
electronics

Article

Asymptotic Study of the Radiation Operator for the
Strip Current in Near Zone

Rocco Pierri and Raffaele Moretta *

Dipartimento di Ingegneria, Università della Campania “Luigi Vanvitelli”, Via Roma n. 29, 81031 Aversa, Italy;
rocco.pierri@unicampania.it
* Correspondence: raffaele.moretta@unicampania.it; Tel.: +39-334-2470823

Received: 2 May 2020; Accepted: 25 May 2020; Published: 29 May 2020
����������
�������

Abstract: In this paper, we address the problem of how to efficiently sample the radiated field in
the framework of near-field measurement techniques. In particular, the aim of the article is to find a
sampling strategy for which the discretized model exhibits the same singular values of the continuous
problem. The study is done with reference to a strip current whose radiated electric field is observed
in the near zone over a bounded line parallel to the source. Differently from far zone configurations,
the kernel of the related eigenvalue problem is not of convolution type, and not band-limited. Hence,
the sampling-theory approach cannot be directly applied to establish how to efficiently collect the
data. In order to surmount this drawback, we first use an asymptotic approach to explicit the kernel
of the eigenvalue problem. After, by exploiting a warping technique, we recast the original eigenvalue
problem in a new one. The latter, if the observation domain is not too large, involves a convolution
operator with a band-limited kernel. Hence, in this case the sampling-theory approach can be applied,
and the optimal locations of the sampling points can be found. Differently, if the observation domain
is very extended, the kernel of the new eigenvalue problem is still not convolution. In this last case,
in order to establish how to discretize the continuous model, we perform a numerical analysis.

Keywords: inverse problems; sampling method; integral equations; kernel; eigenvalues; eigenfunctions

1. Introduction

The inverse source problem is a classical problem in electromagnetics with a lot of applications
related to the sources diagnostics and the fields synthesis [1–7].

From the mathematical point of view, the inverse source problems is a linear ill-posed problem [8]
that involves the inversion of a linear integral operator called the radiation operator. The latter
relates the unknown function of the problem (the density current that describes the source) with the
data (the radiated field). Although in principle the data should be continuously collected over the
observation domain, this is not possible in practical cases. For this reason, two questions arise. The first
one is that of finding the minimum number of measurements that allows reconstructing the unknown
function stably [9–12]. The second question is that of determining where the data must be collected in
order to make the mathematical properties of the discrete model similar to those of the continuous
one [13–17]. From the engineering point of view, these issues play a crucial role since they impact on
the measurement process, and on the acquisition time.

With the aim to find the minimum number of measurements and their optimal positions,
the mathematical properties of the radiation operator must be considered. As regards the first point,
the minimum number of data required to stably reconstruct the current is equal to the number of
degrees of freedom (NDF) [18–20]. The latter represents at the same time the number of independent
functions required to represent the data with a given degree of accuracy, and the dimension of the
unknowns subspace that can be stably reconstructed. Since the NDF can be evaluated by counting
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the number of relevant singular values of the radiation operator [21–23], the need of computing the
singular values arises. As regards the problem of how to collect the radiated field in order to well
approximate the mathematical properties of the continuous operator, this question can be recast in
how to sample the radiated field in order to obtain a discrete model whose coefficient matrix exhibits
the same singular values of the radiation operator. The last issue is usually addressed by exploiting
the sampling-theory approach described in [24–26].

In this paper, we address the problem of finding the optimal location of the sampling points with
reference to a strip magnetic current whose radiated electric field is observed in the near zone over
a bounded line parallel to the source. In this case, differently from far zone configurations [27,28],
the kernel of the integral operator involved in the eigenvalue problem is not band-limited and it is not
of convolution type. For these reasons, the sampling-theory approach cannot be directly applied.

In the following sections of the paper, by exploiting asymptotic arguments and a suitable change
of variables, we show how to obtain a new eigenvalue problem whose kernel in same conditions is well
approximated by a band-limited of difference type. In this condition, the sampling-theory approach can
be exploited to efficiently discretize the continuous model. Differently, when the cited approximation
of the kernel does not work, the kernel of the eigenvalue problem remains not convolution; hence,
the sampling theory approach also cannot be applied. In this circumstance, we will perform a numerical
analysis to establish the sampling frequency that allows approximating well the singular values of the
radiation operator.

2. Geometry of the Problem and Preliminaries

In this paper we consider the 2D geometry depicted in Figure 1, and described below.

Figure 1. Configuration of the problem. The source domain (SD) is sketched in red, the observation
domain (OD) in green.

A 1D magnetic current J(x) = J(x) îy directed along the y-axis and supported on the set
SD = [−a, a] of the x-axis radiates within a homogeneous medium with wavenumber β. The electric
field radiated by such strip source has 2 components one along the x-axis, and another along the z-axis
which are linked each other. The x component of the electric field, E, is observed in near non-non
reactive zone over a bounded observation domain OD = [−Xo, Xo] that is parallel to the source and
located along the axis z = zo.

