 2. Network dynamics changing with time in the SNN with 100 output neurons and no pruning.
The results are obtained from the simulation described in Section 2.1. (a) Firing activity. The average of
spike counts of 100 output neurons was monitored every 2000 training images. (b) Statistics of weight
updates ∆w. The mean (black) and variance (red) were calculated every 5000 training images.
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2.3. S1: Online Constant Pruning

One of the straightforward ways for neuron pruning is to prune a constant number of neurons
after each batch training. Since the firing activity of each neuron directly reflects the response to input
patterns, the more frequently one neuron fires, the more features one neuron tends to learn. Thus,
the importance of each neuron is determined by its spike counts. Based on this fact, we rank all the
output neurons according to their total spike counts during each batch training. And then the n least
important neurons will be removed from the network.

2.4. S2: Online Constant-Threshold Pruning

Since firing activity determines the importance of neurons, the neurons to be pruned at each step
could be selected according to their spike counts. Therefore, as a second strategy, we propose to define
a constant spike count threshold. The spike count threshold is kept constant during the training and
applied to select the neurons to be pruned. The pruning process is performed by removing the neurons
with spike counts lower than the defined constant threshold after each batch training. However,
due to the unsupervised training process, the value of the defined threshold needs to be selected
before starting the pruning process in order to achieve different degrees of network size reduction.
Thus, the spike count distribution of all the output neurons is measured in the SNN without pruning,
as shown in Figure 3. The distribution helps define the range of spike counts and provides us insights
to select the value of the threshold before starting the pruning process. From the distributions, it can
be observed that the number of spikes fired mainly ranges from 250 to 450. The spike count threshold
could be chosen based on the distribution, depending on the percentage of neurons to be pruned.

(a) (b) (c)

Figure 3. The distributions of spike counts after training over different number of images measured
in the SNN with 100 output neurons and no pruning. The results are obtained from the simulation
described in Section 2.1. (a) 30,000 training images; (b) 45,000 training images; (c) 60,000 training images.

2.5. S3: Online Adaptive Pruning

The disadvantage of applying a constant threshold is that it can only prune most of the neurons
at the beginning of the pruning process. As more neurons are pruned, the neurons that remain will fire
more due to less competition. As a result, there will be fewer neurons that can be pruned at later stages
due to a constant threshold. This method is not effective when unimportant neurons appear at later
stages. Therefore, we propose an adaptive neuron pruning strategy that enables the threshold to be
adapted dynamically to the network firing activity. The pruning algorithm is described in Algorithm 1.
S2 applies a constant spike count threshold during the pruning process, and the value of the threshold
is determined before starting the pruning process. On the other hand, S3 uses an adaptive threshold
which changes proportionally with the firing activity, measured during the pruning process. In this
pruning strategy, the adaption of the threshold guarantees that a certain percentage of neurons of less
importance can be pruned at each pruning step. The choice of the percentage of a is based on the
distributions in Figure 3.
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Algorithm 1: Adaptive pruning algorithm
Pruning process starts after 30,000 training images.
Define a percentage a;
for batch n = 1, 2, ... do

Find the minimum Smin and maximum Smax of spike counts;
Determine the spike count threshold, Sth = Smin + a(Smax − Smin);
for neuron i = 1, 2, ... do

if the spike counts Si < Sth, then
Prune neuron i;

end
end

end

3. FPGA Implementation

Pruning leads to the reduction of network size and hence improved energy efficiency. To demonstrate
the benefit of pruning for hardware implementation, we implemented SNNs after neuron pruning on
field programmable gate array (FPGA), and the details of the implementation are presented in this
section. Figure 4 shows the proposed digital system for inference. Initially, all the input images are
transferred from PC to the external memory (i.e., DDR, SDRAM) on FPGA through a microprocessor
using universal asynchronous receiver/transmitter (UART). The microprocessor contains a memory
controller which manages the communication between direct memory access (DMA) and the external
memory. So image pixels are transferred from the external memory to the network through DMA
and converted into Poisson spike trains. The read operations of synaptic weights from block random
access memories (BRAMs) are controlled by these spike trains through multiplexing. Then the neuron
processing cores update their membrane potentials and generate spikes if the membrane potentials
surpass the thresholds. The generated spikes from the SNN are sent out to the external memory and
then extracted to PC.

