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Abstract: Weakly supervised object localization (WSOL) has attracted intense interest in computer
vision for instance level annotations. As a hot research topic, a number of existing works concentrated
on utilizing convolutional neural network (CNN)-based methods, which are powerful in extracting
and representing features. The main challenge in CNN-based WSOL methods is to obtain features
covering the entire target objects, not only the most discriminative object parts. To overcome this
challenge and to improve the detection performance of feature extracting related WSOL methods,
a CNN-based two-branch model was presented in this paper to locate objects using supervised
learning. Our method contained two branches, including a detection branch and a self-attention
branch. During the training process, the two branches interacted with each other by regarding the
segmentation mask from the other branch as the pseudo ground truth labels of itself. Our model
was able to focus on capturing the information of all the object parts due to the self-attention
mechanism. Additionally, we embedded multi-scale detection into our two-branch method to output
two-scale features. We evaluated our two-branch network on the CUB-200-2011 and VOC2007
datasets. The pointing localization, intersection over union (IoU) localization, and correct localization
precision (CorLoc) results demonstrated competitive performance with other state-of-the-art methods
in WSOL.

Keywords: deep learning; neural network; weakly supervision; object localization; self-attention
mechanism; multi-scale detection

1. Introduction

Object detection is a fundamental task in computer vision. It has been widely applied in the field
of autonomous driving system and intelligent security system. The training process of object detection
methods requires a lot of instance level annotations, which is time consuming and labor intensive.
However, weakly supervised object localization (WSOL) performs the detection process with only
labels for classification (image level labels), and no related bounding box labels (instance level labels)
are provided. During training, the model is taught to classify objects based on the given image level
labels. With the features learned in the classification process, the model is also asked to give the
bounding box prediction results of target objects.

Multiple instance learning (MIL) [1] is always employed [2–4] in WSOL in order to obtain the
locations of target objects. MIL regards an image as a bag of different instances, which are the proposed
regions in the image. For a specific class category, if one or more related instances appear in the image,
this image is taken as a positive sample. Otherwise, it is taken as a negative sample. A drawback
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of MIL is that it is usually stuck into sub-optimal solutions owing to the focus of finding the most
valuable object parts [5,6], making it difficult to locate objects accurately.

Currently, convolutional neural network (CNN)-based methods have been widely applied in
object classification due to their power in extracting and representing features. Research has proven
that CNN architecture trained for classification also contains object spatial information [7]. A CNN
model can provide enough information to locate objects with only image level labels. Thus, CNN-based
methods have played a key role in WSOL [8–12].

In WSOL, forcing the CNN model to extract features containing information of the entire
target object, not only the most discriminative object part, is the key to achieving successful
performance. Previous works addressed this challenge by finding second important information [13],
extracting foreground regions [14], and randomly erasing or using the most discriminative object
regions [15]. To overcome this challenge and to extract strong and powerful features, we focused on
using attention mechanisms, which have been proved to effectively enhance the ability of network
expression [16]. They have been used in a wide range of computer vision tasks (object detection [17],
semantic segmentation [18], and image caption [19]). In the field of WSOL, attention mechanisms
were also performed, including channel attention [15] capable of highlighting important channel
features and spatial attention [20] capable of locating valuable regions in feature maps. Inspired by
this, it is necessary to further exploit the effectiveness of attention mechanisms in WSOL. In order to
obtain features with the ability of covering the entire objects, we used a self-attention mechanism [21],
which aimed at building connections among image regions to capture information of the whole target
object. To better improve the detection performance of CNN-based methods, we further applied
multi-scale detection, which was preferred by object detection methods due to its ability to generate
multiple scale features. The single-shot multibox detector [22] and feature pyramid networks [23]
utilized multi-scale output features by down-sampling and up-sampling to detect target objects with
different sizes. Multi-scale CNN [24] used multiple layers to match with target pedestrians of different
sizes. They all proved that the detection performance could be enhanced by using multi-scale features
in the CNN structure. However, we used the multi-scale output features to measure the different types
of localization metrics, instead of dealing with the different sizes of the target objects.

