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Abstract: In recent years, disparity estimation of a scene based on deep learning methods has been
extensively studied and significant progress has been made. In contrast, a traditional image disparity
estimation method requires considerable resources and consumes much time in processes such as
stereo matching and 3D reconstruction. At present, most deep learning based disparity estimation
methods focus on estimating disparity based on monocular images. Motivated by the results of
traditional methods that multi-view methods are more accurate than monocular methods, especially
for scenes that are textureless and have thin structures, in this paper, we present MDEAN, a new deep
convolutional neural network to estimate disparity using multi-view images with an asymmetric
encoder–decoder network structure. First, our method takes an arbitrary number of multi-view
images as input. Next, we use these images to produce a set of plane-sweep cost volumes, which are
combined to compute a high quality disparity map using an end-to-end asymmetric network.
The results show that our method performs better than state-of-the-art methods, in particular,
for outdoor scenes with the sky, flat surfaces and buildings.

Keywords: disparity estimation; multi-view stereo; asymmetric structure; plane-sweep cost volumes

1. Introduction

Disparity estimation from images is playing an increasingly important role in computer vision.
Numerous important applications, including 3D reconstruction, autonomous driving, robotics and
medical image processing, require depth information (disparity and depth can be converted to each
other under certain circumstances). Thanks to multi-view based methods, depth can be computed
with high precision.

Conventional multi-view depth estimation methods, such as Structure-from-Motion (SFM)
algorithms [1], are effective 3D reconstruction algorithms, which use a sequence of two-dimensional
images containing motion information to estimate the three-dimensional structure of a scene using
triangulation [2]. Besides SFM, there are many conventional Multi-View Stereo (MVS) methods to
estimate the depth map by computing the cost volume using the plane-sweep method [3] or by
measuring the similarity between patches using some error functions [4]. There are other methods
which combine shading or other information with stereo to capture the 3D scene information;
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for instance, Langguth et al. [5] propose a method which combines stereo and shape-from-shading
into a single optimization scheme for multi-view reconstruction. Kim et al. [6] propose using multiple
stereo pairs of spherical images to reconstruct a block-based scene. Haene et al. [7] integrate semantic
information with 3D reconstruction. These methods have used different constraints with MVS to
improve the reconstruction accuracy. While conventional MVS methods have many advantages, some
of the operations incur additional overhead in computing resource and hence, require more time, e.g.,
parallel distributed matching [8] or methods that incorporate geometric constraints [9].

Deep convolutional neural networks (CNNs) have achieved great success in image
classification [10] and in semantic segmentation [11]. Yin et al. [12] present an unsupervised multilevel
segmentation scheme for automatically segmenting grayscale and color images. Recently, CNNs have
been used to learn the relationship between color pixels and depth information in a single image [13].
In previous work with deep learning based stereo, CNNs are generally used to learn the similarity of
patches for stereo matching [14]. Compared with traditional methods, there are many advantages of
deep learning based methods. For example, a CNN-based method does not need to rely on handcrafted
features. Moreover, it does not have to do explicit feature matching. However, current deep learning
based methods still have limitations. For example, the positions, poses of the cameras and the number
of input images are limited. Therefore, the motivation of our model is to address these limitations and
to improve the accuracy of current deep learning based methods.

In this paper, we present a new CNN-based method called MDEAN which stands for a multi-view
disparity estimation method using an asymmetric network. The network is inspired by the work of
Huang et al. [15] and Mayer et al. [16]. First, a reference image and an arbitrary number of adjacent
images are selected. Second, the pose of each camera is computed using the standard SFM scene
reconstruction algorithm [1]. Next, for each adjacent image, a cost volume is computed using the
plane-sweep method [4] as input to the network. Then, an asymmetric encoder–decoder network
with skip connections and disparity estimation layers is used to estimate the disparity information
of the scene. Finally, max pooling is used to aggregate the disparity information extracted from each
patch, and convolution is used for the final disparity prediction. Based on the experimental results,
our proposed method can obtain high-quality disparity maps (See Figure 1). Moreover, it outperforms
the state-of-the-art methods with better prediction results, in particular, in outdoor scenes with the sky,
flat surfaces, buildings.