The proposed system is mainly composed of Poisson spikes generator, memory blocks, and neuron
processing cores. It is worth mentioning that the proposed pruning strategies ensure a well-structured
weight matrix, and hence no additional compression technique is required in the design.

Figure 4. The proposed digital system of an SNN for inference.

3.1. Poisson Spike Generator

The Poisson spike generator is implemented by comparing input pixel values with a random
number that is generated using a 16-bit linear-feedback shift register (LFSR), as shown in Figure 5.
Within a particular time window, at each time step, if a pixel value is larger, it outputs a logic-1.
Otherwise, it outputs a logic-0. In this way, a Poisson spike train is formed in a time series of 0 and 1.
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Figure 5. The digital implementation of Poisson spike generator.

3.2. Memory Block

In our implementation, the synaptic weights between the input layer and the second layer are
stored in the BRAMs, as BRAMs are embedded memory blocks that enable low-power and high-speed
near-memory operations inside FPGA fabric. Input spike trains control the access to BRAMs and
activate read operations on synaptic weights only if there is an input spike. The synaptic weights
accessed from BRAMs are summed and sent into the conductance channel of each excitatory neuron in
neuron processing cores.

Input spike trains act as the selectors that activate the read operation of the synaptic weights
from the BRAMs only if there is an input spike. After that, the selected synaptic weights are summed
and sent into the conductance channel of each excitatory neuron in the second layer. This process is
equivalent to calculating the accumulation, ∑

j
wijδ

(
t − t f

j

)
, where wij is the synaptic weight between

the presynaptic neuron j and the postsynaptic neuron i, t f
j is the firing time of the presynaptic neuron j.

Because of the fully-connected structure, the accumulation over all the presynaptic neurons j needs to
be computed for each postsynaptic neuron i in the second layer. The straightforward implementation
is to store all the weights in one single BRAM and read one weight at one time. At each clock
cycle, we accumulate one weight sequentially. In this way, it takes around Npre cycles to finish the
accumulation, where Npre is the total number of presynaptic neurons in the input layer. However,
with a large number of neurons, the accumulation process could take many cycles to complete and
hence, slow down the training process. Thus, a parallel design is favoured to accelerate computation.
We can divide the synaptic weights associated with one postsynaptic neuron into m BRAMs, as shown
in Figure 6, through which m weights are simultaneously read out and passed to m-input adder tree.
By pipelining the read and accumulation process, the processing time is taken up by the time for
reading the weights and the time for computing the m-input addition. Since the depth of each BRAM
becomes Npre/m, the time for reading the weights is reduced to Npre/m cycles. As a result, the weights
accumulation process can be accelerated significantly. In the implementation, the value of m is selected
as 4 to accelerate the process.

Figure 6. The memory allocation of synaptic weights in BRAMs and parallel structures for one neuron
core. Npre is the number of the presynaptic neurons in the input layer. Synaptic weights associated
with one neuron are stored in m BRAMs. So m weights can be read at the same time and sent to the
adder tree for accumulation.
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3.3. Neuron Processing Core

A neuron processing core has two functions, arithmetic computation, and storage of neuron
states. The arithmetic computation involves solving differential equations to update state variables of
a neuron, like synaptic conductance and membrane potential. The implementation of the arithmetic
unit is based on the Euler method, as shown in Figure 7 [25]. First, the current module generates
the synaptic current and leakage current by multiplying the synaptic conductances with the voltage
drop. Then the membrane potential is updated by integrating the synaptic currents and compared
with the threshold voltage. An output spike will be detected once the membrane potential surpasses
the threshold. In the design, the multiplications between the conductance and voltage drops are
implemented by multipliers. The multiplication by constants is realized by shift operation by properly
choosing the constants as powers of two. In addition, each core provides a memory space for storing
the state variables, including membrane potential, synaptic conductance, and threshold potential.