In summary, we studied the potential of self-attention mechanisms and multi-scale detection
by building a two-branch model that comprised a detection branch and a self-attention branch.
During the training process, the two branches were intersected. A segmentation mask coming from the
detection branch was treated as a pseudo ground true label of the self-attention branch, and vice versa.
We embedded multi-scale detection into our proposed method by outputting two-scale features for
each branch, including features with resolutions 1/8 and 1/16 the size of the input image. Our main
contributions are listed below:

1. We presented a two-branch network for WSOL and a self-attention mechanism was embedded to
improve the ability of feature expression by connecting object parts.

2. We applied multi-scale detection to output two-scale features in order to improve the detection
performance in localization.

3. We evaluated the two-branch network on the Caltech-UCSD Birds-200-2011 (CUB-200-2011) [25]
and VOC2007 [26] datasets. The evaluation results demonstrated competitive performance
relative to the state-of-the-art methods.

Specifically, the rest of the paper is organized as follows. We introduce related work briefly in
Section 2. Thereafter, we describe our proposed two-branch method in Section 3. Section 4 mainly
shows the performance of our method on two datasets (CUB-200-2011 and VOC2007). The last section
demonstrates the conclusions about our work.
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2. Related Works

2.1. The CNN-Based Model for WSOL

WSOL is a significant task in computer vision and many related works concentrate on CNN
methods. A number of researchers aimed to better exploit information in CNN features by finding
all parts of the target object instead of only the most discriminative parts. Zhang et al. [13] proposed
an adversarial complementary learning model containing two parallel-classifier branches to capture
the most discriminative information and the second remarkable information. A similar idea was
embedded in a two-phase learning model [27]. Kim et al. [27] employed a conventional fully
convolutional network and an inference conditional feedback to obtain the most and the second
salient parts in images. There are also researchers who focused on applying proposal-based methods
to WSOL. Kantorov et al. [28] studied the context of region-of-interest (ROI) proposals with two
types of context-aware models, including an additive model capable of supporting the network to
find the object region and a contrastive model capable of making object regions more outstanding.
Bilen et al. [29] presented a CNN architecture, named weakly supervised deep detection network
(WSDDN). With the help of the object proposal method and a pooling layer designed to generate
valuable spatial information, WSDDN can be powerful in locating objects. Additionally, other ideas
with the intent of exploring the spatial information of CNN features were exploited. Durand et al. [30]
presented a multi-map WSOL transfer layer and a new spatial aggregation process. Zhang et al. [14]
introduced self-produced guidance (SPG) masks to provide foreground regions full of spatial
correlation information. Zhu et al. [31] designed an object proposal component (soft proposal),
which used a dissimilarity measure of feature difference and spatial distance between regions to
generate proposal maps.

2.2. Attention Mechanism in CNN-Based WSOL Methods

In object detection, an attention mechanism aims at capturing the most discriminative features to
improve the detection accuracy of CNN-based methods [17,32,33]. Previous works [20,34] in WSOL
proved that with the armed attention mechanism, CNN models were able to provide rich localization
related information. Teh et al. [35] proposed an attention network providing attention scores for
candidate regions by linear mapping and softmax activation. Based on the model proposed in [35],
Teh et al. [36] leveraged a regularized attention network to regularize the attention distribution of
attention scores. Li et al. [37] performed a guided attention inference network with the purpose of
generating more complete attention maps by applying the global average pooling layer to gradients of
scores. Hu et al. [38] employed a weakly supervised bilinear attention network aiming at utilizing
attention regularization and attention dropout to obtain attention maps. Bilinear attention pooling was
used to deal with feature maps and attention maps to generate part features. Zhou et al. [20] combined
spatial attention with channel attention to build a dual-attention focused module using global average
pooling and channel average pooling to compute channel and spatial attention maps, respectively.

