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Abstract: The main objective of the article is to provide a thorough review of currently used AC-DC
converters for alkaline and proton exchange membrane (PEM) electrolyzers in power grid or wind
energy conversion systems. Based on the current literature, this article aims at emphasizing the
advantages and drawbacks of AC-DC converters mainly based on thyristor rectifier bridges and
chopper-rectifiers. The analysis is mainly focused on the current issues for these converters in terms
of specific energy consumption, current ripple, reliability, efficiency, and power quality. From this
analysis, it is shown that thyristors-based rectifiers are particularly fit for high-power applications
but require the use of active and passive filters to enhance the power quality. By comparison, the
association combination of the chopper-rectifier can avoid the use of bulky active and passive filters
since it can improve power quality. However, the use of a basic chopper (i.e., buck converter) presents
several disadvantages from the reliability, energy efficiency, voltage ratio, and current ripple point of
view. For this reason, new emerging DC-DC converters must be employed to meet these important
issues according to the availability of new power switching devices. Finally, based on the authors’
experience in power conversion for PEM electrolyzers, a discussion is provided regarding the future
challenges that must face power electronics for green hydrogen production based on renewable
energy sources.

Keywords: AC-DC converters; alkaline electrolyzer; proton exchange membrane electrolyzer; power
quality; current ripple; energy efficiency; specific energy consumption; power factor; lifespan

1. Introduction

Nowadays, 96% of the global hydrogen produced comes from the use of fossil fuels (i.e., natural gas,
oil); whereas production from water electrolysis represents only 4% [1]. Indeed, the cost of hydrogen
production by using fossil fuels is smaller than water electrolysis given that current electrolyzers are
quite expensive and the cost of electricity as well. However, hydrogen production based on fossil fuels,
namely gray hydrogen, suffers from lower purity and higher generation of greenhouse gases [1]. To face
the intensive use and depletion of fossil fuels to respond to hydrogen demands, water electrolysis
supplied by renewable energy sources (e.g., wind turbine, photovoltaic) is considered an attractive and
promising alternative [2,3]. Renewable energy sources combined with water electrolysis come within
the scope of the development of environmentally friendly hydrogen production pathways to substitute
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current hydrogen production based on pollutant fuels. Water electrolysis can produce hydrogen at
high gas purity but features high cost (electrolyzer, electricity) and lower energy efficiency due to a
high specific energy consumption [1]. For this reason, energy efficiency, cost of electricity, and water
electrolysis systems remain major concern to the development of water electrolysis process at a large
scale [1]. The water electrolysis process consists of using electricity coming from the power grid or
renewable energy sources to split pure water into hydrogen and oxygen.

Currently, three types of electrolyzers exist depending on their electrolyte and ions transportation:
Alkaline, proton exchange membrane (PEM), and solid oxide (SO) technologies [1]. Alkaline and PEM
technologies are currently available in the market; while SO technology is still under research and
development due to its recent introduction in the 1980s [1]. Alkaline is a mature technology since its
operation principle was first introduced more than 200 years ago [4,5]. In the 1980s and the 1990s, this
technology acknowledged a growing interest in the development of large research projects (kilowatt
range) to face the second oil shock. Subsequently, the power range has been extended to megawatt
and has allowed the development of this technology at a large scale for industrial applications [6,7].
The main advantages are cheaper catalysts, higher lifespan, and gas purity. However, this technology
presents several drawbacks from the current density, flexibility, ohmic loss, and operating pressure
point of view [1,5]. Alkaline electrolyzers are commercially available in a few companies as reported
in [5]. Generally, the manufacturers provide the partial load range for each model. The lower partial
load range and current density of alkaline electrolyzers are important issues when coupling with
renewable energy sources such as wind energy. Indeed, a part of the capacity for water electrolysis
cannot be exploited for hydrogen production [5]. By comparison, PEM technology has been developed
since the 1960s to cope with the above-mentioned issues for alkaline electrolyzers [1,2]. Recently,
several research projects (lying in the range of megawatts) have been initiated in several countries
(e.g., Germany, Norway, Denmark, Thailand, New Zealand, Canada) for power to X, industrial
hydrogen supply, and mobility applications [8,9]. Furthermore, the power to X concept is considered a
promising solution to produce decarbonized hydrogen for industry, power, and transportation [8,10].
Compared to alkaline technologies, this technology offers high current density (above 2 A·cm−2),
compactness, small footprint, high efficiency, very thin membrane (i.e., 25–300 µm), high-pressure
operation, fast response, and dynamic operation, making it suitable when coupling with renewable
energy sources [1]. However, the main drawback is its cost being relatively high since expensive
catalyst materials (e.g., iridium, platinum) are used both at the anode and the cathode; at the moment,
it hinders its development at large scale and market penetration. For this reason, one of the most
important challenges is to decrease its production cost while maintaining high efficiency [1].

Alkaline and PEM electrolyzers need to be supplied with DC voltages (from a few to hundreds of
volt) and DC currents (from ten to thousands of amp). As a result, the use of AC-DC converters from an
AC power supply (power grid, wind turbine) is mandatory [11]. Currently, for high-current applications,
large current rectifiers are required, which are mainly based on two families: Thyristor-based rectifier
with hybrid filter (THRF) and diode rectifiers with a DC chopper (CRPF) [12,13]. The development
of such circuits has been led mainly from the availability of switching devices for power converters
suitable for high voltage and high currents as thyristors first and IGBT then. In [13], the authors have
provided a literature survey of rectifiers suitable for industrial applications requiring large currents.
Thyristor-based rectifiers and IGBT based chopper-rectifiers are compared from the energy efficiency,
power quality, and reliability points of view. The power quality from the power supply point of view
(i.e., current harmonic content, power factor) must meet with international standards and requirements
(e.g., IEEE 519-2014) [13]. To decrease the current harmonic content and increase the power factor,
compensation solutions must be inserted at the power supply. For instance, in [12], a 12-pulse
thyristor-based rectifier including passive and active filters and a 12-pulse bridge rectifier combined
with a three-phase interleaved buck converter are compared in terms of power quality, energy efficiency,
cost, and volume. In [14], a passive filter combined with a distribution static synchronous compensator
(DSTATCOM) is developed for a 12-pulse thyristor-based rectifier to enhance the power quality. In [11],
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diode and thyristor-based rectifiers (6- and 12-pulse), including on-load tap transformers and hybrid
filters, and chopper-rectifiers are discussed from the power quality point of view. These solutions
lead up to an increase in cost while reducing energy efficiency. Compared to THRF, CRPFs allow
avoiding using compensation solutions since the current harmonic content is smaller and the power
factor higher. From the power quality point of view, CRPF offers a good alternative to the use of
THRF [12,13]. All the above-mentioned circuits are voltage sources; since it is known that in the
electrolyzers, the production of hydrogen depends on the current, it is obtained in an indirect way
as the difference between the voltage outputs by the converter minus the voltage exhibited by the
electrolyzer (activation voltage) divided by the internal resistance.

Recently, in [15], the authors have investigated the effects of the current ripple coming from
conventional thyristor-based rectifiers (6- and 12-pulse) and classic chopper-rectifier on the specific
energy consumption of high-power alkaline electrolyzers. The higher the current ripple, the higher the
specific energy consumption. Hence, the current ripple must be as small as possible to optimize the
specific energy consumption. To perform this analysis, the impedance of the electrolyzer (instead of
the DC resistance) versus the frequency has to be considered.

From [11–15], these large rectifiers must meet several challenging issues from the power quality,
energy efficiency, control, and reliability point of view. From the load side, the AC-DC converter has to
be able to supply the electrolyzer with a controlled current to manage energy efficiency and hydrogen
production. On one hand, for thyristor-based rectifiers, the electrolyzer current is controlled through
the output voltage of the rectifier obtained by adjusting the firing angle [14]. Since high-voltage
are generated, thyristor-based rectifiers are particularly fit for alkaline electrolyzers requiring large
currents. On the other hand, for chopper-rectifiers, the electrolyzer can be controlled through its
voltage and current [15,16]. For small-scale electrolyzers [17], since the stack voltage range is quite
small compared to the current range, it is interesting to control the current to enhance the management
of the hydrogen flow rate and energy efficiency.