Figure 1. Illustration of high-quality disparity maps.
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2. Related Work

Disparity estimation is of significant importance to the field of computer vision research and
has been widely studied. Early image-based disparity estimation commonly uses multi-view based
SFM and MVS methods [17]. Recently, depth estimation using deep learning has become popular in
computer vision [18]. Deep learning based depth estimation has been widely used in monocular
images [19]. However, unlike multi-view images, monocular images cannot capture sufficient
information in the scene. Thus, the accuracy of single view depth estimation is not comparable
to that of multi-view methods. In this paper, we focus mainly on multi-view disparity estimation.

2.1. Monocular Depth Estimation

Depth estimation for monocular images before the advent of learning based methods commonly
uses MRF [20] and CRF [21]. Recent significant advances in machine learning and deep learning
have motivated recent research in using deep learning for depth estimation [13]. The vast majority
of deep learning based depth estimation methods are applied to monocular image depth estimation.
One of the earliest methods proposed by Eigen et al. [18] uses a multi-scale neural network to predict
depth. Before the introduction of Fully Convolutional Networks (FCN) [11], many deep learning based
methods estimate the depth map at the global level with a fully connected network at the last level.
Recently, many depth estimation methods are trained end-to-end based on the FCN network structure,
which can handle images of any size. Laina et al. [13] propose a depth estimation method using a
deeper residual network. Godard et al. [19] attempt to estimate depth by incorporating the left-right
consistency constraint. Mancini et al. [22] use a fully convolutional architecture combined with LSTM
for depth estimation. Li et al. [23] propose a deep end-to-end learning framework to estimate depth
using a single image and Zhang et al. [24] use a novel deep Hierarchical Guidance and Regularization
(HGR) learning framework for end-to-end monocular depth estimation. The network structures of the
above methods are all FCN, and all of them have achieved encouraging results. Our network is also
based on the FCN network structure and has incorporated important novel improvements.

2.2. Multi-View Depth Estimation

Before the advent of deep learning, disparity estimation of images is mostly realized by SFM and
MVS methods. Conventional SFM is a method of reconstructing the scene structure by the motion of
a camera or a sequence of unordered images. The core algorithm selects a set of appropriate images
for determining the camera’s parameters. Conventional MVS methods estimate the 3D information
by multiple images of known camera positions, and can be classified and evaluated according to
several criteria. Recently, many MVS 3D reconstruction systems have been proposed, e.g., PMVS [25],
CMVS [26] and COLMAP [17]. All of them can produce excellent reconstruction results. In particular,
Schonberger et al. present the COLMAP system which uses photometric and geometric priors to
select pixel-level views. COLMAP performs best in multi-view stereo [17]. In our work, we use the
parameters and poses of the cameras estimated by COLMAP as part of our input to estimate more
accurate disparity maps.

Deep learning is an important method in reconstructing a scene in 3D and in obtaining other scene
information. Some methods estimate the disparity map by learning patch matching or by learning
to find correspondences between patches [15] in multi-view images, while other methods use the
plane-sweep volume as input to generate the disparity image [27]. Many multi-view based depth
estimation methods such as Sunghoon et al. [3] use the method of dense depth reconstruction based
on geometry. The cost volume is learned using 3D convolutions of concatenated warped and reference
features. The cost volume is adjusted based on a context aware aggregation cost, and the dense depth
map is regressed from the cost volume. Huang et al. [15] use camera parameters to select a reference
image and a set of neighboring images to compute the plane sweep volume. The reference image
features are extracted by the encoder of the pre-trained VGG-19 network, then the plane-sweep volume