For the geometry at hand, the radiation problem is described by the linear integral operator

T : J ∈ L2[−a, a] −→ E ∈ L2[−Xo, Xo] (1)
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where L2[−a, a], and L2[−Xo, Xo] indicate respectively the sets of square integrable functions on which
the operator T acts. The latter is also called the radiation operator, and it is given by the equation

E(x) = T J(x′) =
∫ a

−a
g(x ′, x ) J(x ′) dx ′ − Xo ≤ x ≤ Xo (2)

where the 2D Green function g(x ′, x ) is given by

g(x ′, x ) ≈ zo

R
3
2 (x ′, x)

e−j β R(x ′ , x ) with R(x ′, x ) =
√
(x− x′)2 + z2

o (3)

Consequently, the adjoint operator T † is defined as < T J, E >L2[−Xo ,Xo ]
= < T † E, J >L2[−a,a]

and it can be expressed by

T †E =
∫ X0

−X0

g∗(x ′, x) E(x) dx (4)

At this point, let us introduce the singular system of T which is provided by {vn , σn , un} where
vn and un represent respectively the left and the right singular functions, and σn are the singular values.

As well known, the singular functions and the singular values of the radiation operator T are
related by the equations T un = σn vn, and T †vn = σnun [8]. By the latter, the following two eigenvalue
problems arise T †T un = σ2

n un, and T T † vn = σ2
n vn. The auxiliary operator T †T has already been

studied in [29]. Here, we will study the properties of the operator T T †.

3. Kernel Study of TT†

In this section, we first evaluate the kernel of the operator T T † by exploiting an asymptotic
approach. Later, by introducing a suitable change of variables, we show that in some cases it is possible
to approximate the kernel with a band-limited function of difference type. In order to do this, let us
write the operator T T † in following explicit form

T T †E =
∫ X0

−X0

K(x, xo)E(xo) dxo (5)

where the kernel K(x, xo) is given by

K(x, xo) =
∫ a

−a
g(x ′, x) g∗(x ′, xo) dx ′ = z2

o

∫ a

−a

e−j β [R(x ′ , x)−R(x ′ , xo)]

R
3
2 (x ′, x)R

3
2 (x ′, xo)

dx ′ (6)

By setting f (x ′, x, xo) = 1/[R
3
2 (x ′, x) R

3
2 (x ′, xo)] and φ(x ′, x, xo) = [R(x ′, x)− R(x ′, xo)] /a,

the kernel K(x, xo) can be expressed by the following integral

K (x, xo) = z2
o

∫ a

−a
f (x ′, x, xo) e−j β a φ(x ′ , x, xo) dx ′ (7)

which, resorting to the integration by parts method, can be rewritten as

K(x, xo) = −
z2

o
jβa

[
f (x ′, x, xo)

φ ′(x ′, x, xo)
e−j β a φ (x ′ , x,xo)

]x ′= a

x ′=−a
+

z2
o

jβa

∫ a

−a

d
dx′

(
f (x′, x, xo)

φ ′(x′, x, xo)

)
e−j β a φ (x′ ,x,xo)dx ′ (8)

∀x ∈ [−Xo, Xo] : x 6= xo.
For βa >> 1 the second term in (8) is an o

(
1/(βa)

)
while the first term is an O

(
1/(βa)

)
[30].

Hence, the second term can be neglected, and K (x, xo) can be approximated as

K(x, xo) ≈ −
z2

o
jβa

(
fa(x, xo)

φ′a(x, xo)
e−j β a φa(x,xo) − f−a(x, xo)

φ′−a(x, xo)
e−j β a φ−a(x,xo)

)
(9)
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where the subscripts −a or a denote that the correspondent function has been computed in the point
x ′ = −a or x ′ = a.

As said before, the asymptotic evaluation provided by (9) holds ∀x ∈ [−Xo, Xo] : x 6= xo.
The actual value of the kernel in x = xo can be obtained by particularizing (6) for x = xo, and by
evaluating it. This turns out that

K(xo, xo) =
xo + a

R(−a, xo)
− xo − a

R(a, xo)
(10)

Anyway, the asymptotic evaluation (9) connects in a continuous way with the actual value of the
kernel in x = xo.

In Figure 2 the actual behavior of K(x, xo), and the asymptotic evaluation (9) are sketched.
The diagrams refer to a source with a = 10λ whose radiated electric field is observed along the axis
z = 5λ. Note as, despite the asymptotic evaluation is an approximate version of the kernel K(x, xo),
it works very well in practice.

Figure 2. (a) Actual behavior of |K(x, xo)| obtained by computing the integral (6) numerically.
(b) Behavior of |K(x, xo)| provided by the asymptotic evaluation. Both the diagrams are sketched in dB.