Previous studies [15,20] have exploited the effectiveness of channel attention and spatial attention
in discovering the most discriminative parts of target objects. However, as mentioned earlier,
simply focusing on the most valuable object parts information might not be enough to locate objects
accurately in WSOL. How to extract CNN features containing useful information of the whole target
object is still worth studying. In order to tackle this, we constructed a two-branch network embedded
with a self-attention mechanism [21], which has been proved to be effective in building connections
among regions to find global image structure in Generative Adversarial Networks, but has not been
employed in WSOL.
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3. The Proposed Method

3.1. Framework Overview

Figure 1 shows the overview of our two-branch network, containing a detection branch and a
self-attention branch. CAM is a class activation map. BCE is the binary cross entropy. Output_1 and
output_2 are features from the detection branch. Self-attention output_1 and self-attention output_2 are
features from the self-attention branch. The training process of the two-branch network is displayed
in Algorithm 1 and Figure 2. For an input image with size H ×W × 3, through the backbone of
our two-branch network, the output feature map (F1/8

det (xi)) was 1/8 the size of the input image.
By applying the detection branch, feature maps (F1/16

det (xi)) with the size of 1/16 the input image were
obtained. Then, with the help of the self-attention mechanism, which will be described in Section 3.3
, F1/8

det (xi) and F1/16
det (xi) were used in order to generate self-attention features for our self-attention

branch. The generated self-attention features were the same size with their corresponding features
from the detection branch, and are represented as F1/8

att (xi) and F1/16
att (xi).

Based on the output features, segmentation masks (Mdet(xi)) and Matt(xi)) can be generated.
The two-scale output features F1/8

det (xi) and F1/16
det (xi) were up-sampled by bilinear interpolation to the

size of the input image. After that, element-wise maximum operation was applied to the up-sampled
features to obtain fusion features (F f use

det (xi)), which were used to calculate the class activation maps
(CAMs) [7] FCAMs

det (xi). The segmentation mask Mdet(xi) was obtained by normalizing FCAMs
det (xi) to

the range of 0 to 1. The same operation was applied to F1/8
att (xi) and F1/16

att (xi) to obtain Matt(xi),
which worked as the pseudo label for F f use

det (xi) and to compute the binary cross entropy (BCE) loss,
and vice versa. Four identical classifiers, based on softmax cross entropy, were applied according to
the given image level labels.

Compared with the detection branch, the output features in the self-attention branch contained
additional information due to the self-attention mechanism. The intersection between the detection
and self-attention branches made the whole model more effective in obtaining strong and valuable
information of all the object parts for better locating targets in WSOL.

Algorithm 1 Training process for our two-branch network

Input: Training image X = {xi, yi}N
i=1, threshold t

1: while the training process is far from convergence state do
2: Obtain features from detection branch and self-attention branch, F1/8

det (xi), F1/16
det (xi), F1/8

att (xi),

and F1/16
att (xi)

3: Calculate CAMs for the two branches according to their two-scale features,

FCAMs
det (xi) = CAMs(max(Bilinear(F1/8

det (xi)), Bilinear(F1/16
det (xi)))),

FCAMs
att (xi) = CAMs(max(Bilinear(F1/8

att (xi)), Bilinear(F1/16
att (xi))))

4: Generate segmentation masks for the two branches according to their CAMs,

Mdet(xi) = norm(FCAMs
det (xi)) > t,

Matt(xi) = norm(FCAMs
att (xi)) > t

5: Calculate softmax loss and BCE loss
6: Update the two-branch network
7: end while

Output: Mdet, Matt
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Figure 1. Overview of our proposed two-branch network. Class activation maps (CAMs),
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Figure 2. Flow chart of our proposed two-branch network.
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3.2. The Detection Branch

We adopted VGG-16 [39] as the backbone of our two-branch network. Following the idea in [13],
we dropped layers after the pool5 layer. Additionally, to better maintain the spatial information of the
features in VGG-16, we changed the stride of the pool4 and pool5 layers from 2 to 1, making the scale
of the pool5 layer 1/8 the size of the input image.

In the detection branch, the two-scale features were output, one was 1/8 the size of the input
image (features from backbone), and the other one was 1/16 the size of the input image (features from
the max-pooling operation, as shown in Figure 3). Features from the backbone were followed by two
convolution layers (kernel size: 3× 3; and stride: (1) with one rectified linear unit (ReLu) behind each
of the convolution layer. Following a max-pooling operation (kernel size: 3× 3; and stride: (2) to the
corresponding output features.