Electronics 2020, 9, 924 4 of 14

patch matching results and VGG features are used as the input to the intra-volume feature aggregation
network for depth estimation. Pizzoli et al. [28] propose a method combining bayesian estimation
and convex optimization, which can accurately predict in real time the scene depth of each pixel
of an image sequence. Yao et al. [29] use differentiable homography warping to construct the cost
volume, and then refine an initial depth map with the reference image feature to generate the final
output. Their method is based on an MVSNet structure, which is a four-layer U-Net. In contrast,
we propose a new asymmetric model to estimate the depth information. Ummenhofer et al. [30] take
two images as input and estimate the depth and motion, but their method is designed to handle only
two views. Our proposed MDEAN can handle any number of views. Similar to depth estimation
discussed above, there is much progress in depth estimation based on optical flow computation in
recent years. For example, Deqing et al. [31] propose using optical flow estimation to distort CNN
features to construct the cost volume, from which the depth is estimated. Shi et al. [32] propose a
method which does not need any prior information of the parallax range. From two warping error
measures, an accurate estimate can be made in occluded regions and contours. Jiang et al. [33] propose
a method to estimate disparity by fine-tuning FlowNet2.0 network, and the coarse estimates are fused,
and refined by a multi-view stereo refinement network. However, many of the above methods share
many constraints. For example, the number of input images is fixed [30], and the input image size is
fixed [28] as well. In this paper, our proposed method for disparity estimation can take an arbitrary
number of images and the images can be of arbitrary size.

2.3. Depth Estimation

Our proposed method to estimate disparity map of multi-view images is a fully convolutional
network based on the encoder–decoder architecture. It takes a set of plane-sweep volumes as input and
produces high-quality disparity maps. In order to correctly estimate the disparity of the sky, specular
objects, thin structures and scenes that may even have errors in the ground truth data, the training
set includes real scenes and synthetic data (Section 4.1). Training with two types of datasets are used
to achieve more accurate estimation results. The experimental results show that our method is more
accurate than other state-of-the-art methods in both qualitative and quantitative evaluation (Section 4).

3. MDEAN

A novel asymmetric network which uses multi-view for disparity estimation is described in
this section. First, an introduction of how to construct the input for our network is given. Then,
the asymmetric network structure is introduced. Finally, relevant optimizations for generating the
disparity maps are explained.

3.1. Problem Definition

We estimate the disparity map of a scene using a set of images, camera poses and corresponding
calibration results. Denote I = {Ik|k = 1, 2, . . . , N} as the set of input images. The set of poses of cameras
is denoted as P = {Pk|k = 1, 2, . . . , N}. The disparity map is represented by D. We select an image as the
reference image IR,R ∈ {1, 2, . . . , N} in I, and other images {Ik | k ∈ {1, 2, . . . , N} ∩ k 6= R} are denoted
as adjacent images. The goal is to use the adjacent images and the reference image (Section 3.2) to
estimate the disparity map.

3.2. Network Input

We first use COLMAP to perform sparse reconstruction using the set of input images to compute
the poses of the cameras and the camera calibration parameters. Next, the plane-sweep volume for
each adjacent image is computed. Then, all the plane-sweep volumes of all adjacent images are input
to the proposed MDEAN.

For calculating the plane-sweep volume, we set a disparity parameter Θ and a disparity level D̂
of the scene. The disparity level, 0 × Θ denotes the minimum disparity, and (D̂− 1) × Θ denotes
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the maximum disparity. The parameter Θ changes with the disparity level. The more the disparity
levels, the smaller is the Θ and vice versa. For each disparity level, an adjacent image is warped
to the reference image to form a layer in the volume. In principle, the warped image closely aligns
with the reference image. After finishing the above steps for all the adjacent images, the plane-sweep
volume can be calculated. We define the plane-sweep volume as V = {Vn,d | n ∈ {1, 2, . . . , N} ∩ n 6= R,
d ∈ {0, 1, . . . , D̂−1}}, Vn,d represents a single patch of the nth adjacent image and the dth disparity layer
(See Figure 2). During training, we set the maximum number of levels of disparity to 100 to prevent
the GPU memory to overflow.