The expression of K(x, xo) provided by (9) highlights that the kernel of the operator T T † is not of
convolution type with respect to the variables (x, xo). With the aim to recast it in a form more similar
to a convolution kernel, let us rewrite (9) in the form

K(x, xo) ≈ −
z2

o
jβa

e−j β a
2 (φ−a+φa)

(
fa

φ′a
ej β a

2 (φ−a−φa) − f−a

φ′−a
e−j β a

2 (φ−a−φa)

)
(11)

The last expression of K (x, xo) suggests to introduce the following transformation

ηo = η(xo) =
1
2a

(√
(xo + a)2 + z2

o −
√
(xo − a)2 + z2

o

)
(12)

which allows expressing the operator T T † in the form

T T †E =
∫ η(X0)

η(−X0)
K(η, ηo) E(ηo) dηo (13)

where
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K(η, ηo) ≈ −
z2

o
jβa

dx(ηo)

dηo
e−j βa

2

(
φ−a(η,ηo)+φa(η,ηo)

) ( fa(η, ηo)

φ′a(η, ηo)
e j β a (η−ηo) − f−a(η, ηo)

φ′−a(η, ηo)
e−j β a (η−ηo)

)
(14)

The variable ηo represents one of the two elliptical coordinates, and it is described in details in the
Appendix A. By introducing the other elliptical coordinate γo, which is defined as

γo = γ(xo) =
1
2a

(√
(xo + a)2 + z2

o +
√
(xo − a)2 + z2

o

)
, (15)

it results that βa
2
(
φ−a(η, ηo) + φa(η, ηo)

)
= βa

(
γ(η)− γ(ηo)

)
. Consequently, the kernel K(η, ηo) can

be rewritten as

K(η, ηo) ≈ −
z2

o
jβa

dx(ηo)

dηo
e−j βa

(
γ(η)−γ(ηo)

) ( fa(η, ηo)

φ′a(η, ηo)
e j β a (η−ηo) − f−a(η, ηo)

φ′−a(η, ηo)
e−j β a (η−ηo)

)
(16)

At this stage, apart for the amplitude terms (dx/dηo)( fa/φ′a) and (dx/dηo)( f−a/φ′−a), the kernel
is more similar to a convolution kernel. With the aim to evaluate the possibility of approximating
K(η, ηo) with a purely convolution kernel, let us expand the amplitude terms fa(η, ηo)/φ′a(η, ηo) and
f−a(η, ηo)/φ′−a(η, ηo) in Laurent series. Since the point η = ηo is a pole of order 1, the Laurent
expansions of fa(η, ηo)/φ′a(η, ηo) and f−a(η, ηo)/φ′−a(η, ηo) have the following structure

fa(η, ηo)

φ′a(η, ηo)
= − a

z2
o

dx
dηo

(η − ηo)
+ Ta(η, ηo)

f−a(η, ηo)

φ′−a(η, ηo)
= − a

z2
o

dx
dηo

(η − ηo)
+ T−a(η, ηo) (17)

where Ta(η, ηo), and Ta(η, ηo) denote the terms of the Laurent expansion related to the positive powers
of (η − ηo).

The possibility of truncating the expansions (17) to the first term is related to the extension
of the region [η(−Xo), η(Xo)] × [η(−Xo), η(Xo)] on which the couple of variables (η, ηo) changes.
Consequently, the possibility of approximating the amplitude terms as

fa(η, ηo)

φ′a(η, ηo)
≈ f−a(η, ηo)

φ′−a(η, ηo)
≈ − a

z2
o

dx
dηo

(η − ηo)
(18)

depends on the extension Xo of the observation domain.
In the Appendix B, we discuss about the validity region [−ηsinc, ηsinc] × [−ηsinc, ηsinc] of the

approximation (18). Furthermore, we show that the value of ηsinc changes with respect to the distance
zo; consequently, also the validity region of the approximation (18) changes in terms of zo.

From what said above, it follows that if η(Xo) ≤ ηsinc then the approximation (18) works well,
and the kernel K(η, ηo) can be approximated as a convolution kernel of sinc type given by

K (η, ηo) ≈ 2a e−j βa
(

γ(η)−γ(ηo)
)

sinc
(

βa (η − ηo)
)

(19)

Differently, if η(Xo) > ηsinc, the approximation (18) does not work. In such case, the expression
of K(η, ηo) provided by (16) cannot be approximated with a purely convolution kernel. However, in
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order to underline the differences with the sinc kernel (19), let us recast the expression of K(η, ηo) by
substituting (17) in (16). By doing this, we obtain that

K (η, ηo) ≈ 2a e−j βa
(

γ(η)−γ(ηo)
)

sinc
(

βa (η − ηo)
)
+

− z2
o

jβa
dx(ηo)

dηo
· e−j βa

(
γ(η)−γ(ηo)

) (
Ta(η, ηo) e j β a(η−ηo) − T−a(η, ηo) e−j β a (η−ηo)

) (20)

Naturally, for as said above, the second term in (20) is approximately constant and equal to 0
∀(η, ηo) ∈ [−ηsinc, ηsinc]× [−ηsinc, ηsinc]; instead, it is different from 0 outside.