For the two-scales output features, the class activation maps (CAMs) [7] were calculated based on
the fusion features (generated by up-sampling the two-scales output features to the size of the input
image and performing element-wise maximum to the up-sampled features), and segmentation masks
were further obtained based on CAMs by thresholding. The mask worked as a pseudo segmentation
label in the BCE loss for the self-attention branch.

Conv 𝟑 × 𝟑,

s = 𝟏

Conv 𝟑 × 𝟑,
s = 𝟏

Relu

Max-pooling,

s = 𝟐

Relu

Figure 3. Architecture of the added feature extraction block to generate multi-scale
output features.

3.3. The Self-Attention Branch

We adopted the self-attention mechanism in a previous study [21] to build our self-attention
branch. The input of the self-attention branch was the output features in the detection branch.
Two structure-identical self-attention blocks (Figure 4) were followed to process the two-scale input
features in order to generate self-attention features. The self-attention block worked as follows: A
convolution operation (kernel size: 1× 1; and stride: 1) was applied to the input feature maps and
the corresponding result was represented as A with resolution C× H ×W. The same operation was
performed to the same input feature maps another two times, and the corresponding results were
represented as B and C with the same resolution C× H ×W.

The feature maps A were reshaped to C × (H × W) and transposed to (H × W) × C.
The transposed feature maps were combined with the feature maps B by matrix multiplication.
The resolution of the corresponding result was (H×W)× (H×W). A Softmax operation was applied
to obtain the attention maps with a resolution of (H ×W)× (H ×W). Then, the attention maps were
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combined with the feature maps C by matrix multiplication to generate self-attention feature maps of
resolution C× (H ×W).

Finally, the reshaped self-attention feature maps of resolution C× H ×W were fused with the
original input features according to a scale parameter, as shown in Equation (1). The self-attention
branch focused on capturing connections among image regions [21] to obtain valuable information
with the armed attention maps. With the help of the self-attention branch, the network can be forced to
pay attention to full parts of target objects, not only the most discriminative object parts.

X = Xo + γXatt (1)

where γ is the scale parameter. Xatt is the self-attention feature maps and Xo is the original input
feature maps.

𝑪 × 𝑯 ×𝑾 𝑪 ×𝑾×𝑯

Transpose

(𝑯 ×𝑾) × (𝑯 ×𝑾)

Softmax

Attention weights

Attention maps

𝑪 × 𝑯 ×𝑾

Figure 4. Architecture of the self-attention block [21].

3.4. Objective Function

We trained the two-branch method end-to-end. The loss of our method contained two parts,
classification loss based on softmax cross entropy and segmentation loss based on BCE. It is represented
by Ltwo−branch, as shown in Equation (2):

Ltwo−branch = Lcla + λLBCE (2)

where Lcla is the function of the classification loss and adapted from a previous study [13]. LBCE is the
function of the segmentation loss and calculates the BCE loss, with all objects regarded as foreground,
regardless of target-object category. The symbol λ represents a trade-off parameter between the
classification loss and BCE loss and was set to 1 in this study.

4. Experiments and Discussion

4.1. Experiment Setup

The datasets we employed were CUB-200-2011 [25] and VOC2007 [26]. For the CUB-200-2011
dataset, the number of categories was 200. This dataset contained 11,788 images, with 5994 images
in the training set and 5794 in the test set. For the VOC2007 dataset, the category number was 20.
There were a total of 9963 images, with 5011 images in the training set (the original trainval set) and
4952 in the test set.

To evaluate our two-branch network, we used two types of metrics, containing a classification
metric [40] (the widely used top-1 error and top-5 error) and three localization metrics, including an
intersection over union (IoU) related localization metric [40], a correct localization precision (CorLoc)
metric [41], and a pointing localization metric [31]. The IoU related localization metric estimates
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the IoU between a ground truth bounding box and predicted bounding box. IoUs that exceed a
defined threshold (set to 0.5) are regarded as correct if and only if the classification results are precise.
CorLoc measures the percentage of images with a detected bounding box overlapped with a ground
truth box higher than a threshold value (0.5) for each class [28]. The pointing localization metric is
described in Equation (3).