Figure 2. The plane-sweep volume diagram.

3.3. Architecture of MDEAN

We propose an asymmetric fully convolutional network based on the encoder–decoder structure
for scene disparity estimation. The structure of MDEAN is shown in Figure 3. The fully convolutional
neural network is first proposed by Long et al. [11], which can easily adapt to an end-to-end framework
without restriction of image size. The encoder–decoder structure includes an upsampling operation
using transpose convolution, and is extended with skip connections from the encoder to the decoder
layer by Ronneberger et al. [34]. Therefore, the number of decoders is equal to the number of encoders.
We propose a new asymmetric fully convolutional structure based on the encoder and decoder structure
which can extract better feature information of an image. In the encoding layer, more and more detailed
feature information can be extracted and transferred to the decoding layer. At the same time, the scale
of space volume obtained by each decoding layer is doubled, and scene information can be restored
with more detailed features. Thus, the proposed MDEAN can better estimate the disparity of the image.

Traditional methods commonly find corresponding pixels of two adjacent frames using
handcrafted features and optimize some image-based error functions. In the proposed method,
we use convolution for patch matching operations. In particular, we perform convolution operation
using a patch extracted from reference image IR and from Vn,d. Because the maximum number of levels
of disparity is 100, we perform 100 sets of convolution operations for each adjacent image. After each
set of convolutions, a volume with four channels is generated. Finally, the 100 sets of volumes are
stacked to generate a new volume with 400 channels, which is input to the MDEAN for disparity
prediction. The details of the network structure are shown in Figure 4.

We use these 400-channel patch matching features as input to our proposed MDEAN, which
is based on DispNet [16]. However, we make some important refinements to make the estimation
more accurate. Our network contains an asymmetric structure which consists of six encoders and
five decoders. Symmetric network structures have also been tried in the experiment, such as the
five-encoder and five-decoder structure, and the six-encoder and six-decoder structure, but their results
are not as good as the proposed structure. In Section 4.5, our evaluation shows that the proposed
asymmetric network is better than symmetric networks with more accurate disparity estimation. The
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first five encoders are skip connected to the five decoders, which can resolve detailed features. We also
import three disparity estimation layers [19] to the decoder to add the spatial resolution of subsequent
scales. The activation function layers used in our network are all Scaled Exponential Linear Unit
(SELU) layers proposed by Klambauer et al. [35], which have self-normalizing property that makes
our network more robust. Our network uses many convolutional kernels throughout the encoders
and decoders to enhance the ability of extracting detailed features. In a typical encoder–decoder
architecture, the number of encoders is equal to the number of decoders, so that the output image
size can be the same as that of the size of the input image. In the proposed architecture, however,
up-sampling is used before the convolution in the fifth layer of the decoder. Thus, MDEAN can use an
asymmetric structure of encoder–decoder while maintaining compatible size between the input and
the output.

Figure 3. The structure of the multi-view disparity estimation method using an asymmetric network
(MDEAN). Our proposed MDEAN contains six-layer encoder and five-layer decoder.

Figure 4. The overall structure of the network. We use three channel color images for disparity
estimation. The maximum number of disparity levels is set to 100, the adjacent image is warp
transformed to the reference image for each disparity level. Then the transformed layers are stacked to
form a 300 layer volume that serves as input to the network.

In the last part of the network structure, inspired by PointNet [36], we use element-wise
max-pooling to aggregate information from any number of patch volumes, and to ensure that the
aggregated results are in the same order as that of the adjacent images. Then, the features are extracted
by the convolutional layers to generate the final disparity map.
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We use the cross entropy loss function (Equation (1)) to train our network, because we consider
image disparity estimation as a multi-class classification problem, in particular,

L(q, i) = − log
exp(qi)

∑C
j=1 exp(qj)

(1)

where qi denotes the probability of the target class i and qj denotes the probability of the jth class and
i,j∈{1,2,. . . ,C}, C denotes the number of classes.