Figure 3 shows the asymptotic evaluation of K(η, ηo) for zo = {2.5λ, 5λ, 10λ}, and the sinc kernel
provided by Equation (19).

Figure 3. Amplitude of K(η, ηo) provided by the asymptotic evaluation for zo = {2.5λ, 5λ, 10λ}, and
amplitude of the sinc kernel. The diagrams are shown in dB, and they refer to a source with a = 10λ

(η(a) = 0.78).
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As in the figure, the asymptotic evaluation has the same behavior of the sinc kernel in the region
[−ηsinc, ηsinc] × [−ηsinc, ηsinc] which is highlighted by the square in red. Note that this region has
a different extension in the cases zo = 2.5λ, zo = 5λ, and zo = 10λ . that In the region outside,
∀(η, ηo) /∈ [−ηsinc, ηsinc]× [−ηsinc, ηsinc], the difference between the asymptotic kernel and the sinc
kernel is due to the fact that the amplitude terms dx

dηo

f a(η,ηo)
φ ′a(η,ηo)

and dx
dηo

f−a(η,ηo)
φ ′−a(η,ηo)

are different to each

other and not proportional to 1/(η − ηo). Regarding the growth that the asymptotic kernel exhibits
for |ηo| > ηsinc, it is due to the terms dx/dηo that arises by passing from the variables (x, xo) to the
variables (η, ηo).

The aspects highlighted above can be observed also in the diagrams of the Figures 4 and 5 which
illustrate some cuts of the second graphs in Figure 3. In particular, Figure 4 shows the asymptotic
evaluation, and the sinc kernel in terms of η for two different values of ηo. Instead, Figure 5 shows the
asymptotic evaluation and the sinc kernel in terms of ηo for two different values of η.

Figure 4. Behavior of |K(η)| in dB for ηo = 0.631 (xo = 7.5λ) and ηo = 0.921 (xo = 15λ). The diagrams
refer to the configuration a = 10λ (η(a) = 0.78), and zo = 5λ.

Figure 5. Behavior of |K(ηo)| in dB for η = 0.631 (x = 7.5λ) and η = 0.921 (x = 15λ). The diagrams
refer to the configuration a = 10λ (η(a) = 0.78), zo = 5λ.
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With reference to a configuration where the sinc approximation of the kernel holds, in Figure 6
the eigenvalues of the operator T T † and those of the linear integral operator with the sinc kernel are
compared. As can be seen from the figure, the eigenvalues of the operator with the sinc kernel overlaps
with those of the operator T T †. This fact is very important since the eigenspectrum of a linear integral
operator with a sinc kernel is known in closed-form.

Figure 6. Comparison between the eigenvalues of T T † and those of the integral operator with the sinc
kernel (19). The figure refers to the case a = 10λ, Xo = 10λ, zo = 5λ

4. Sampling Scheme under the Sinc Approximation of the Kernel

With reference to the case where the sinc approximation works, in this section we show how to
efficiently discretize the eigenvalue problem T T †vn(ηo) = σ2

nvn(η) in order to obtain a discrete model
that well approximate the mathematical properties of the continuous operator T T †.

Under the assumption that η(Xo) < ηsinc, the considered eigenvalue problem can be explicitly
written in the form∫ η(Xo)

η(−Xo)
2a e−j βa

(
γ(η)−γ(ηo)

)
sinc

(
βa (η − ηo)

)
vn(ηo)dηo = σ2

nvn(η) (21)

Hence, by fixing ṽn(η) = vn(η)ejβaγ(η), the integral Equation (21) can be recast as

∫ η(Xo)

η(−Xo)
2a sinc

(
βa (η − ηo)

)
ṽn(ηo) dηo = σ2

n ṽn(η) (22)

Since the integral operator involved in (22) is of the Slepian–Pollak type, the eigenspectrum of
such an operator is known in closed-form and it is provided in the Appendix C. Here, instead, we
focus on the discretization of the integral Equation (22). In particular, we show how to discretize such
equation in order to obtain a discrete eigenvalue problem for a matrix whose eigenvalues σ2

n are the same
of the continuous problem, and whose eigenvectors ṽn contain the samples of the eigenfunctions ṽn(η).