For low- and medium-power applications, diode rectifiers coupled with DC choppers (buck,
interleaved buck converter, stacked interleaved buck converter) are the most suitable [15,16]. Power
quality, energy efficiency, control, and reliability are not the only issues, but there is also the current
ripple generated from rectifiers and DC choppers. By their operation, rectifiers generate low-frequency
current ripple (around a hundred of hertz); whereas DC choppers generate high-frequency current
ripple [17–19]. Recent works have emphasized the negative effects of current ripples from power
electronics on specific energy consumption and energy efficiency [20,21]. Compared to a classic DC
chopper, interleaved DC choppers enable decreasing or canceling the output current ripple while
preserving the reliability of the electrolyzers. Furthermore, interleaved DC choppers can continue to
supply the electrolyzer without any interruption in case of power switch failures due to their static
redundancy [18].

The first purpose of this article is to review alkaline and PEM electrolyzer technologies to
emphasize their main electrical features (voltage, current, power) based on technical data from leading
manufacturers. Hence, a clear overview of electrical requirements from alkaline and PEM electrolyzers
can be obtained. Then, the second purpose is to present a thorough literature review of AC-DC
converters for electrolyzer applications including THRF and CRPF. The advantages and drawbacks for
each topology from the power quality, energy efficiency, current ripple, cost, control, and reliability
point of view are given. Finally, based on these two previous reviews, a summary is achieved and
enables opening a discussion focused on future research directions linked to the current challenges of
AC-DC converters for electrolyzer applications. In the authors’ opinion, this survey is useful to assess
the state of the art and to stimulate new research in a period in which the scenario is changing due to
the use of RES to mitigate CO2 emissions and to the availability of power switching devices based on
wide bandgap semiconductors, which will allow different conversion topologies, improving efficiency
with reduced costs, and modifying the scenario of electromagnetic interferences (EMI) [19,22–26].
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This article is divided into five sections. After this introduction presenting the current state of
the art and reasons to carry out this review work, Section 2 consists of positioning this review work
compared to the current state of the art to highlight the contributions of this article. After that, Section 3
introduces the principle of operation of alkaline and PEM electrolyzers and the most important features
based on commercial electrolyzers. Then, in Section 4, AC-DC converters including THRF and CRPF
with their advantages and drawbacks are presented. Furthermore, each AC-DC converter is compared
from the power quality, energy efficiency, current ripple, cost, control, and reliability points of view.
Finally, in Section 5, a discussion is provided regarding the most suitable topologies according to the
application and future research directions in using these topologies are introduced.

2. Position of this Review Work Compared to the Current State of the Art

Based on the current literature [11–15], two main scenarios can be recognized. The former
contains high power plants in which the supply is given by the grid (at low and medium voltage);
the electrolyzers are mainly alkaline, and the power conversion AC/DC is obtained by a diode or
thyristor-based rectifiers. This configuration does not require a dynamic analysis since the power
delivered by the grid is always more significant than the one needed by the plant and alkaline
electrolyzers shows a negligible dynamic behavior [15]; the main issues are related to the harmonics
towards the grid and the voltage ripple at the output of the electrolyzer [17]. By the use of IGBTs
instead of thyristors in power converters, harmonics are mitigated, and their impact is lessened since
the higher switching frequency of the power devices can be increased, and consequently, the frequency
of harmonics is increased too. It makes their suppression easier and minimizes the effect on the
electrolyzers. In the above-mentioned power plants, advances are tied to the availability of new power
devices suitable for high currents; on the other hand, the topologies of high power converters are
well assessed.

The power to gas (P2G) conversion topology, deployed as adjuncts to wind parks or solar-electric
generation in which the excess power or off-peak power generated by wind generators or solar arrays
may then be used hours, days, or months later to produce electrical power for the electrical grid, is tied
to the development to circuits to interface high power wind turbine with the grid [27]. Since these
circuits are not developed expressly for supplying electrolyzers, they are not analyzed in the article.

The contribution of the article aims at focusing the attention on issues and related topologies for
energy conversion from a RES to the electrolyzer. The power ranges from a hundred W up to a hundred
kW. The main issues are related to the dynamic behavior of the source and of the electrolyzer. Using
PEM electrolyzers, dynamic behavior can be recognized and modeled. It influences the modeling of
the converter and its control system design as well.

The authors studied these issues considering the dynamic model of a PEM electrolyzers in [28];
different converter topologies and related control systems have been discussed in [18,29] and converters
supplied by wind generators in [16,30].

These studies are based on the identification of the dynamic model of a PEM electrolyzer; it is
a novelty in the literature that allowed the study conversion topologies and related control systems
devoted to properly supply the electrolyzer when the power delivered by the source is subjected to
variation. For this reason, our proposal is focused on the new methodology proposed by the authors
for the first time.

In this field, numerous developments are expected. They are encouraged firstly by the amount
of the investments that is lower compared to high power plants and secondly, fast wide-bandgap
switching devices are already available, allowing the retrofit of the existing converters and the design
of new topologies. As an example, active rectifiers allow minimizing the impact of the converter on
the grid or the wind generator. These fast devices can be operated at a higher frequency, assuring an
improved efficiency and a reduced size of reactive components (inductors and capacitors), leading to a
fast dynamic behavior.
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3. Alkaline and PEM Electrolyzers: Operation, Features, and Leading Manufacturers

To cope with global warming and depletion of fossil fuels, hydrogen production based on water
electrolysis is an attractive solution. Indeed, hydrogen generated through the water electrolysis process
can lead to reducing the carbon footprint, depending strongly on the source of electricity used to
supply electrolyzers. On one hand, electricity from the power grid is not the ideal source to supply
electrolyzers since most of the electricity is generated by power plants resulting in greenhouse gas
emissions (i.e., coal and natural gas-fired power station). On the other hand, renewable energy sources
(e.g., wind, solar, hydro energy) offer a viable pathway to meet the growing demand for energy and
the global interest in decreasing the carbon footprint. Currently, Iceland, Costa Rica, and Norway use a
large part of the electricity generated from hydro, geothermal, and wind energy. However, when using
renewable energy sources, intermittent energy discontinuances are generally met. Therefore, energy
storage such as hydrogen buffer storage enables easing intermittent power discontinuances by storing
excess energy from renewable energy sources at periods of low energy requests and delivering stored
energy at periods of high energy request.

Thus, it can ensure a balance between production and consumption. In hydrogen production
pathways based on renewable energy sources, produced and stored hydrogen can be employed for
various applications as shown in Figure 1 [8,10]:

1. Transportation: Hydrogen allows supplying hydrogen fueling stations for fuel cell electric
vehicles. Hydrogen is stored in pressurized tanks (around 700 bar) and supply PEM fuel cells to
power electric motors. Some car manufacturers have even developed fuel cell electric vehicles
such as Toyota (Mirai model), Hyundai (Tucson model), and Honda (Clarity model).

2. Energy storage: To face intermittent energy disturbances, the surplus energy at times of low energy
demand can be stored in hydrogen, then used to balance the grid in case of high energy demand.

3. Power-to-Gas: It consists of converting hydrogen through the methanation process into a green
natural gas to be injected in pipeline and underground facilities. It represents an alternative
storage capacity, which can be employed where and when it is required most and makes the
power system more flexible.

4. Industry: Hydrogen can be used in different industrial processes such as chemical (e.g., ammonia
synthesis, methanol production), metallurgic (e.g., metalworking, carbon steels), and electronic
(e.g., semiconductors production).
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An overview of strengths, weaknesses, opportunities, and threats within the framework of this
review work is given in Table 1. It is evident that technology is already mature and new improvement
is coming using RESs; the new generation of power switching devices, on the other hand, should be
sustained by the policy.

Table 1. SWOT analysis with strengths, weaknesses, opportunities, and threats within the framework
of this review work.

STRENGTHS
√

Hydrogen is a clean energy vector
√

Hydrogen can be used for energy storage
√

Hydrogen can be used for automotive traction

WEAKNESSES
√

Storage hydrogen technologies to be improved
√

P2G to be increased

OPPORTUNITIES
√

Increase of use RES to produce hydrogen
√

Use of new generation power switching devices
to increase the conversion efficiency of
power conversion

√
P2G applications

THREATS
√

Need of a specific policy to
incentivize Hydrogen

√
Lack of distribution grid or refilling points
where hydrogen is produced locally

In the next subsections, the principle of operation of alkaline and PEM electrolyzers is presented.
Furthermore, the most important features for each technology are provided based on technical data
from the lead manufacturers of electrolyzers. The electrical requirements to supply the electrolyzer are
needed to determine the most suitable AC-DC converter.