The pseudocode of the proposed algorithm is presented in Algorithm 1.
In order to refine our final prediction results, we apply the initial prediction to the Fully-Connected

Conditional Random Field (DenseCRF) [37].

Algorithm 1 Disparity estimation algorithm based on an asymmetric structure.

Use COLMAP [17] to generate camera internal parameters and poses using an image sequence;
Construct plane-sweep volumes of adjacent images and the reference image;
Input the reference image, plane-sweep volumes of adjacent images, and ground truth disparity
maps of the reference image to the network;
while iterations t < Ttrain do

for each minibatch(=1) from the training set do
for each adjacent volume of the reference image do

for each layer in the volume do
Each layer is convolved with the reference image to generate a 4-channel volume shown in
Figure 4;

end for
Stack all generated volumes;
Disparity estimation is carried out by the MDEAN shown in Figure 3 and generate a volume
containing disparity;

end for
Aggregate information from any number of volumes using max-pooling operation and extract
features by convolution to generate the disparity map;
Calculate the loss according to Equation (1) and the ground truth disparity maps, and perform
back propagation to update each weight w in the network.

end for
end while

4. Results

4.1. Dataset

We use the DeMoN dataset [30] and the MVS-SYNTH dataset [15] to train our network. In the
DeMoN dataset, a real-world scene dataset and a synthesized dataset are included. However,
the ground truth for the real-world dataset may include errors of measurement during the acquisition
process, in particular, in areas such as the sky, areas with specular reflection, and in thin structures.
The synthesized data is not realistic enough to accurately reflect the appearance of the real world.
Thus, we also include MVS-SYNTH in the training set, a synthetic dataset with better shadow effect
that resembles the real world better.

To evaluate our method, we use the high-resolution multi-view dataset ETH3D [38], which consists
of 13 scenes, and includes both indoor and outdoor scenes. ETH3D also provides laser scanned point
clouds for corresponding scenes, and the laser scanned of each point cloud is projected onto the image
of each view to obtain the corresponding ground truth disparity map. We use it to evaluate the efficacy
of our approach on real scenes. In addition to using the ETH3D dataset, we also capture some outdoor
scenes to verify the robustness of our algorithm.
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4.2. Experimental Details

Our training process is divided into two steps. First, we replace the MDEAN with two simple
3× 3 convolution layers for pre-training. Next, we replace the two convolution layers with MDEAN
and use the pre-trained network parameters for subsequent training.

The COLMAP system [17] is used to estimate the cameras’ internal parameters, external
parameters and image poses. These parameters are used to generate the cost volume as input to
the network.

We use 64× 64 patches as input to the MDEAN. Thus, the network can be stored easily in the GPU
memory during training. Using the input image patches, an encoder layer generates the feature vector,
which is passed to the corresponding decoder layer for pixel wise disparity estimation. The network
output is also 64× 64 patches. We then tile these patches to generate the complete disparity map.

For both training stages, pre-training and training, we used Adam [39] and set the learning rates
of 10−5 and 10−6, respectively, for the two stages to achieve better results. We also utilize L2-norm
of the gradients at each layer to constrain the training process and use gradient clipping to prevent
gradient explosion.

In our implementation, the network structure is implemented in PyTorch in a system with an
NVIDIA TITAN Xp graphics card. Both pre-training and training take nearly two days.

4.3. Evaluation Method

Three different geometric methods including geometric errors [15], L1-rel [30] and SC-inv [18] are
utilized to evaluate the performance of our method and of the state-of-the-art methods.

The geometric error L1-inv is obtained by calculating the L1 distance between the ground truth
and the estimated disparity map and ignoring pixels without ground truth information. Its expression
is defined as:

L1− inv =
1
m ∑

i

∣∣∣∣ 1
di
− 1

d̂i

∣∣∣∣ (2)

L1-rel is the relative error defined as :

L1− rel =
1
m ∑

i

|di − d̂i|
d̂i

(3)

where di denotes the estimated depth value and d̂i the ground truth value. m denotes the number of
valid pixels.