A parallel implementation scheme for neuron processing cores is depicted in Figure 8, where n
neuron processing cores are implemented and the membrane potentials of the n neurons are updated
in parallel. Each neuron core receives the accumulated synaptic weights read out from BRAMs
controlled by input spike trains. By using the time-multiplexing design, we can update the membrane
potentials of all the output neurons in Nout/n stages, where Nout is the total number of output neurons.
Within one step of the time-multiplexing process, the membrane potential of n neurons can be updated
in parallel.

Figure 7. The digital implementation of leaky integrate-and-fire (LIF) neuron model. The design is
based on Euler method. v[n] and v[n + 1] are the membrane potential at time n and n + 1 respectively.
vr is the rest potential. vth is the threshold potential. ge and gi are the excitatory and inhibitory synaptic
conductance respectively. Eexc and Einh are the reverse potentials of the excitatory and inhibitory
synapse respectively. The current module produces the input synaptic current. The spike detection
module checks the occurrence of an output spike.

Figure 8. Parallel implementation scheme for neuron processing cores. Poisson spike trains converted
from input pixels allow corresponding synaptic weights to be read out from BRAMs and accumulated
before being sent into neuron processing cores. n neurons processing cores are updated in parallel.
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4. Results and Discussion

4.1. Network Performance

To gain insight into the performance of the proposed techniques, we study two sample unpruned
SNN networks. The first is trained with 100 output neurons, while the second is trained with 800 output
neurons. The accuracy achieved using the network described in Section 2.1 was 85.78%/90.4%
respectively. The performance of the proposed pruning strategies and comparisons among them
are discussed in the following sections. All the results are obtained from the simulation of the SNN
described in Section 2.1.

4.1.1. Online Pruning

Pruning performance results for the proposed pruning techniques are shown in Figure 9, presenting
that the total number of pruned neurons and classification accuracy change with the corresponding
control variables, i.e., constant number, spike count threshold, and percentage respectively. In Figure 9a,
the total number of pruned neurons grows linearly with a constant number. Consequently,
the classification accuracy decreases as more neurons are pruned. Figure 9b,c show similar observations
except that the total number of pruned neurons increases non-linearly. More importantly, these results
provide guidelines for how to determine the value of corresponding control variables to obtain the
desired network size and classification accuracy at the end. The choice should be based on the
consideration of the trade-off between classification accuracy and energy efficiency.

(a) S1 (b) S2 (c) S3

Figure 9. The total number of pruned neurons and classification accuracy for online pruning strategies.
(a) S1: constant pruning, (b) S2: constant-threshold pruning, and (c) S3: adaptive pruning.

4.1.2. Comparison: 100 Output Neurons

In order to provide a comparative framework for performance evaluation, we compare the
proposed approaches to each other and to a post-training pruning method that was reported in [16].
The post-training pruning method is described as follows. After training, 10,000 images chosen from
the training dataset are given as inputs to the trained SNN, and membrane potential and firing activity
of each neuron are monitored. Output neurons are then ranked according to their average spike counts.
The least important neurons are pruned. Comparisons between different approaches are based on the
number of pruned neurons, as discussed in the next subsections.

Figure 10a shows more detailed comparisons among different pruning strategies in the SNN with
100 output neurons. The no pruning method with reduced network size corresponds to the case where
unpruned SNNs are trained with the given number of output neurons (x-axis in the figure). Training
parameters such as time constants, learning rates for STDP etc. are kept constant, as referenced to
the SNN with 100 output neurons. Clearly, when more than 50 neurons are pruned, the proposed
pruning methods show better results than the no pruning method, which implies that pruning is able
to get rid of unimportant neurons that also classify many wrong digits and hence contribute negatively
to overall accuracy. This observation suggests that through pruning methods, the network is able
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to achieve higher accuracy than that obtained by no pruning for the same network size. Moreover,
among the proposed pruning methods, the constant pruning method gives the worst results, especially
when more than 50 neurons are pruned. The adaptive pruning method shows slightly better results
than the constant-threshold pruning method because the pruning threshold is adapted to the network
dynamics, and hence only the least important neurons will be pruned at each step. Compared with
post-training pruning method, the adaptive pruning method also shows better performance because
online pruning provides more opportunities for unpruned important neurons to learn more input
features by removing unimportant neurons from the network. With adaptive pruning method, when
16 neurons are pruned, the accuracy loss was only 1%.