3.1. Alkaline Electrolyzers

In alkaline electrolyzers, the chemical reaction occurs in an aqueous solution composed of water
and potassium hydroxide (25–30% KOH) between two electrodes. These electrodes are located between
a diaphragm, separating the generated gases from both electrodes and moving the hydroxide ions
(OH−) from the cathode to the anode. The chemical reactions of the alkaline water electrolysis process
are given as [4]:

Cathode 2H2O + 2e− → H2 + 2OH− (1)

Anode 2OH− → 1/2 O2 + H2O + 2e− (2)

Global 2H2O → 2H2 + O2 (3)

From the chemical reaction (1), two water molecules are split into hydrogen and hydroxide ions
because of electrons at the cathode. Then, in (2), hydroxide ions travel through the membrane towards
the anode where they are combined with electrons to make oxygen. The principle of operation of
alkaline water electrolysis is shown in Figure 2. The main advantages of this technology are mature
technology (well-established), cheaper catalysts based on no noble metals (e.g., nickel, cobalt, iron),
high long-term stability (exchangeable electrolyte), high hydrogen production rate up to 3880 Nm3

·h−1

(atmospheric alkaline electrolyzer A3880 from NEL Company, 4.4 mW). However, this technology
suffers from having low-current density (leading to bulky electrolyzers) and limited partial load range
(impeding its penetration in markets of great potentials such as wind energy) [4,5]. Therefore, the
remaining challenges for this technology reside in enhancing the current densities, extending the
partial load range, and making it more compact. Recently, new and relevant advances in alkaline
electrolyzers have been reported such as the use of new electrocatalysts to reduce overpotentials and
increase energy efficiency, and new diaphragms to expand partial load range while decreasing ohmic
losses [2,5].
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Nowadays, alkaline electrolyzers are manufactured by a few companies and a summary of the
most important specifications for different models is given in Table 2. Generally, most manufacturers
provide specifications such as hydrogen flow rate (Nm3

·h−1), energy consumption (kWh·Nm−3), and
partial load range (%). From Table 2, it can be noted that all the manufacturers use electrolyte potassium
hydroxide (25–30%). Generally, potassium hydroxide is preferred compared to sodium hydroxide
(NaOH) since it is more conductive. The operating pressures of this technology are included between 3
bar and 35 bar. Based on the power of electrolyzer stack (from kW to mW), the range of hydrogen
flow rate is between 1.5 Nm3

·h−1 and 3880 Nm3
·h−1; whereas the specific energy consumption is

between 3.8 kWh·Nm−3 (H2) and 5.4 kWh·Nm−3 (H2). Another important feature provided by the
manufacturers is the partial load range. Indeed, the usual partial load range is included between 40%
and 100%; but some manufacturers (e.g., Hydrogenics, NEL) offer a partial load range of 25–100%
and 15–100%, respectively. By expanding the partial load range, the manufacturers seek to extend
the penetration of alkaline electrolyzers in hydrogen production pathways based on a wind energy
conversion system. Hence, the alkaline electrolyzers can exploit the energy supplied by the wind
turbine even at low wind speed to produce hydrogen [31].

On the other side, alkaline electrolyzers feature a slow system response to dynamic operations,
particularly important for wind turbines. This slow response is due to the liquid electrolyte used,
slowing down the movement of the hydroxide ions from the cathode to the anode [32]. As a result, the
alkaline electrolyzers are not able to absorb the energy during fast intermittent energy discontinuances.
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Table 2. Summary of leading manufacturers of alkaline electrolyzers.

Manufacturer Series and Operating Pressure Hydrogen Flow Rate
(Nm3

·h−1) 1
Energy Consumption

(kWh·Nm−3 H2) Load Range (%) Electrolyte Power

Hydrogenics [33] HYSTAT/10–25 bar 10–60 max. 15/stack 4.9–5.4 (AC system all
included)

40–100 (25–100 as an
option) H2O + 30% wt. KOH 100–515 kVA

McPhy [34] McLyzer/10–30 bar 10–800 4.43–5.25 DC system at
nominal flow rate No details No details 57 kW–4 mW

Teledyne Energy Systems [35] TITAN HMXT 10 bar 2.8–11.2 No details No details No details No details

Teledyne Energy Systems [35] TITAN EL–N 10 bar 56–78 No details No details No details No details

Wasserelektro-lyse Hydrotechnik [36] EV 50–EV 150 Atmospheric 4 bar 75–220
5.28 depending on the
operating temperature

and the load
20–100 30% KOH No details

NEL [37] A Series 1–200 bar 50–3880 3.8–4.4 15–100 25% KOH Aqueous
Solution up to 2.2 mW

Nuberg PERIC [38] ZDQ 5–600 15 bar to 20 bar 5–600 4.6 DC system No details 30% KOH (by weight) 23.7 kW–2.74 mW

Sagim S.A. [39] M–series 7 bar 1.5–5 5 No details No details 14–42 kVA

Tianjin Mainland Hydrogen Equipment
[40] FDQ series 3 bar to 5 bar 2–1000 4.4–4.9 DC system 40–100 30% KOH No details

Green Hydrogen [41] A-Series 35 bar 2.7–8.1 4.63–4.81 No details No details 125–390 kW
1 Normal cubic meter per hour (considering ISO 2533 standard at 15 ◦C (288.15 K) and 1 bar).
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Among all the manufacturers reported in Table 2, the Norwegian company NEL propose alkaline
electrolyzer with the best performance in terms of operating pressure (up to 200 bar), hydrogen
flow rate (up to 3880 Nm3

·h−1), specific energy consumption (3.8–4.4 kWh·Nm−3), partial load range
(15–100%), and stack power (up to 2.2 mW). The A-series (as reported in Table 2) can use two stacks of
2.2 mW connected in series to increase the power and hydrogen flow rate while decreasing the specific
energy consumption and offering a wide partial load range.

3.2. PEM Electrolyzers

Compared to alkaline electrolyzers, PEM electrolyzers are composed of a solid polymer electrolyte
(SPE) that is in charge of the transfer of protons from the anode to the cathode, the separation of the
generated gas both at the anode and cathode, and the electrical insulation between both electrodes
while acting as a reactant barrier against gas crossover. The chemical reactions of the PEM water
electrolysis are summarized below [1]:

Anode 2H2O→ O2 + 4H+ + 4e− (4)

Cathode 4H+ + 4e− → 2H2 (5)

Global 2H2O → 2H2 + O2 (6)

From the reaction (4), the water molecules react at the anode to form oxygen and positively charged
protons. After that, in (5), protons pass through the SPE towards the cathode where they are combined
with electrons to make hydrogen. The principle of operation of alkaline water electrolysis is shown in
Figure 3. Over alkaline technology, PEM electrolyzers feature higher power densities and efficiency,
suitable partial load range, compact stack design, high-pressure operation, and faster dynamic response
times. Currently, SPE is based on fluoropolymer (PFSA) Nafion membranes from the DuPont Company,
which are the most widespread for this technology since they offer high thermal stability and proton
conductivity (i.e., 0.1 S·cm−1 at 100 ◦C), and thin membrane (25–254 µm). The choice of the membrane
thickness results in a compromise between the expected operating pressures across the membrane,
mechanical resistance, low gas crossover, and ohmic resistance [32]. In [3,42], it has been highlighted
that the very thin membrane allows decreasing ohmic losses and operating the membrane at high
pressure due to its high mechanical resistance. However, the higher the operating pressure, the higher
the equivalent current of hydrogen crossover [43]. As a result, faradaic losses due to the hydrogen and
oxygen crossover increase. Faradaic losses related to Faraday’s efficiency are particularly important at
low current densities. To overcome this issue, PEM electrolyzers have to operate at medium and high
current densities to reduce the Faradaic losses.

The main drawback of this technology is its cost since noble materials (e.g., iridium, platinum)
are used for the catalysts both at the anode and cathode. The remaining challenges concern the
cost reduction by decreasing and substituting noble materials and cost-intensive components, the
enhancement of the long-term stability, and scale-up single cells (>1000 cm2) [42].

Like alkaline electrolyzers, PEM electrolyzers are manufactured by a few companies and a
synthesis of the most important specifications for different models is given in Table 3. The same
specifications data have been collected to be compared with those for alkaline electrolyzers. All the
specifications for different PEM electrolyzer models are summarized in Table 3. From Table 3, it
can be noted that only three companies (i.e., NEL, GREEN Hydrogen, Hydrogenics) manufacture
both alkaline and PEM electrolyzer but with different specifications. The operating pressures of this
technology are included between 1 bar and 50 bar due to the thinner membrane enabling operating at
higher pressures compared to alkaline technology.
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Table 3. Summary of leading manufacturers of PEM electrolyzers.