Pointing accuracy =
∑C

k=1
Hitsk

Hitsk+Missesk

C
(3)

where, for each class, a hit represents the predicted pixels of maximum response falls in a ground truth
bounding within 15 pixels tolerance [31]. If not, it is called a miss. C is the number of class categories.

We used VGG-16 [39] as the backbone architecture in this work. The Pytorch framework was
applied to implement the two-branch method and the model was trained on an NVIDIA GeForce
GTX 2080Ti. During training, we used an input image size of 224× 224 and weights trained from
ImageNet [40] to initialize the backbone with learning rate of 3× 10−4. This was decayed at 20 and 40
epochs by decay rate of 1× 10−1 with a total of 60 training epochs.

4.2. Experimental Results and Discussion

4.2.1. Performance on the CUB-200-2011 Dataset

We trained our method on the CUB-200-2011 training set and evaluated our training model on
the CUB-200-2011 test set. Table 1 shows the classification results of the top-1 error and top-5 error.
We compared our proposed method with the state-of-the-art approaches attention-based dropout layer
(ADL) [15], SPG [14], and adversarial complementary learning (ACoL) [13]. A comparison result on
the classification indicated that our method outperformed SPG [14] by 3.05% (top-1 error) and 2.02%
(top-5 error) and outperformed ACoL [13] by 2.01% (top-1 error) and 1.50% (top-5 error).

Table 1. Classification error (%) on the CUB-200-2011 test set.

Methods Top-1 Err. Top-5 Err.

ADL [15] 25.45 -
SPG# [14] 25.18 7.65
ACoL# [13] 24.14 7.13
ours 22.13 5.63

We trained the self-produced guidance (SPG)# and adversarial complementary learning (ACoL)# models
using the open source codes [42,43].

Pointing and IoU localization metrics were both performed to evaluate our method, ADL [15],
SPG [14], and ACoL [13] on the CUB-200-2011 test set. The evaluation results are shown in
Tables 2 and 3, respectively. For the pointing localization metric, our two-branch method achieved
24.28% in top-1 error, which was 2.75% lower than SPG [14] and 5.23% lower than ACoL [13]. The top-5
error of our method was 8.28%, which was 1.78% lower than SPG [14] and 6.34% lower than ACoL [13].
For the IoU localization metric, the top-1 error of our method was 51.22%, which was 2.14% lower than
SPG [14] and 2.86% lower than ACoL [13]. Compared with ADL [15], our result was 4.26% higher.
The top-5 error of our method was 41.55%, which was 0.73% lower than SPG [14] and 1.94% lower
than ACoL [13].

Figure 5 visualizes the attention maps, pointing, and bounding box detection results on some
sample images in the CUB-200-2011 test set. The attention maps of resolution 28× 28 and 14× 14 were
obtained by applying the element-wise maximum to features from the detection and self-attention
branches of the same size, respectively. In Section 4.2.3, we will show that the attention maps of
resolution 28× 28 and 14× 14 were sensitive in obtaining better IoU localization performance and
pointing localization performance, respectively. In Figure 5c,d, the red boxes are the ground truth
bounding boxes. Figure 5c,d shows that our method was able to locate target objects effectively.



Electronics 2020, 9, 955 9 of 15

(a) (b) (c) (d)

Figure 5. Visualization results in the CUB-200-2011 test set. (a) Attention maps
(28× 28), (b) attention maps (14 × 14), (c) pointing detection results, and (d) bounding
box detection results.

Table 2. Pointing localization error (%) on the CUB-200-2011 test set.

Methods Top-1 Err. Top-5 Err.

ACoL# [13] 29.51 14.62
SPG# [14] 27.03 10.06
ours 24.28 8.28

We trained the SPG# and ACoL# models using the open source codes [42,43].

Table 3. Intersection over union (IoU) localization error (%) on the CUB-200-2011 test set.

Methods Top-1 Err. Top-5 Err.