The kernel K̃(η, ηo) of the integral Equation (22) is a band-limited function with respect to
the variable η whose band is [−βa/(2π), βa/(2π)]. Hence, in order to discretize the eigenvalue
problems (22), the sampling-theory approach developed in [25] can be applied. The latter provides the
following linear system

A ṽ n = σ 2
n ṽ n (23)
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where

• ṽ n ∈ CNs is the vector whose elements are the samples of ṽn(η) collected with a step length ∆η

equal or higher than the Nyquist step (∆η = π/(χβa) with χ ≥ 1 ),

• A ∈ CNs×Ns is the matrix whose generic element Aml is given by

Aml = 2a
∫ η(Xo)

η(−Xo)
sinc

(
π

χ∆η
(ηo −m∆η

)
sinc

(
π

∆η
(ηo − l∆η

)
dηo (24)

In the Appendix C all the steps required to pass from the continous model (22) to the discrete
model (23) are shown. The latter represents the eigenvalue problem for the matrix A , and (apart
for the truncation error of the sampling series (A6) and (A7)) it exhibits the same eigenvalues of the
Fredholm integral Equation (21) and (22). Furthermore, since the n -th eigenvector of A ( ṽ n ) contains
the samples of vn(η) collected with a sampling distance ∆η lower or equal than the Nyquist distance,
the knowledge of ṽ n allows recovering the correspondent eigenfunction ṽn(η), and consequently
also vn(η).

It is interesting to note as the dimension of the matrix A , and that of the vector ṽ n depends
on the oversampling factor χ. In fact, A ∈ CNs×Ns , and ṽ n ∈ CNs where Ns is the number of
samples collected with a sampling step ∆η = π/(χβa) that fall in the interval [η(Xo), η(−Xo)]; hence,
NS = 2 η(Xo)

∆η + 1 = 2χβa
π η(Xo) + 1. The latter if χ = 1 (or in other words if the sampling frequency is

equal to the Nyquist frequency) is called the Shannon number, and it is exactly equal to the number of
degrees of freedom N.

The value of the oversampling factor χ (or equivalently the value of the sampling frequency)
affects also the level above which the eigenvalues of the continuous problem are well approximated by
the eigenvalues of the matrix A. In fact, a sampling frequency equal to the Nyquist frequency (χ = 1)
allows approximating the eigenvalues before the knee, which corresponds the most significant part of
the spectrum of the radiation operator T . Instead, a sampling frequency a little bit higher than the
Nyquist frequency (which correspond to set χ a little bit higher than 1) allows approximating also
some of the eigenvalues beyond the knee. Hence, an increase of the oversampling factor χ bring a
reduction of the level until which the eigenvalues of the continuous operator are well approximated
by the eigenvalues of the matrix A.

5. NDF and Sampling Strategy When the Kernel Is Not of Sinc Type

In this section, with reference to the case where the extension Xo of the observation domain is
wide enough that the sinc approximation (19) does not work, we discuss about

1. How to compute the singular values behavior of the radiation operator T ;
2. How to discretize the eigenvalue problem T T †vn(η) = σ2

nvn in order obtain a discrete model
that well approximates the eigenvalues {σ2

n}.

As regards the first point, it results that the singular values of the radiation operator T are given
by the square root of the eigenvalues of T T † but also by the square root of the eigenvalues of T †T .
Hence, if η(Xo) > ηsinc, in order to predict the singular values of the radiation operator T it is possible
to refer to the operator T †T . As shown in [29], the kernel of T †T is well approximated by a sinc
function of difference type also if η(Xo) is significantly greater ηsinc. Consequently, according to [31],
the singular values of T exhibit a step like behavior with the knee occurring at the index

N =
2βa
π

η(Xo) (25)

also if η(Xo) > ηsinc. Hence, as regards the behavior of the singular values of T , the results shown in
the Appendix C for the case η(Xo) ≤ ηsinc work also for η(Xo) > ηsinc.
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Note that as from the equality between the eigenvalues of T †T and the eigenvalues of T T †

follows that despite for η(Xo) > ηsinc the kernel of T T † is very different from the sinc kernel (19),
the behavior of the eigenvalues of T T † is well approximated by the eigenvalues of a linear integral
operator with the sinc kernel (19). This can be understood by considering that the eigenvalues σ2

n are
given by σ2

n = (T T †vn)/vn. Since T T † is an integral operator, the integral mitigates the difference
between the actual kernel and the sinc kernel (19) making the eigenvalues of the two correspondent
integral operators very similar. In order to corroborate what has just said said, in Figure 7 we compare
the kernel of T T † and the sinc kernel along the axis ηo = η(Xo) and η = η(Xo), instead, in Figure 8
we show the eigenvalues of T T † and those of the integral operator with the sinc kernel (19). Both the
figures refer to the configuration a = 10λ, zo = 5λ, Xo = 20λ.

Figure 7. (a) Kernel of T T † in terms of η for ηo = η(Xo), and sinc kernel in terms of η for ηo = η(Xo).
(b) Kernel of T T † in terms of ηo for η = η(Xo), and sinc kernel in terms of ηo for η = η(Xo).
The diagrams are in dB, and they refer to the configuration a = 10λ, zo = 5λ, Xo = 20λ (η(Xo) = 0.961).