Manufacturer Series and
Operating Presure

Hydrogen Flow
Rate (Nm3

·h−1)

Energy
Consumption

(kWh·Nm−3 H2)
Load Range (%) Electrolyte Power

Proton OnSite [44] S Series 13.8 bar 0.265–1.05 6.7 0–100 SPE No details

Proton OnSite [45] H Series 15–30 bar 2–6 6.8–7.3 0–100 SPE No details

H-TEC Systems [46] H-TEC Series-S 0.22–1.1 No details No details SPE 1–5 kW

H-TEC Systems [47] ME unpressurised
30 bar 13–210 4.9 No details SPE 225 kW–1

mW

Areva h2 gen [48] E series Up to 35 bar 10–200 4.7–5.3 No details SPE 80–1600 kVA

Hydrogenics [49] HyLYZER 0–7.9 bar 1–2 6.7 0–100 SPE No details

ITM Power [50] HPac, HCore, HBox,
HFuel 15 bar 0.6–35 4.8–5.0 (system) No details SPE 2 mW

Siemens [51] SILYZER 200 35 bar 225 No details No details SPE 1.25 mW

Green Hydrogen [52] P–series/15–50 bar 1 No details 25–100 SPE 4.95 kW

NEL [53] M Series 30 bar 103–413 4.53 0–100 SPE 0.5–2 mW

Based on the power of electrolyzer stack (from kW to mW), the range of hydrogen flow rate
is between 0.22 Nm3

·h−1 and 413 Nm3
·h−1; whereas the specific energy consumption is between

4.53 kWh·Nm−3 (H2) and 7.3 kWh·Nm−3 (H2). Like for alkaline electrolyzers, the Norwegian company
NEL manufacture PEM electrolyzers with the best performance from operating pressure (up to 30 bar),
hydrogen flow rate (up to 413 Nm3

·h−1), specific energy consumption (4.53–7.3 kWh·Nm−3), partial
load range (0–100%), and stack power (up to 2 mW) point of view. The partial load range of PEM
electrolyzers is generally between 0% and 100% making them fit for hydrogen production pathways
based on wind turbines. Due to their faster dynamics response time and the large partial load range,
they can exploit the energy during operations at low wind speed and particularly absorb the energy in
case of fast intermittent energy discontinuances.

However, PEM electrolyzers offer lower performance compared to alkaline electrolyzers from the
hydrogen flow rate and specific energy consumption point of view. Indeed, the maximum hydrogen
flow rate is 413 Nm3

·h−1 (around nine times lower compared to A-series from NEL); whereas the
minimum specific energy consumption is 4.53 kWh·Nm−3 (against 3.8 kWh·Nm−3 for A-series from
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NEL). In summary, further improvements are needed so that PEM electrolyzers can compete with
alkaline electrolyzers in terms of hydrogen flow rate, specific energy consumption, and system size.

3.3. State of the Art of the Specifications for Alkaline and PEM Electrolyzers

Based on the technical data collected from each electrolyzer manufacturers, a state of the art of both
technologies has been carried out and is reported in Table 4. This state of the art is updated compared to
the previous one introduced in [2]. From Table 4, it can be noted that PEM electrolyzers are competitive
technologies over alkaline technologies since they can offer a similar cell voltage efficiency and system
energy efficiency. Furthermore, the system energy efficiency includes the efficiency of ancillaries such
as AC-DC converters mainly based on thyristors, which feature high energy efficiency (around 97%).
Hence, the enhancement of energy efficiency for both technologies is a challenging issue. In addition,
the required DC current (around 1000 amps) and voltage (100 volts) are obtained by using AC-DC
converters, which can be based on thyristors or three-phase diode rectifier connected to a DC chopper.
Both types of AC-DC converters present advantages, drawbacks, and must face new challenges that
are discussed in the next section. Finally, on one hand, in terms of lifetime, alkaline electrolyzers
offer more prospective compared to PEM electrolyzers. On the other hand, the understanding of the
interactions between AC-DC converters and electrolyzers is a key issue particularly from the life span
point of view.

Table 4. State of the art of alkaline and PEM electrolyzers.

Specification Alkaline Electrolyzer PEM Electrolyzer

Cell temperature 60–80 ◦C 50–80 ◦C
Pressure 1–200 bar 0–50 bar

Current density 0.2–0.4 A·cm−2 0.6–2.0 A·cm−2

Cell voltage 1.8–2.5 V 1.8–2.2 V
Cell voltage efficiency (LHV 1, HHV 2) 52–85% 57–83%

Stack voltage 18–522 V 4–125 V
Stack Current 60–5250 A 9–75 A

System efficiency Up to 76.5% Up to 75%
Spec. energy consumption stack 4.17–5.9 kWh·Nm−3 4.2–5.6 kWh·Nm−3

Spec. energy consumption system 3.8–5.4 kWh·Nm−3 H2 4.53–7.3 kWh·Nm−3 H2
Load range 15–100% 0–100%

Cell area ≤4 m2
≤300 cm2

Hydrogen flow rate 1.5–3880 Nm3
·h−1 0.22–413 Nm3

·h−1

Lifetime stack <90,000 h ( more than 10 years) <60,000 h
Lifetime system incl. maintenance 20 + years 35,000–80,000 h (around 9 years)

1 Lower Heat Value (alkaline electrolyzers), 2 Higher Heat Value (PEM electrolyzers).

Recent works [20,21] have emphasized the effect of current ripple from AC-DC converters on
energy efficiency and specific energy consumption, but further investigations are requested to analyze
the degradation of electrolyzer performances, providing crucial information about their lifetime.

4. AC-DC Converters for Electrolyzer Applications

Many types of AC-DC converters can be used to supply alkaline and PEM electrolyzers according
to their electrical requirements from the current and voltage point of view. From Table 4, it can be
noted that the requested stack voltage can vary from a few to hundreds of volt; whereas the current
is included between 10 to thousands of amps, depending strongly on the rated power of the stack
(i.e., from watt to megawatt range). Before choosing the right AC-DC converter topology for a given
electrolyzer application, different requirements and specifications must be taken into consideration.

The main current issues for the AC-DC converters are summarized below [13,18,20,21]:

1. To deliver a controlled DC current to manage the hydrogen flow rate and energy efficiency of
the electrolyzer.
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2. Interaction with the power supply from the power quality point of view (e.g., high power factor,
compensation of reactive power).

3. Input current harmonics injected in the AC power supply must meet the international standards
and requirements such as IEEE 519-2014.

4. High efficiency.
5. High reliability to ensure a continuity of service in case of electrical failures.
6. Small low- and high-frequency current ripple to extend electrolyzer life span while optimizing

the specific energy consumption.
7. Low cost to reduce the global cost of the system.

In the next subsections, several AC-DC topologies (i.e., uncontrolled, controlled diode and
thyristor-based rectifier, and diode bridge rectifiers connected to DC chopper) are provided with their
advantages and drawbacks. Furthermore, each AC-DC topology is discussed from the power quality,
energy efficiency, current ripple, cost, control, and reliability point of view.

This thorough analysis aims at emphasizing the most suitable AC-DC converter topology for a
given application (i.e., low, medium, or high power) and the remaining challenges to overcome some
issues for electrolyzer applications.

4.1. Uncontrolled Rectifiers

This subsection aims at introducing uncontrolled based-diode rectifiers (i.e., 6- and 12-pulses).
Even though these AC-DC topologies do not meet the first requirement from the current control point
of view, this subsection can be considered a starting point to highlight the advantages and drawbacks
before presenting controlled based-thyristor rectifiers (i.e., 6- and 12-pulses) and AC-DC converters
based on the combination of a rectifier and DC chopper. The technology of AC-DC converters is driven
by industrial processes in the metal and chemical industries. Starting with electro-mechanical rectifiers
and passing through mercury-arc rectifiers, the availability of static semiconductor power switches
(diodes and thyristors and then IGBT) has led the technology from variable DC voltage rectifiers
towards converters with fixed DC bus front end rectifier and high-frequency switching stage. A further
step will consist of the adoption of active front end rectifiers. The uncontrolled AC-DC converters
presented in the following show a fixed DC voltage output; in any case, both the main applications
of high power rectifier (arcing loads and electrolyzers) require a voltage regulator. In particular, the
load characteristic of electrolyzers, defined by the area comprised between the top load line (TLL) and
bottom load line (BLL), is more binding since the voltage variation is restricted. The regulation of the
output voltage can be achieved by mechanical on-load tap changing (OLTC) transformers or saturable
inter-phase transformers at the expenses of higher maintenance costs and low dynamics (order of
seconds). For the sake of simplicity, OLTC and saturable inter-phase transformers are not sketched in
the figures.