(a) 100 output neurons (b) 800 output neurons

Figure 10. Comparisons among different pruning strategies for (a) 100 output neurons, and
(b) 800 output neurons.

4.1.3. Comparison: 800 Output Neurons

Furthermore, the proposed pruning strategies were also applied in the SNN with 800 output
neurons, and the comparisons are shown in Figure 10b. In this case, the adaptive pruning method
provides slightly better performance than the no pruning method with reduced network size. Adaptive
pruning method is also proven to be a better approach than the other proposed online pruning
strategies. However, compared with post-training pruning, when the number of pruned neurons
is more than 500, adaptive pruning causes much more severe accuracy drop. Another interesting
observation is that constant pruning and constant-threshold pruning methods both show worse results
than the no pruning method, which suggests that it is important to prune neurons according to the
network dynamics, especially in a large network where the difference among all the neurons becomes
small. Therefore, it is further confirmed that adaptive pruning is a simple and effective pruning
method. And the benefit of adaptive pruning method becomes more prominent in a larger network.
The accuracy loss is still within 1% when 300 neurons are pruned.

Table 2 summarizes the classification accuracy for SNNs with different network size (100 and
800 output neurons) after applying different pruning strategies. Clearly, the unpruned SNN with 100
(800) neurons produces the best accuracy. With neurons being pruned, the adaptive pruning method
leads to the smallest accuracy loss, also outperforming post-training pruning method. This suggests
the significant potential of adaptive pruning method in online training systems as it can improve
training energy efficiency and maintain high classification accuracy.
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Table 2. Comparison among different pruning strategies. For no pruning method, accuracy is obtained
for SNNs with 100 and 800 output neurons respectively. For other pruning methods, accuracy is
obtained for pruned SNNs with initially 100 and 800 output neurons respectively. Post-training
pruning method is adopted from [16].

Methods Accuracy (%)
(100/800)

# Pruned Neurons
(100/800)

No pruning 85.78/90.4 0
Constant pruning 83.69/88.18 20/300
Constant-threshold pruning 83.89/87.89 20/300
Adaptive pruning 84.21/89.58 20/300
Post-training pruning 83.88/88.94 20/300

4.2. FPGA Implementation Results

In our digital implementation, Xilinx Vivado Design Suite was used to program and simulate
the proposed digital system in Verilog hardware description language (HDL). The Verilog code was
then synthesized and implemented on the Xilinx Virtex-7 VC709 evaluation board for verification.
Power consumption was obtained after routing by using the power analysis tool in Vivado Design
Suite, which provides detailed analysis and accurate estimation [26]. The implemented SNNs run at
100 MHz clock frequency. The number of physical neurons placed inside the FPGA is chosen as 25
for optimum energy efficiency, so time-division multiplexing is utilized to run the whole network.
To avoid overflow and severe precision loss in fixed-point arithmetic, 16 integer bits and nine fraction
bits are chosen.