Figure 8. Eigenvalues of the operator T T †, and eigenvalues of the sinc kernel. The diagrams refer to
the configuration a = 10λ, zo = 5λ, Xo = 20λ (η(Xo) = 0.961).
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It is interesting to note that despite the cuts of the two kernels overlap only in the region of the
main lobe, the eigenvalues of the two operators are very similar.

At this point, let us discuss about how to discretize the eigenvalue problem T T †vn(η) = σ2
nvn

in order to obtain a discrete problem for a matrix whose eigenvalues well approximate those of the
continuous problem. In such case, since the kernel of the operator TT† is not of convolution type,
the sampling theory approach cannot be used. Hence, differently from the Section 4, the criterion
exploited in the discretization is not based on the bandwidth of the kernel but on the reduction of the
error between the eigenvalues of the continuous model and those of the discrete model.

In order to give a guideline for the discretization of the integral equation T T †vn(η) =

σ2
nvn, we perform some numerical simulations which differ each other for the extension of the

observation domain Xo, and/or for the sampling step ∆η. The results obtained by this numerical
analysis are shown respectively in the Figures 9 and 10 which illustrate the eigenvalues of
T T †, and those of the discrete operator obtained discretizing T T † with a sampling step ∆η =

{π/(βa), π/(1.25βa), π/(1.5βa), π/(1.75βa)}. In particular, Figure 9 refers to the configuration
a = 10λ, zo = 5λ, Xo = 15λ; instead, Figure 10 refers to the configuration a = 10λ, zo = 5λ,
Xo = 20λ.

As can be seen from the figures, in both cases (Xo = 15λ, and Xo = 20λ) a sampling step
∆η = π/(βa) is already sufficient to approximate the relevant eigenvalues of the operator T T †,
and consequently, the relevant singular values of the radiation operator T . Instead, in order to
approximate the most significant eigenvalues beyond the knee, it is necessary a sampling step ∆η

lower than π/(βa) which corresponds to an oversampling factor slightly higher than 1. Naturally,
the value of the oversampling factor χ depends both on the level until which we want to approximate
the eigenvalues of the continuous problem and on the desired accuracy.

Let us remark that despite the results obtained in this section can appear very similar to those
shown in Section 4, there is a substantial difference. In Section 4, we provide the minimum sampling
frequency that allows to well approximate both the eigenvalues and the eigenfunctions of the
continuous model; here, instead, we limit our analysis to the approximation of the eigenvalues.

Figure 9. Eigenvalues of the operator T T † and those of its discrete version for different values of the
sampling step ∆η. The diagrams refer to the configuration a = 10λ, zo = 5λ, Xo = 15λ (η(Xo) = 0.921).
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Figure 10. Eigenvalues of the operator T T †. The diagrams refer to the configuration a = 10λ, zo = 5λ,
Xo = 20λ (η(Xo) = 0.961).

From the sampling in the variable η to the sampling in the variable x
At this stage, the last thing to is to find the position of the samples in x domain starting from to

the knowledge of the samples in η domain. In order to do this, we must solve the equation

∆η = η(xm)− η(xm−1) =
π

χβa
(26)

for each xm. By remembering Equation (12) and taking into account that β = (2π)/λ, Equation (26)
can be explicated as √

(xm + a)2 + z2
o −

√
(xm − a)2 + z2

o = p(xm−1) (27)

where p(xm−1) = λov +
√
(xm−1 + a)2 + z2

o −
√
(xm−1 − a)2 + z2

o with λov = λ/χ.
Equation (27) represents an hyperbola whose foci are the points (0, a), and (0,−a). Hence, when

zo increases the point xm moves along such hyperbola. The latter can be rewritten in the form

4
p2(xm−1)

x2
m −

4
4a2 − p2(xm−1)

z2
o = 1 (28)

From the last equation, it follows that the optimal location of the sampling points is given by

xm =
p(xm−1)

2

√
1 +

4z2
o

4a2 − p2(xm−1)
∀m ∈ {−No, ..., No} (29)

where No denotes the integer nearest to χβa
π η(xo). Note that if we choose the first sample in η domain in

η = 0, it results that x0 = 0. In such condition, p(xm−1) = m λov and Equation (29) further simplifies.
In Figure 11 the locations of the sampling points for different values of zo is shown, instead,

in Figure 12 the behavior of the sampling step ∆xm = xm− xm−1 in terms of the variable xm−1 is depicted.
The spacing of the sampling points shown in Figure 12 is well understood if we analyze the

behavior of the transformation η(x) shown in Figure A1. For little of values of x the relation between
η and x is quasi-linear, hence, the uniform sampling step ∆η maps into a quasi uniform sampling step
∆x. Differently, when x increases, the relation between η and x is non-linear; consequently, the uniform
sampling step ∆η maps into a spatially varying sampling step ∆x. Furthermore, since when x increases
a little variation of the variable η produces a large of the variable x, it happens that the sampling step
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∆x raises when x increases (see Figure 12). Summarizing, for small values of x (in the central region
of the observation domain) the sampling step ∆x is quasi-uniform. Instead, when x moves toward
the edges of the observation domain the sampling step ∆x is non-uniform, in particular, it increases
gradually with the growth of x.