Compared to single-phase diode rectifiers, which are suitable for low and medium power
applications, the three-phase diode bridge rectifier is particularly fit for high power applications (i.e.,
>15 kW) [54]. The architecture of this topology is shown in Figure 4, which is composed of six diodes.
The anode of the diodes (i.e., D1, D3, and D5) are connected to a phase of the AC power grid based
on a three-phase delta transformer. In a specific phase, the diode can conduct if the AC voltage on
this phase is higher than that on the two other phases. Compared to the classic single-phase diode
bridge rectifier, each diode conducts during an angle of 2π/3 instead of π (where the conduction angle
is calculated considering 2π the period of grid pulsation).
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The average value of the output voltage, Vel, is given by the following expression [54]:

Vel =
3Vmax

√
3

π
(7)

where Vmax is the maximum line-to-neutral voltage in (V). Regarding the RMS value of the electrolyzer
voltage, it is given by [54]:

Vel−RMS = Vmax

√
3
2
+

9
√

3
4π

) (8)

It can be noted that the mean value and the RMS value are almost equal. The main advantages of
this topology are its cheap cost, good rectification ratio and form factor, small ripple factor (around
4.2%), and good energy efficiency due to commutation at line frequency. Since the output voltage
ripple is quite low, no bulk additional filter is required [54]. The frequency of the output voltage is six
times higher than the input frequency. Furthermore, the power quality of the AC power supply can be
ensured with a good power factor and reduced current harmonic content. However, this topology
can deliver only a constant output voltage and current to supply the electrolyzer, of which the value
depends on the electrical features of the AC power supply and the electrolyzer as well. If the AC power
supply was based on a wind turbine conversion system, the output voltage of the rectifier would
fluctuate according to the wind speed. For this reason, uncontrolled diode-based rectifiers directly
coupled with an electrolyzer are not considered for this application.

4.1.1. 12-Pulse Diode Bridge Rectifier

Based on Figure 4, a 12-pulse diode bridge rectifier is shown in Figure 5, composed of two
six-pulse diode bridge rectifiers [11]. Instead of using one secondary of the transformer (Figure 4),
two secondaries are used, one connected in delta (upper part) and the second one in star (lower part).
The two secondaries lead up to a natural shift of π/6 between the generated voltages to supply the two
six-pulse diode bridge rectifiers connected in parallel. The parallel configuration allows for increasing
the output current; while the series configuration enables increasing the output voltage [11]. The choice
of the configuration is guided by the electrical specifications of the electrolyzer.
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In a parallel configuration, an inter-phase transformer must be used. Indeed, as emphasized
in [54], the inter-phase transformer aims at making the output voltage, vel, to be the average of the
rectified values v1 and v2. The frequency of the output ripple voltage is 12 times higher than the input
frequency. The average and RMS output voltage are given respectively by the expressions (7) and (8).

On the other side, in a series configuration, the average value of the output voltage, Vel, is given
by the following expression [54]:

Vel = Vmax
12
π

√
3− 1

2
√

2
(9)

Concerning the RMS value of the electrolyzer voltage, it is expressed by [54]:

Vel−RMS = Vmax

√
12
2π

(
π
12

+
1
4

)
(10)

Compared to a classic six-pulse diode bridge rectifier, this topology offers a good rectification
ratio and form factor, low ripple factor (around 1%), and losses [54]. In addition, from the power
quality point of view, a good power factor and low current harmonic content are provided. However,
the complexity of the topology leads to an increase in its cost as well as volume [11].

4.1.2. Six-Pulse Diode Double-Star Rectifier

For low-voltage applications, a six-pulse diode double-star rectifier can be used as shown in
Figure 6. This configuration is based on two three-phase star rectifiers in which their neutral nodes are
interconnected to an inter-phase transformer [11]. This interphase transformer has the same function
as that introduced for the 12-pulse diode bridge rectifier.

The main benefit of using this configuration compared to the classic configuration in Figure 4 is
the decrease of the diode average and RMS current (i.e., 50% lower). As a result, improved energy
efficiency can be obtained [54]. Furthermore, it offers the same advantages and drawbacks as the
classic configuration.
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Like in Figure 6, the neutral nodes of the two double-star rectifiers are connected by using two
inter-phase transformers (i.e., inter-phase transformers). An additional inter-phase transformer is used
to link the two inter-phase transformers and the negative polarity of the electrolyzer [54].

Compared to the six-pulse diode double-star rectifier, this configuration offers lower diode average
and RMS current (i.e., 50% lower [54]). Thus, energy efficiency is enhanced. However, the complexity
of the converter makes it unattractive for this application.

4.2. Controlled Rectifiers

At the present moment, thyristor-based rectifiers dominate the market for industrial applications
where a high voltage and current are required to supply electrolyzers [15,55]. Compared to the rectifiers
based on diodes, the use of thyristors allows delivering a controlled current, needed to manage the
hydrogen flow rate and energy efficiency of the electrolyzer when coupling with renewable energy
sources. On one hand, the control of thyristor-based rectifiers is carried out through their firing angle.
If their firing angle is lower than π/2, the rectifier operates in rectifier mode; whereas for a firing
angle between π/2 and π, the rectifier operates in inverter mode [54]. However, in controlling the
rectifier through firing angles, it leads to the increase of current harmonic content and a decrease
of the power factor due to the generation of reactive power [11,13]. The enhancement of the power
quality for thyristor-based rectifiers is a challenging issue. For this reason, the compensation of the
generated reactive power is mandatory to increase the power factor. In this subsection, different types
of thyristor-based rectifiers are introduced and discussed from the power quality point of view.

4.2.1. Six-Pulse Thyristor Bridge Rectifier

A six-pulse thyristor bridge rectifier is shown in Figure 8, where the diodes are replaced by
thyristors to obtain a variable DC output voltage to supply the electrolyzer. The operation principles
of this topology can be found in [54].Electronics 2020, 9, x FOR PEER REVIEW  17 of 31 
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By neglecting the parasitic elements of the thyristors and considering a DC constant current, the
average value of the output voltage, Vel, is given by the following expression according to the firing
angle α [54]:

Vel =
3Vmax

√
3

π
cosα (11)

From the Equation (11), the maximum DC output voltage (Vel = 538 V if Vrms = 230 V) is obtained
for α = 0◦, providing the same output voltage as a six-pulse diode bridge rectifier. The higher the firing
angle, the lower the DC output voltage. To maintain an operation in rectifier mode, the firing angle
cannot be higher than α = 90◦.
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Despite the fact that this six-pulse thyristor bridge rectifier offers high energy efficiency and a
controlled current, it suffers from different drawbacks in terms of power quality and current ripple.
Indeed, the generation of reactive power is directly linked to the firing angle. The higher the firing
angle, the higher the current harmonics content, drastically decreasing the power factor of the system.
Furthermore, based on the work reported in [55], this topology has a high ripple factor, between 14%
and 71%; depending strongly on the load range. The higher the load, the lower the current ripple.
For this reason, operation at low load must be avoided. However, the improvement of power quality
remains a key issue. In [15,21,55], the authors have demonstrated that high current ripple increases
the specific energy consumption, meaning that lower hydrogen quantity is produced based on the
same amount of input energy. The current ripple has also an influence on the hydrogen gas quality
generated by electrolyzers [55]. The current ripple can be reduced by using passive filters (i.e., inductor,
capacitor) located between the rectifier and the electrolyzer, and/or the use of other AC-DC converters
(e.g., 12-pulse thyristor-based rectifier, rectifiers plus DC chopper). Output passive filters have been
introduced in [55,56].

On the other side, to improve the power factor by compensating the reactive power, different
solutions have ever been proposed in the literature. This rectifier generates odd rank harmonics (i.e., 5,
7, 11, 13, 17, etc.). The most widespread solution is to use passive filters (AC power supply side),
which are designed and tuned to cancel a specific harmonic frequency. Another solution is to employ
STATCOMs (i.e., static compensator) or DSTATCOMs (i.e., distribution static compensator) [11,21].
This solution is fit for variable reactive power compensation. However, the use of these devices leads
to increases in; the cost and losses. To overcome the cost issue, hybrid solutions have been proposed
combining passive filters and STATCOMs [11].