Neuron pruning directly reduces the network size by removing entire neurons. In order to
demonstrate the impact of neuron pruning on hardware and energy savings, an FPGA realization is
designed for inference only. The pruned model parameters are transferred to the FPGA where the
evaluation is performed. Figure 11 shows the number of BRAMs required for storing synaptic weights
and power consumption for the different number of pruned neurons in the SNN with 800 output
neurons initially. On FPGA, BRAMs are synthesized by arranging memory primitives together for
optimized performance. It can be seen that the number of BRAMs remains the same initially before
it drops by 56% when 300 or 400 neurons are pruned. When more than 400 neurons are pruned,
the required memory size starts to decrease linearly. On the other hand, power consumption goes
down continuously with the number of pruned neurons. Since the implementation of neuron cores
on the FPGA remains unchanged, the power reduction is mainly caused by the reduced operations
on memory when neurons are pruned. Moreover, the energy consumption for processing one image
is estimated in terms of runtime and power consumption. Accordingly, we define the normalized
energy reduction as (E0 − En)/E0, where E0 is the energy consumption of the SNN without pruning,
and En is the energy consumption after pruning n neurons, as shown in Figure 12. Because of
parallel implementation, the runtime for processing one image decreases linearly with the number
of pruned neurons. Therefore, energy reduction goes up almost linearly with the number of pruned
neurons because runtime improvement is more significant than power reduction. Moreover, from both
Figures 11 and 12, it can be seen that with pruning, the benefit of memory and energy reduction
is significant while the accuracy loss remains small. For example, when 400 neurons are pruned,
the memory size and energy are decreased by around 56% and 64% respectively, while the accuracy
loss is only 1.69%. Different pruning percentage will lead to different results, and the choice depends
on the trade-off among accuracy, memory, and energy consumption. Our study provides a clear
guideline for how to reduce network complexity to gain memory and energy reduction benefits and
mitigate accuracy loss.
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To help choose pruning percentage, we define a figure of merit (FOM) as below by considering
network size, accuracy loss, and energy.

FOM =
# pruned neurons

(Accuracy loss × Energy)
(1)

where accuracy loss is defined as the accuracy difference between the networks without pruning and
with pruning, the energy is measured in mJ, and all the variables in the equation are normalized to
the corresponding maximum value. The defined FOM is used on a per network basis to help identify
the best pruning percentage for that specific network as demonstrated in Figure 13. According to the
defined FOM, the best choices are at 10% and 25% for networks with 100 and 800 output neurons,
respectively. It should be noted that the proposed FOM provides one way to determine the best
pruning percentage, and other definitions could also be applied depending on the requirements for
specific applications.

Figure 11. Number of BRAMs and power consumption for the SNN with different number of pruned
neurons. The initial network size is of 800 output neurons.

Figure 12. Energy reduction for the SNN with different numbers of pruned neurons. The initial
network size is of 800 output neurons. The energy reduction is estimated for processing one image.
Accuracy is displayed for 0, 200, 400, and 600 pruned neurons respectively.
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Figure 13. Figure of merit at different pruning percentage for both cases of 100 and 800 output neurons.

5. Conclusions

This paper proposes three different strategies for pruning neurons while training in an unsupervised
spiking neural network and a parallel digital implementation scheme on FPGA. Neuron online pruning
provides an efficient approach for reducing network complexity and significant benefits for hardware
implementation. The proposed methods exploit network dynamics to rank output neurons and remove
unimportant ones. It is demonstrated that online pruning with an adaptive spike count threshold,
shows the best performance over other proposed methods. Adaptive pruning method also shows
better performance than post-training pruning, which suggests that adaptive online pruning can not
only improve training energy efficiency but also achieve higher accuracy. Furthermore, the adaptive
pruning method is proven to be a simple and effective approach that leads to higher classification
accuracy compared with the no pruning method with reduced network size (i.e., the SNNs trained with
less than the initial 100 (or 800) neurons and without pruning). The effectiveness of our methods is also
verified in SNNs with different network size, and it provides a clear insight into the trade-off between
classification accuracy and network complexity. With adaptive pruning method, when 300 neurons are
pruned from the 800-neuron network, the accuracy loss is still less than 1%. Moreover, the pruned
networks were implemented on FPGA in a parallel architecture. The implementation architecture
is scalable and can be directly applied to different pruned SNNs as our proposed pruning strategies
preserve a well-structured weight matrix. The implementation results have shown a 2.3× reduction in
memory size and 2.8× on energy consumption when 400 neurons are pruned. In addition, a figure
of merit is proposed to help identify the best choice of pruning percentage for different network
size. Therefore, the proposed adaptive neuron pruning strategy provides a promising approach for
reducing memory size and improving energy efficiency with high accuracy in spike neural networks
for real-time applications.
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