A last comment is related to the behavior of the sampling step ∆x in terms the distance zo. As can
been seen from Figure 12, the sampling step ∆x is never less than λov/2, and it increases also when zo

raises. Consequently, we can conclude the sampling step ∆x increases with respect to x, and zo.

Figure 11. Position of the sampling points {xm} for different values of zo when χ = 1.

Figure 12. Diagram of
∆xm

λ
in terms of xm−1 for different values of zo in the case χ = 1.
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6. Conclusions

In this paper a strategy to collect the radiated field in inverse source problem has been proposed.
The basics idea of such sampling strategy is to find the optimal locations of the sampling points that
allow to approximate the singular values behavior of the radiation operator T as well as possible with
a number of samples as low as possible. The study has been done with reference to a 2D geometry
where the electric field radiated by a strip of magnetic current is observed on a bounded line parallel
to the source.

Since the kernel of the eigenvalue problem T T †vn(xo) = σ2
nvn(x) is neither convolution nor

band-limited, the sampling theory approach could not be applied to find the optimal locations of
the sampling points. For this reason, by exploiting an asymptotic approach and a suitable change of
variables, we have recast the kernel of T T † in the new variables (η, ηo). In such new variables, if the
extension Xo is lower than x(ηsinc), the kernel of the eigenvalue problem T T †vn(ηo) = σ2

nvn(η) can
be approximated with a band-limited function of difference type; instead, if Xo is greater than x(ηsinc)

the kernel remains not of convolution type.
In the first case, the sampling theory approach can be applied. The latter turns out that a sampling

step ∆η equal to the Nyquist step
(
∆η = π/(βa)

)
allows approximating all the part of the singular

spectrum (singular values, and singular functions) corresponding to the singular values of T before
the knee. Instead, a sampling step ∆η slightly lower than the Nyquist step (which corresponds to a
number of samples a little bit higher than the Shannon number) allows approximating also the part of
the singular spectrum corresponding to the most relevant singular values beyond the knee.

Regarding the case Xo > x(ηsinc), the sampling theory approach could not be applied. Hence,
in such case we have performed a numerical analysis to establish the sampling step for which the
discrete operator exhibits the same singular values of the radiation operator T . From such a numerical
analysis, we have found that also in this case a sampling step ∆η = π/(βa) allows approximating the
singular values before the knee. Instead, a sampling step ∆η = π/(χβa) with an oversampling factor χ

slightly lower than 1 allows obtaining a discrete model that shares with the radiation operator not only
the singular values before the knee but also the first singular values beyond the knee. Consequently,
at least for the approximation of the most significant singular values of T , we can state that a sampling
step ∆η = π/(χβa) with χ slightly higher than 1 suffices to capture the most significant singular
values of the radiation operator in both cases (Xo > x(ηsinc), and Xo > x(ηsinc)).

Furthermore, let us remark that this sampling strategy brings to a spatially varying sampling
step in x variable. In particular, since the relation between η and x is quasi-linear for x around 0 and
non-linear elsewhere, the uniform sampling in η variable is recast in a quasi-uniform sampling around
x = 0 (in the central part of the observation domain), and in a strong spatially varying sampling in
regions at the edges of the observation domain.

Before concluding, it is interesting to highlight the effect of the noise on data. Since the kernel
of the radiation operator is of the Hilbert–Schmidt class (i.e., since the kernel is a square integrable
function), the radiation operator is compact. As a consequence, the inverse operator is not continuous,
and the singular values tend to zero as their index increases. This entails that the part of the noise
that projects onto the singular functions associated to low singular values is strongly amplified in the
inversion process, and this could provide a meaningful solution. In order to overcome this drawback,
a regularization scheme must be employed. With the regularization, we accept to represent the
unknown function with a finite number of singular functions, and this entails a reduction of the
resolution but an increasing of stability. A crucial role in the regularization is played by the number of
singular components that must been considered. If the SNR is not so high (as it often happens) then
one can at best stably reconstruct only the projection of the density current J onto the space spanned
by the singular functions corresponding to the singular values before the knee. Hence, in this case,
it sufficient to discretize the continuous model with a sampling step that allows approximating well
only such part of the singular system. Conversely, if a high SNR is available, in order to represent the
the density current, it is possible to use also the singular functions beyond the knee not corrupted by
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the noise. In this last case, it is necessary to well approximate also such part of the singular system.
Consequently, in the discretization of the continuous model T T †vn(ηo) = σ2

nvn(η) a sampling step
∆η < π/(βa) is required.