4.2.2. 12-Pulse Thyristor Bridge Rectifier

To face the power quality and current ripple issues, a 12-pulse thyristor bridge rectifier can be
used as shown in Figure 9. It is depicted in a parallel configuration with an inter-phase transformer to
increase the output current but can be configured in series to increase the output voltage. The two
secondaries are coupled either in delta (upper part) or in star (lower part). The two secondaries offer
a natural shift of π/6 between the generated voltages. In a parallel configuration, this topology is
particularly suitable for electrolyzers requiring a high current as reported in Table 4.Electronics 2020, 9, x FOR PEER REVIEW  18 of 31 
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This topology features several benefits over the six-pulse thyristor bridge rectifier from the power
quality and current ripple points of view. Indeed, on one hand, as emphasized in [55], the ripple factor
is lower, between 3.2% and 4.8% according to the load range. Thus, the specific energy consumption is
lower and the quality of the produced hydrogen is better. On the other hand, despite the reduction of
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the specific energy consumption, it is still higher than the reference of specific energy consumption at
pure DC current [15].

Finally, a 12-pulse thyristor bridge rectifier enables eliminating odd rank harmonics, consequently
reducing the reactive power and increasing the power factor. However, to meet the international
standards and requirements such as IEEE 519-2014 (providing recommended harmonic limit for current
distortion), a hybrid filter composed of shunt passive filter and DSTATCOM has been proposed and
discussed in [14]. Thanks to this hybrid filter, an input power factor of 0.98 and a low THD (total
harmonic distortion) of 4.8% are obtained.

4.2.3. Six-Pulse Thyristor Double-Star Rectifier

For high-current applications and to eliminate harmonics, a six-pulse thyristor double-star rectifier
can be employed, as shown in Figure 10. The two thyristor-based rectifiers are shifted by 180◦, and
their secondary neutral nodes are interconnected through an inter-phase transformer. It is connected
between the two secondary neutral nodes and the negative polarity of the electrolyzer [54].Electronics 2020, 9, x FOR PEER REVIEW  19 of 31 
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Figure 10. Six-pulse thyristor double-star rectifier.

The main advantage of using this double-star rectifier compared to the basic configuration in
Figure 8 is the decrease of the thyristor average and RMS current (i.e., 50% lower) and output current
ripple as well. Therefore, the specific energy consumption is enhanced and the quality of the hydrogen
produced is optimized. From the power quality point of view, by the reduction of current harmonic
content, the power quality can be improved.

4.2.4. 12-Pulse Thyristor Double-Star Rectifier with Inter-Phase Transformers

From the configuration of the six-pulse thyristor double-star rectifier, two can be connected
in parallel to obtain a 12-pulse diode double-star rectifier as shown in Figure 11 [13]. The four
thyristor-based rectifiers are shifted by 90◦, and their secondary neutral nodes are connected by using
two inter-phase transformers. An additional inter-phase transformer enables interconnecting the two
inter-phase transformers and the negative polarity of the electrolyzer [54].
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This configuration features a lower thyristor average and RMS current (i.e., 50% lower [54]) over the
six-pulse thyristor double-star rectifier. Due to the phase shift of 90◦ between the four thyristor-based
rectifiers, the output current ripple is very small, enabling optimizing the specific energy consumption
and gas quality. Finally, reactive power can be compensated, improving power quality.

4.3. AC-DC Converters: Rectifier-Chopper

After introducing different types of thyristor-based rectifiers and the solutions to enhance the
power quality and to reduce output current ripple, AC-DC converters based on the combination of
a diode-based rectifier and a DC chopper have much to offer. Indeed, this combination allows for
improving the power factor without using bulky low harmonics passive filters and other solutions;
making it more cost-effective. Generally, it includes a six-pulse diode bridge rectifier (Figure 4)
providing a DC voltage to supply a classic step-down DC-DC converter (i.e., buck). The current control
is realized through the step-down converter to manage the hydrogen flow rate and energy efficiency of
the electrolyzer. In the next subsection, different combinations of rectifier-chopper are introduced and
discussed in terms of power quality, cost, energy efficiency, reliability, and current ripple. The following
circuits allow switching frequency much higher the line frequency; for this reason, reactive elements
have smaller values and in general, the dynamic of the converter is faster. With a suitable control
circuit, both feedback on the output voltage and current can be achieved. In general, such converters
show a closed-loop dynamic response faster than the source (considering a RES) the electrolyzer. On
the other hand, the dynamics of the electrolyzers in general influence the small-signal transfer function
of the converter, and consequently, the stability.

4.3.1. Six-Pulse Diode Bridge Rectifier with a Buck Converter

The following converters operate based on fixed voltage DC bus and a high-frequency switching
conversion stage. The input transformer can be adopted depending on the power and grid distribution
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(LV or mV). The residual ripple of the DC bus on the output voltage can be eliminated by a suitable
choice of the control system of the switching conversion stage. In Figure 12, the classic combination of
a six-pulse diode bridge rectifier connected to a step-down DC-DC converter is shown. To convert
the AC voltage into a DC voltage, a six-pulse diode bridge rectifier is used, allowing for providing
an average DC voltage according to the voltage specification of the AC power supply (i.e., power
grid, wind turbine). This average DC voltage is given by Equation (7). Since the three-phase diode
bridge rectifier cannot be controlled due to the use of diodes, a step-down DC-DC converter has to
be employed to control the current through the single power switch (i.e., IGBT) from the hydrogen
flow rate and energy efficiency points of view. Since a step-down DC-DC converter includes a few
components, its cost is reduced.
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The output voltage of the step-down converter neglecting the parasitic elements is expressed
by [54]:

Vel = DVDC (12)

where D is the duty cycle of the power switch S1, (defined as the ratio of its conduction time and the
switching period), included between 0 and 1; whereas VDC is the output DC voltage of the rectifier.
The capacitor CDC allows smoothing the voltage ripple.

The output current ripple ∆iel is given by [54]:

∆iel =
DVDC(1−D)

L1 fs
(13)

where L1 is the inductor in (H) and fs is the switching frequency in (Hz) of the converter. From Equation
(13), it can be noted that the higher the inductor and the switching frequency, the lower the current
ripple. Low current ripple is one of the most important features for electrolyzers in optimizing their
specific energy consumption and reliability [20,21]. On one hand, when increasing the inductor values,
it leads to a higher cost and volume. It can be noted that the whole current iel flows through the
inductor, which is a design limit for high-current electrolyzers. A low value of L can be adopted
for increasing the switching frequency. On the other hand, the higher the switching frequency, the
higher the switching losses [54]. For this reason, a compromise has to be found to optimize energy
efficiency while reducing the current ripple [13]. Different solutions have been proposed to decrease
the switching losses such as the use of soft-switching techniques and wide-bandgap semiconductors
(GaN, SiC)) [19,57].

Since a step-down DC-DC converter allows for decreasing the voltage, high currents can be
obtained by optimizing energy efficiency. This topology suffers from having high voltage stress
for high-power applications. Furthermore, the power level is limited due to the use of a single
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power switch. From the reliability point of view, the converter is no fault-tolerant in case of power
switch failures.

Another important feature offered by this topology is the fast-current dynamic response due to the
high-switching frequency (i.e., >20 kHz) compared to the usual frequency for thyristor-based rectifiers
(around few kHz). From the power quality point of view, a high value of the capacitor CDC needed to
minimize the ripple due to the rectifier implies a pulse-shaped current. The generation of reactive
power can be reduced while improving the power factor [21]. To further enhance the power factor,
passive filters can be used at the power supply side.

4.3.2. Six-Pulse or 12-Pulse Diode Bridge Rectifier with a Three-Phase Interleaved Buck Converter

To decrease the output current ripple, a six-pulse diode bridge rectifier connected to a three-phase
interleaved buck converter is shown in Figure 13. The choice of three phases results in a compromise
between the output current ripple and volume reduction, energy efficiency, and reliability in case of
power switch failures. The efficiency improvement is mainly due to the share of the current iel among
many inductors since Joule losses into the parasitic resistance depend on the square of the current.

Electronics 2020, 9, x FOR PEER REVIEW  21 of 31 

 

values, it leads to a higher cost and volume. It can be noted that the whole current iel flows through 
the inductor, which is a design limit for high-current electrolyzers. A low value of L can be adopted 
for increasing the switching frequency. On the other hand, the higher the switching frequency, the 
higher the switching losses [54]. For this reason, a compromise has to be found to optimize energy 
efficiency while reducing the current ripple [13]. Different solutions have been proposed to decrease 
the switching losses such as the use of soft-switching techniques and wide-bandgap semiconductors 
(GaN, SiC)) [19,57].  

Since a step-down DC-DC converter allows for decreasing the voltage, high currents can be 
obtained by optimizing energy efficiency. This topology suffers from having high voltage stress for 
high-power applications. Furthermore, the power level is limited due to the use of a single power 
switch. From the reliability point of view, the converter is no fault-tolerant in case of power switch 
failures.  