SC-inv uses a scale-invariant error to measure the relationship between two values. The expression
is defined as :

SC− inv =

√
1
m ∑

i
zi

2 − 1
m2 (∑

i
zi)2 (4)

where zi = log di − log d̂i.
In order to more intuitively reflect the advantages and disadvantages of different methods.

We utilize the range transformation method Equation (5) and the z-score standardization method
Equation (6) to normalize the values obtained by the above three geometric measures, and

xm =
xi −min(x)

max(x)−min(x)
, (5)

xn =
xi −mean(x)

σ
, (6)

where xi denotes a number that needs to be normalized, x the set of numbers, and σ the standard
deviation of all the numbers that are normalized. xm denotes the result of the range transformation
method and xn the result of the z-score standardization method.
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4.4. Evaluation Results

Among traditional algorithms such as PMVS [25], MVE [40] and COLMAP [17], we choose
COLMAP to compare with our method, because compared with the other two traditional methods,
the COLMAP results are the best on the ETH3D dataset. If not explicitly stated, we use the default
settings of COLMAP. An option to filter out geometric inconsistencies is provided in COLMAP. In any
case, the filtered disparity map may reduce the impact of the method on the results. Thus, we compare
the results without filtering.

We also compare our results with the results of DeMoN [30]. It should be noted that DeMoN
can be used for disparity estimation of image pairs only. Therefore, we extend DeMoN to multi-view
disparity estimation. The extended method aggregates information from all available image pairs
using the median of corresponding pixels in the final disparity map. Since DeMoN uses a fixed
image size for disparity estimation, we crop the images in ETH3D to the appropriate size and then
use DeMoN for estimation. In the experiments, we select the central parts of the ETH3D images for
estimation.

DeepMVS is a multi-view disparity estimation convolutional neural network algorithm [15].
It generates a set of scan volumes by inputting any number of images, and then estimates the
corresponding disparity map using the convolutional neural network. In addition to comparing
with DeepMVS and DeMoN, we also compare our results with that of the latest methods DPSNet [3]
and MVSNet [29]. These two methods have very good performance in multi-view stereo reconstruction.

Figure 5 shows the qualitative comparison of DeMoN, COLMAP, DeepMVS, MVSNet, DPSNet
and our proposed method. We can see that because DeMoN uses a fixed image resolution for training,
the correct scaling factor cannot be obtained when testing with the ETH3D dataset, resulting in
inaccurate final results. While COLMAP has improved over DeMoN in the scaling factor of images,
the final estimation results are still very noisy. DPSNet and MVSNet are not very accurate in depth
estimation of the scene, and there is noise in the results of MVSNet, which are not very smooth.
Compared with the above methods, the results of DeepMVS show more detailed disparity information
and are smoother. However, in some irregular areas, such as the sky and areas with thin structures,
such as branches and complex structures of the wall, DeepMVS shows poor results. However, these
problems are all addressed well in our proposed algorithm. It is noteworthy that the depths of the
glass regions are incorrectly estimated in the ground truth data.

Figure 5. Qualitative comparison of different algorithms on the ETH3D dataset.
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Because the DeepMVS algorithm is most similar to our algorithm, we compare DeepMVS with
our algorithm. Figure 6 shows the qualitative comparison of DeepMVS and our algorithm. Based on
the qualitative comparison, our results are visually better than that of the DeepMVS method.

Figure 6. Qualitative comparison with DeepMVS. From the first, fourth, fifth and seventh rows, it can
be seen that DeepMVS made many incorrect estimations on the wall and the sky, and the results of our
method are visually better. The estimation for detailed structure is shown in the second row, the third
row and the sixth row, where our method can accurately show the shapes of the branches, the bicycle
and the metal rod, while DeepMVS cannot.