CAM [7] 59.00 -
ACoL [13] 54.08 43.49
SPG [14] 53.36 42.28
ADL [15] 46.96 -
ours 51.22 41.55
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4.2.2. Performance on the VOC2007 Dataset

We then evaluated the performance of the two-branch network on the VOC2007 dataset.
The comparison results on the VOC2007 test set with other methods were measured by pointing
localization accuracy (Table 4) and Corloc (Table 5). The pointing localization accuracy of our method
was 82.20%, which was 2.90% higher than the MWP [44] model, but 2.90% lower than the c-MWP [44]
model. The Corloc of our method was 30.65%, which was 6.87% higher than the second best method,
SPG [14]. Additionally, our result was 7.73% higher than ACoL [13] and 8.66% higher than Wildcat [30].
These results indicated the competitive performance of our method with other methods. Figure 6
visualizes the attention maps, pointing detection, and bounding box detection results on some sample
images in the VOC2007 test set. We only showed attention maps for resolution 14× 14, which were
obtained by applying the element-wise maximum to features from the detection and self-attention
branches of the same size. The attention feature maps that contained more than one target object were
the fusion results by using those that contained each one of the targets.

(a) (b) (c)

Figure 6. Visualization results for the VOC2007 test set. (a) Attention maps, (b) pointing
detection results, and (c) bounding box detection results.

Table 4. Pointing localization accuracy (%) on the VOC2007 test set.

Methods Accuracy

ACoL# [13] 61.27
Wildcat# [30] 62.18
SPG# [14] 77.43
MWP [44] 79.30
CAM [7] 80.80
c-MWP [44] 85.10
ours 82.20

We trained the SPG#, ACoL#, and Wildcat# models using the open source codes [42,43,45].
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Table 5. Corloc results (%) on the VOC2007 test set.

Methods Accuracy

Wildcat# [30] 21.99
ACoL# [13] 22.92
SPG# [14] 23.78
ours 30.65

We trained the SPG#, ACoL#, and Wildcat# models using the open source codes [42,43,45].

4.2.3. Ablation Study

In this work, we output two layers of feature maps for each branch, making the number of output
feature layers four. The scales of the output feature maps were 28× 28 and 14× 14. We compared these
two-scale output features by pointing localization and IoU localization metrics, and results are shown
in Table 6. We used the fusion features generated by applying element-wise maximum operations
to feature maps of the same scale from the detection and self-attention branches to evaluate the
performance of our method. Table 6 indicates that feature maps of resolution 14× 14 performed better
in pointing localization metric and feature maps of resolution 28× 28 can obtain better performance
in the IoU localization metric. This finding demonstrated that multi-scale output features in our
two-branch method were effective.

Table 6. Comparison of feature maps with different scales on the CUB-200-2011 dataset.

Feature Map Scales 28 × 28 14 × 14

Pointing localization top-1 err. top-5 err. top-1 err. top-5 err.

26.57 11.11 24.28 8.28

IoU localization top-1 err. top-5 err. top-1 err. top-5 err.

51.22 41.55 61.00 53.12

We further compared the localization performance of the detection branch with the self-attention
branch. As proven earlier, feature maps of scale 14× 14 were a better choice to evaluate the pointing
localization accuracy. Therefore, we used feature maps with a resolution of 14 × 14 to calculate
the pointing localization error of the two branches. Table 7 demonstrates that fusion feature maps
outperformed feature maps from the detection branch or self-attention branch only.

For IoU localization, we also testified that feature maps of scale 28× 28 were more suitable. To this
end, feature maps with a resolution of 28× 28 were utilized to obtain the IoU localization error of
the detection branch and self-attention branch. Table 7 shows that fusion feature maps outperformed
feature maps from the detection branch or self-attention branch only.

Table 7. Comparison of feature maps from different branches on the CUB-200-2011 dataset.

Feature Maps Detection Branch Features Self-Attention Branch Features Fusion Features

Pointing localization top-1 err. top-5 err. top-1 err. top-5 err. top-1 err. top-5 err.

24.43 8.42 24.36 8.42 24.28 8.28

IoU localization top-1 err. top-5 err. top-1 err. top-5 err. top-1 err. top-5 err.

51.73 42.26 51.68 42.17 51.22 41.55

Direct comparison of the detection branch with the self-attention branch revealed that the
localization performance (point localization error and IoU localization error) of the two branches
were relatively close and that the self-attention branch outperformed the detection branch slightly
(the point localization top-1 error was 0.07% lower and the IoU localization top-1 error was 0.05%
lower). We propose that the reason is that the two branches were intersected during the training
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process by regarding the segmentation mask of the other branch as the pseudo ground truth label of
itself, making the two branches improve together.