Another important feature offered by this topology is the fast-current dynamic response due to 
the high-switching frequency (i.e., >20 kHz) compared to the usual frequency for thyristor-based 
rectifiers (around few kHz). From the power quality point of view, a high value of the capacitor CDC 
needed to minimize the ripple due to the rectifier implies a pulse-shaped current. The generation of 
reactive power can be reduced while improving the power factor [21]. To further enhance the power 
factor, passive filters can be used at the power supply side.  

4.3.2. Six-Pulse or 12-Pulse Diode Bridge Rectifier with a Three-Phase Interleaved Buck Converter 

To decrease the output current ripple, a six-pulse diode bridge rectifier connected to a three-
phase interleaved buck converter is shown in Figure 13. The choice of three phases results in a 
compromise between the output current ripple and volume reduction, energy efficiency, and 
reliability in case of power switch failures. The efficiency improvement is mainly due to the share of 
the current iel among many inductors since Joule losses into the parasitic resistance depend on the 
square of the current. 

 

Figure 13. Six-pulse diode bridge rectifier with a three-phase interleaved buck converter. 

Each power switch (i.e., S1, S2, and S3) is controlled with a phase shift angle of 120°, reducing the 
output current ripple and volume of inductors. The output voltage Vel is given by Equation (12). 
According to the duty cycle value, the output current ripple is expressed by the following expressions 
[2]: ∆ = (1 − 3 )              , 0 < < 13 (14) 

∆ = (3 − 1)(2 − 3 )3    , 13 < < 23 (15) 

∆ = (3 − 2)                , 23 < < 1 (16) 

From Equations (14)–(16), it can be noted that the output current ripple is canceled for specific 
duty cycles (i.e., 1/3 and 2/3). Furthermore, compared to a classic step-down DC-DC converter, a 

Figure 13. Six-pulse diode bridge rectifier with a three-phase interleaved buck converter.

Each power switch (i.e., S1, S2, and S3) is controlled with a phase shift angle of 120◦, reducing
the output current ripple and volume of inductors. The output voltage Vel is given by Equation
(12). According to the duty cycle value, the output current ripple is expressed by the following
expressions [2]:

∆iel =
VelD(1− 3D)

L fs
, 0 < D <

1
3

(14)

∆iel =
Vel(3D− 1)(2− 3D)

3L fs
,

1
3
< D <

2
3

(15)

∆iel =
Vel(3D− 2)D

L fs
,

2
3
< D < 1 (16)

From Equations (14)–(16), it can be noted that the output current ripple is canceled for specific duty
cycles (i.e., 1/3 and 2/3). Furthermore, compared to a classic step-down DC-DC converter, a three-phase
interleaved buck converter can continue to supply the electrolyzer without any interruption in case of
power switch failures due to its static redundancy. However, it leads to additional current stresses and
a higher current ripple due to a no suitable phase shift angle. To overcome this issue, the phase shift
angle has to be modified in 180◦ to operate the converter as a two-phase interleaved buck converter [58].
Even though this topology suffers from having a limited conversion gain and high voltage stress, it is
particularly for high-power applications due to the share of the input current between the phases [59].
The energy efficiency can be improved compared to a classic step-down converter, but the losses are
particularly important at low-input DC voltage due to the high duty cycle value. The higher the duty
cycle, the lower the energy efficiency. Since this topology requires additional elements, the cost is
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generally higher than a classic step-down converter even in this last case if the availability and the cost
of a single inductor can orient the designer towards the interleaved topology.

Finally, a three-phase interleaved buck converter offers the same benefits from the power quality
point of view. For high-current applications, the six-pulse rectifier can be substituted by a 12-pulse
diode bridge rectifier (as shown in Figure 14), but leads to additional cost and volume.
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4.3.3. Six-Pulse Diode Bridge Rectifier with a Two-Phase Stacked Interleaved Buck Converter

Another interesting configuration consists of coupling a six-pulse diode bridge rectifier with
a two-phase stacked interleaved buck converter (SIBC) as shown in Figure 15. It was first
introduced in [16,18] to control the electrolyzer according to the available power from a wind
turbine conversion system.Electronics 2020, 9, x FOR PEER REVIEW  23 of 31 
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The diodes in Figure 13 are replaced by IGBT to reduce the conduction losses since the on-state
resistances of IGBT are smaller than diodes; for low-power applications, MOSFET can also be
adopted [60]. Furthermore, an additional capacitor Cs is used between the first and second phase
to block the DC component of the current flowing through the second phase (i.e., s). As a result,
only the AC component of the current flows through the second phase. The couple of IGBTs (i.e., S1,
S4, and S2, S3) are controlled in an opposite way (instead of 180◦ for a two-phase interleaved buck
converter). Hence, both AC components of the current flowing through the first and second phases
can be canceled. Only a pure DC current flows through the electrolyzer, regardless of the operating
condition, optimizing its reliability and energy efficiency [18].

From the reliability point of view, the SIBC can continue to operate even in case of power switch
failures. However, the current ripple is higher in this case and given by Equation (13). The SIBC suffers
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from the same drawbacks compared to a three-leg interleaved buck converter, particularly the losses at
low input DC voltage.

Finally, a good power factor can be assured; as it concerns the power quality from the AC power
supply, it is influenced by the pulse shaped current. It is the future challenge whose pathway passes
through new active rectifiers topologies.

5. Discussion and Future Challenges

Currently, AC-DC converters based on thyristor or diode rectifier-DC chopper are mainly used to
supply alkaline and PEM electrolyzers. For high-current applications, particularly met for alkaline
electrolyzers, thyristor-based rectifiers dominate the market including industrial and power-to-gas
applications. Despite the fact that these rectifiers are mature technologies offering high energy efficiency,
reliability, and good control of the current, they suffer from degrading the power quality from the AC
side by injecting reactive power and having high current ripple. The generation of reactive power
is due to the firing angle to control the thyristor. In comparison, high current ripple increase the
losses in the electrolyzer, and consequently the specific energy consumption. The 12-pulse thyristor
based-rectifier allows for increasing the output voltage and the current due to the series or parallel
connection of two six-pulse thyristor based-rectifiers. Although it can enhance the power quality and
reduce the output current ripple, the volume and cost remain major concerns. To improve the power
quality and decrease output current ripple, passive filters and active filters based on STATCOM and
DSTATCOM can be employed. However, these solutions increase the complexity of the system, cost,
and volume.

To choose the most suitable topology based on the electrical requirements of the electrolyzer, a
comparison of the output DC voltage according to the firing angle is shown in Figure 16. It is calculated
considering a unitary transformer ratio supplied by the low-voltage main.
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In Figure 16, six-pulse (Figure 8), 12-pulse (Figure 9) thyristor-based rectifiers, and single-phase
semi-controlled (thyristors, diodes) and fully controlled (thyristors) rectifiers have been considered.
It has to be noted that 12-pulse thyristor-based rectifiers are particularly fit for high-voltage
and high-current applications; whereas six-pulse thyristor-based rectifiers are more suitable for
medium-power applications. Concerning single-phase thyristor-based rectifiers, they have to be
considered for low-power applications.
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To cope with the use of active and passive filters to enhance the power quality and to reduce
output current ripple, the combination of a six-pulse diode rectifier connected to a DC chopper is an
interesting alternative. Indeed, it enables improving the power quality by decreasing the input current
harmonic content. Furthermore, through the step-down DC-DC converter, the electrolyzer current
can be controlled offering better dynamic responses, particularly suitable when the electrolyzer is
coupled to a wind turbine conversion system. By considering a six-pulse diode bridge rectifier, with
the DC output voltage being lower than 600 V (Figure 16), low- and medium-power applications are
considered since the step-down DC-DC converter enables decreasing this output voltage to supply the
electrolyzer. However, a small difference between the input and the output voltage of the step-down
DC-DC converter leads to more losses and consequent reductions in the energy efficiency due to the
high duty cycle operation. Furthermore, classic step-down DC-DC converters are not reliable in case
of power switch failures and generate higher current ripple for a small inductor. To face both issues,
interleaved buck converters can be employed, enhancing the availability of the converter in case of
electrical failures and decreasing the output current ripple. Over the classic interleaved buck converter,
a stacked interleaved buck converter can cancel the output current ripple for any operating condition.
However, the use of these topologies is limited by their step-down ratio and high voltage stress.