Table 1 shows the performance of our algorithm and other algorithms on the ETH3D dataset.
While DeMoN’s SC-inv is better than that of our algorithm, its L1 geometric error is too large and
causes its overall performance to drop.

Table 1. Quantitative comparison of different algorithms on the ETH3D dataset. The best value is
highlighted in bold.

Algorithm
Error Metric L1-inv L1-rel SC-inv

DeMoN 0.259 0.300 0.110
COLMAP 0.051 0.392 0.306
DeepMVS 0.048 0.285 0.215
MVSNet 0.199 1.695 0.503
DPSNet 0.052 0.760 0.624
ours 0.044 0.220 0.209
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As shown in Table 2, the three metrics in Table 1 are processed using two normalization operations.
The range transformation method is to transform the original data into the range of [0, 1] using a
linearization method to eliminate the effects of dimension and magnitude. The z-score standardization
method normalizes the original data to a mean of 0 and a variance of 1. If the processed data is greater
than 0, the data is higher than the mean value. If it is less than 0, the data is lower than the mean value.
In terms of overall performance, our proposed algorithm is better than other algorithms.

Table 2. The result of normalization of data. The best one is highlighted in bold.

Range Transformation Method

Algorithm
Error Metric L1-inv L1-rel SC-inv Sum

DeMoN 1 0.054 0 1.054
COLMAP 0.033 0.117 0.381 0.531
DeepMVS 0.019 0.044 0.204 0.267
MVSNet 0.721 1 0.764 2.485
DPSNet 0.037 0.366 1 1.403
ours 0 0 0.192 0.192

Z-Score Standardization Method

DeMoN 1.731 −0.597 −1.214 −0.08
COLMAP −0.667 −0.419 −0.121 −1.207
DeepMVS −0.701 −0.626 −0.628 −1.955
MVSNet 1.039 2.102 0.976 4.117
DPSNet −0.655 0.293 1.650 1.288
ours −0.747 −0.752 −0.662 −2.161

4.5. Ablation Studies

In this section, we examine the effect of each part of the network on estimation. We have evaluated
the results of different structures shown in Table 3.

From Table 3, we know that each part of the proposed network is indispensable. The asymmetric
structure can help to extract features for more accurate predictions. The disparity estimation layer
can help to provide the accuracy during the decoding process. DenseCRF can help to improve the
estimation results and to smooth the results. It is noteworthy that we also use a six-layer symmetric
network, but the effect is not as good as the five-layer symmetric network.

Table 3. Ablation studies of our proposed method. “AL” denotes the asymmetric structure, and
“Sym” is the symmetric structure of five encoding and five decoding layers, and “disp” is the disparity
estimation layer, the “DenseCRF” is the post-optimization process. The best one is highlighted in bold.

Components
Error Metric L1-inv L1-rel SC-inv

AL 0.059 0.692 0.395
AL+DenseCRF 0.051 0.490 0.281
AL+disp 0.056 0.322 0.283
Sym+disp+DenseCRF 0.050 0.332 0.251
AL+disp+DenseCRF 0.044 0.220 0.209

5. Conclusions

In this paper, we propose a new asymmetric network structure to improve the accuracy of
disparity estimation. The experimental results show that the asymmetric network structure that we
propose can accurately estimate the disparity map of a scene, and the generated disparity map is
smoother and retains more fine structures than that of other state-of-the-art methods. Especially for
outdoor scenes or complex scenes with more obvious effect, our method can be applied to multi-view
stereopsis with any number of images, which overcomes the limitation of requiring a fixed number of
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input images in many methods, and can also address some of the deficiencies of traditional methods.
The qualitative and quantitative results on multiple datasets show that the performance of our method
is better than that of existing methods.

While our model can produce satisfactory results in outdoor scenes, there are still some
shortcomings when it is used for indoor scenes. Moreover, our model has a large number of parameters,
so it cannot estimate disparity in real-time. Therefore, in future work, we plan to improve the indoor
results by incorporating geometric constraints, and to reduce the computation time by optimizing the
model structure.
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