We compared the performance of different backbones (VGG-16 and GoogLeNet [46]). The two
backbones shared the same input image size. Weights from ImageNet were both used to initialize
the two backbones. The learning rates of VGG-16 and GoogLeNet were 3 × 10−4 and 1 × 10−3.
They decayed at 20 and 40 epochs for VGG and 30 and 60 epochs for GoogLeNet by a decay rate
of 1× 10−1 with a total of 60 and 90 training epochs, respectively. Table 8 shows the comparison
results. The results indicated that the VGG backbone outperformed the backbone GoogLeNet, both in
classification and localization. Specifically, the VGG backbone outperformed the GoogLeNet backbone
by 3.38% (top-1 error) and 2.79% (top-5 error) in classification evaluation. As for the pointing
localization and IoU localization, the VGG backbone outperformed the GoogLeNet backbone by
2.86%, 2.16% (top-1 error, top-5 error) and 8.78%, 9.43% (top-1 error, top-5 error).

Table 8. Comparison of different backbones on the CUB-200-2011 test set.

Backbones VGG GoogLeNet

Classification top-1 err. top-5 err. top-1 err. top-5 err.

22.13 5.63 25.51 8.42

Pointing localization top-1 err. top-5 err. top-1 err. top-5 err.

24.28 8.28 27.14 10.44

IoU localization top-1 err. top-5 err. top-1 err. top-5 err.

51.22 41.55 60.00 50.98

4.2.4. Result Analysis

We evaluated our proposed two-branch network on two datasets, CUB-200-2011 filled with
single object per image and VOC2007 filled with multi-objects per image. For CUB-200-2011 dataset,
three metrics (classification, pointing localization, and IoU localization) were applied to evaluate
the performance of our method and other methods. Considering the classification and pointing
localization results, our method achieved the best performance, and it outperformed the second best
methods (ACoL and SPG) by 2.01% and 2.75% on the top-1 error. Considering the IoU localization
results, ADL achieved the best performance; the top-1 error of our method was 4.26% higher.
However, the top-1 classification error of our method was 3.32% lower than ADL. For VOC dataset,
two metrics (pointing localization and Corloc) were applied to evaluate the performance of our
method and other methods. Considering the Corloc results, our method achieved the best performance,
and it outperformed the second best methods (SPG) by 6.87%. Considering the pointing localization
results, our method achieved the second best performance, and it was 2.90% lower than the best
performance method (c-MWP). Evaluation results demonstrated that our proposed two-branch model
was competitive with state-of-the-art methods in WSOL by introducing multi-scale output features
and self-attention mechanism.

Our model contained a detection branch and a self-attention branch. The two branches intersected
with each other by regarding the segmentation mask from the other branch as the pseudo ground
truth labels of itself. In the inference process, the features used to predict were the fusion results of
the features from the detection branch and the self-attention branch of the same size. We proved
that the fusion features achieved better performance than features from the detection branch or the
self-attention branch only. In addition, the two-scale features were used to predict the target objects.
We proved that feature maps of scale 28 × 28 and 14 × 14 were suitable for IoU localization and
pointing localization, respectively. These findings demonstrated that the multi-scale output features
suited our method, and the two-branch structure was also effective.
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5. Conclusions

In this work, we developed a two-branch network by embedding multi-scale output features
and a self-attention mechanism to capture information of the entire target objects not only the most
discriminative object parts. The self-attention mechanism armed our model with the ability to connect
different regions of objects. The multi-scale detection technique helped our model to achieve better
performance in locating target objects. We compared our two-branch network with other methods
focusing on exploiting powerful information of the entire object. Experiments on the CUB-200-2011
and VOC2007 datasets verified that the two-branch method was competitive against other methods
not only in detecting single objects but also in detecting multi-objects of an input image. In the
future, we plan to improve the performance of our method in detecting multi-objects by building
multi-connections, which could aggregate the regions of the same target and split the regions of
different targets.
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