To meet these issues, in [61], a three-level interleaved DC-DC buck converter can be used,
interfacing a wind energy conversion system and an electrolyzer (Figure 17). Indeed, the voltage
stress on the power electronics devices can be reduced while keeping low output current ripple,
enhancing step-down ratio, reliability, and high energy efficiency. When coupling wind energy
conversion systems with electrolyzers, multi-stack architectures have much to offer, particularly from
the energy management point of view [16]. Two different configurations can be employed such as
series architecture (Figure 18) and parallel architecture (Figure 19) [62]. In Figure 18, according to the
available power from the wind turbine, the power can be shared between the electrolyzers through the
use of switches (i.e., SW1, SW2, SDel1, and SDel2) and bypass diodes (i.e., Del1 and Del2). Furthermore,
the switches (i.e., SW1, SW2) can be used to isolate a faulty electrolyzer stack; whereas the switches
(i.e., SDel1, and SDel2) are employed to deviate the path of the electrolyzer current if one of the stacks is
faulty. The diodes have to be chosen to withstand the electrolyzer current to avoid their destruction.
Hence, the bypass diode can ensure the continuity of service of the multi-stack system. However, the
simplicity of architecture leads to weaknesses.

Figure 17. Hydrogen production pathway based on a wind energy conversion system and a three-level
interleaved DC-DC buck converter.
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Indeed, the electrolyzers cannot be controlled separately and the energy efficiency of the electrolyzer
is lower due to the increase of the output voltage. On the other side, by choosing another DC-DC
converter topology such as the three-level interleaved buck converter (Figure 17), the increase of
the output voltage leads to better energy efficiency due to its low step-down voltage conversion. In
comparison, the parallel configuration enables controlling each electrolyzer stack through the DC-DC
converter connected to the DC bus. In this case, the energy efficiency of the DC-DC converters is
optimized due to lower duty cycles. However, this architecture is more expensive due to the use of
several DC-DC converters [62]. Based on the available power, the DC-DC converters are controlled to
supply the electrolyzer at rated power to optimize both energy efficiency and hydrogen flow rate [16].

All the above-mentioned topologies conceived to directly couple an electrolyzer with a permanent
magnet synchronous generator (PMSG) supplied by a wind turbine adopt uncontrolled diode rectifiers
are cost-efficient solutions; in any case, it can introduce low-frequency pulsation with possible
mechanical shaft resonance. For this reason, active rectifiers are also becoming of interest for low-power
applications [27,63].

Finally, even though it has not been reported for practical use in electrolyzer applications, PWM
current-source rectifiers (CSR) are attractive and promising topologies for future applications as
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shown in Figure 20. Indeed, they offer good control of the output current, and excellent power factor
and fast dynamics [54,64]. Generally, these topologies are composed of GTO devices (gate-turn-off

thyristors) due to their high current and voltage ratings. However, recent advances in high-voltage
and high-power applications for IGBT (i.e., insulated gate bipolar transistor) have been significant
and have allowed their development in PWM-CSRs. To reduce the output current ripple, an inductor
is required; whereas at the AC side, capacitors are mandatory to filter the input current ripple [11].
However, these topologies are not suitable for high-power applications due to the high voltage and
current stress, drastically increasing the conduction losses; and thus, decreasing the energy efficiency.
For this reason, PWM-CSRs are fit for medium-voltage applications [13].
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Figure 20. PWM current-source rectifiers for electrolyzer applications.

This article has shown that the high-power conversion plants use alkaline electrolyzers whose
supply is based on controlled rectifiers or IGBT choppers [11,12] these circuits are constrained by the
management of high currents and are supplied by the medium voltage grid. The use of thyristor
or IGBT makes these converters reliable but implies the generation of harmonics towards the grid
and limited voltage regulation at the output [17]. The limited availability of new high-power devices
for these applications influences the development of new topologies together with the cost of the
plants. Contrarily, in the range of power between 1 mW and 30 kW, there are many interesting new
solutions. In this range, both alkaline and PEM electrolyzers can be used even if most electrolyzers
near to the lower limit are PEM. New topologies such as active rectifiers [27,63] assure a low impact on
the grid or the best exploitation of the PMSM generator for the wind turbine. The rectifiers interfaced
by a DC/DC converter give a good voltage regulation minimizing the output voltage ripple. Many
DC/DC converters have been proposed for these applications [65]. They can be parallel connected
exploiting modularity and increasing reliability with an appropriate control [18]. Current-source
rectifiers (CSR) can also be used due to the good control of the output current, excellent power factor,
and fast dynamics [54,64].

In the low power range, only PEMs are available, the circuits described in the previous power
range can be used as well and equipped with MOSFETs. For very low power (around 1 kW), the use of
uncontrolled rectifiers together with a simple DC/DC stage allows cheap realization.

From this discussion, Table 5 provides a summary of power electronics required according to the
power range of the electrolyzer.



Electronics 2020, 9, 912 27 of 31

Table 5. Summary of power electronics according to the power range.

Power Range Supply Conversion Electrolyzer Note

>1 mW mV grid -Transformer with thyristor rectifier
Alkaline

Low frequency
harmonic to the grid

-Transformer with IGBT chopper High frequency
harmonic to the grid

30 kW < P <1 mW mV/LV grid RES

-transformer for high power
-Controlled rectifiers
-IGBT chopper
-Active rectifiers

Alkaline and PEM

The dynamic of the
source and of PEM EL
must be considered in
case of RES

<30 kW LV grid RES
Uncontrolled rectifiers
Active rectifiers
With DC/DC stage

PEM Low power circuit are
relatively cheap

6. Conclusions

Water electrolysis technologies to produce hydrogen can give a relevant contribution to the
lessening of CO2 pollution. Even if hydrogen is intrinsically a clean energy vector, its production
requires energy, which makes the difference. Unfortunately, the hydrogen produced by fossil fuels,
namely grey hydrogen, is more than 90% of the total production. A low carbon threshold is reached by
blue hydrogen, meaning by nuclear; in any case, the store or minimization of the effects of radioactive
waste is still a challenge. Green hydrogen produced by renewable sources such as solar or wind meets
the low-carbon threshold. In this paper, the authors focused the attention on technical aspects of
hydrogen production, such as the harmonic pollution when the electrolyzer is supplied by the grid,
the knowledge of the dynamics of the converter and the electrolyzer in case of supply by renewable
energy sources, the need of a conversion chain to fit the voltage levels, and an adequate efficiency.
However, even if there are much progress from the technological point of view, these endeavors need
to be accomplished by public policy decisions. Among these, there is a need to incentivize the use
of hydrogen, it can be used for urban traction, but requires support from refilling points that can be
obtained by investments on the distribution grid. Moreover, the power-to-gas (P2G) is attractive since
this technology uses electrolysis to produce hydrogen that can be used directly, or further steps may
convert it into syngas, methane, or liquefied petroleum gas (LPG).

This work aimed at introducing the main current issues with the use of AC-DC converters from
the power quality, reliability, energy efficiency, cost, current control, and output current ripple points
of view. Two families of AC-DC converters are generally employed to supply electrolyzers such as the
thyristors-based rectifiers and rectifiers-DC choppers. Currently, thyristors-based rectifiers dominate
the market for industrial and power-to-gas applications because the generation of high-currents is
required to supply high-power electrolyzers. However, the use of thyristors involves the generation of
reactive power, drastically reducing the power factor. Furthermore, the output current ripple is quite
high, leading to an increase in the specific energy consumption. To cope with these issues, active and
passive filters have to be used, but make the system more complex while increasing the cost and the
volume. On the other side, the use of a 12-pulse thyristor based-rectifiers allows for obtaining higher
voltage and current while enhancing the power quality. However, current ripple, cost, and volume
remain major concerns.

In comparison, the combination of rectifier-DC chopper can avoid the use of bulky active and
passive filters since it can enhance power quality. Based on the architecture of the step-down DC-DC
converter, reliability in the case of power switch failures and output current ripple reduction can be
ensured. However, it is important to employ new emerging DC-DC converters and power management
strategies to improve the energy efficiency and the hydrogen flow rate, requested when coupling with
wind turbine conversion system.

Finally, PWM current-source rectifiers are considered attractive topologies to meet the power
quality, control of current, and dynamics response time issues. However, their use must be limited to
medium-voltage applications to maintain good energy efficiency.
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Future challenges are then related to the more massive use of RES and related conversion systems
with new power devices allowing fast dynamics of converters and improved efficiency. The allowed
higher switching frequency will lessen the size of reactive components in converters making easier
filtering. The reduced whole cost of the conversion chain will make the retrofit of existing plants
competitive and can encourage new realizations.
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