Finally, it is worth noting that the approach developed in this paper can be extended also to more
realistic scenario involving 3D geometries.
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Appendix A

In this appendix we provide some useful details about the non-linear transformation

ηo = η(xo) =
1
2a

(√
(xo + a)2 + z2

o −
√
(xo − a)2 + z2

o

)
(A1)

Such transformation realizes a warping of the variable xo. In particular, it stretches the set
[−Xo, Xo] into [η(−Xo), η(Xo)]. The multiplicative constant 1/(2a) has been chosen in such a way that
ηo −→ 1 when xo −→ +∞, hence the possible values of the variable ηo are limited to the set [−1, 1].
Figure A1 shows the behavior of η with respect to the variable xo for different values of the distance zo.

Figure A1. Diagram of η(xo) for different values of zo when a = 10λ.

As can be seen from the figure, η(xo) exhibits a quasi-linear behavior for xo ∈ [−δ, δ], and then it
bends at the ends. In any case, the extension δ the linear behavior is bigger or equal than the source
size a.
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Since in this paper Xo is bounded, transformation (A1) is invertible in the set [−Xo, Xo]. Hence,
the inverse function x(ηo) exists, and it is given by x(ηo)

x(ηo) = ηo

√
a2 +

z2
o

1− η2
o

(A2)

Finally, the first derivative of x(ηo) has the following expression

dx
dηo

=
1√

a2(1− η2
o ) + z2

o

a2(1− η2
o )

2 + z2
o

(1− η2
o )

3/2 (A3)

This term plays a crucial role, since it appears in expression of the asymptotic kernel when we
pass from the variables (x, xo) to the variables (η, ηo). Figure A2 shows the behavior of dx

dηo
in terms of

ηo for different values of zo.

Figure A2. Diagram of dx
dηo

in terms of ηo for different values of zo. The picture refers to a source whose
semi-extension a is equal to 10λ.

Appendix B

In this appendix we find the region of validity [−ηsinc, ηsinc]× [−ηsinc, ηsinc] of the approximation (18).
Naturally, such region is made up by all the points (η, ηo) on which |a|/|z2

o
dx
dηo

(η − ηo)| is significantly
higher than the terms |Ta(η, ηo)| and |T−a(η, ηo)|. Since these functions depend on zo, also the extension
of the region [−ηsinc, ηsinc]× [−ηsinc, ηsinc] depends on zo.

Figure A3 shows the behavior of the functions fa(η, ηo)/φ′a(η, ηo), f−a(η, ηo)/φ′−a(η, ηo), and
−a/[z2

o
dx
dηo

(η − ηo)] in terms of η for two different values of ηo. Note as the two cases are totally
different. In the first example, since ηo = 0.631 ∈ [−ηsinc, ηsinc], approximation (18) works very well
∀η ∈ [−ηsinc, ηsinc]. In the second case, since ηo = 0.921 /∈ [−ηsinc, ηsinc], approximation (18) does
not hold.
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Figure A3. Behavior of fa(η, ηo)/φ′a(η, ηo), f−a(η, ηo)/φ′−a(η, ηo), and −a/[z2
o

dx
dηo

(η − ηo)] in terms of
η for ηo = 0.631(xo = 7.5λ), and ηo = 0.921(xo = 15λ).

But, what is the value of ηsinc ? In order to answer to this question, we have performed a
numerical analysis. In such analysis, we have started by considering an observation domain with
a little extension Xo, and then we have gradually increased it until to reach the biggest value of Xo

for which the difference between the amplitude in dB of the asymptotic kernel and the amplitude
in dB of the sinc kernel becomes lower than −3 or higher than 3 in at least one point (η, ηo). Such
particular value of Xo has been denoted with Xo sinc, and the correspondent value in the η domain has
been denoted with ηsinc. In other words, ηsinc has been chosen as the minimum value between the
maximum value of η and the maximum value of ηo for which the difference between the amplitude in
dB of the asymptotic kernel and the amplitude in dB of the sinc kernel belong to the set [−3, 3] in all the
points (η, ηo). From such numerical analysis, we have obtained the results summarized in Table A1.

Table A1. Values of ηsinc, and Xo sinc for different values of the distance zo.

zo ηsinc Xo sinc

0.20 a 0.91 1.01 a
0.25 a 0.90 1.04 a
0.50 a 0.81 1.07 a
0.75 a 0.75 1.13 a

a 0.71 1.23 a
1.50 a 0.66 1.48 a

2 a 0.65 1.83 a
4 a 0.63 3.30 a
5 a 0.63 4.10 a
10 a 0.63 8.14 a

The table shows the values of zo for which the numerical analysis has been performed in the
first column, the correspondent values of ηsinc in the second column, and the correspondent values of
Xo sinc in the third column. As can be seen from the table, for zo ≤ a the value of ηsinc decreases in such
a way that Xosinc remains almost unchanged. Instead, for zo > a the value of ηsinc raises according to
Equation (A2). In Figure A4 the behavior of Xo sinc with respect to zo is depicted.
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Figure A4. Diagram of Xo sinc/a in terms of zo/a.

Appendix C

In this appendix with reference to the cases in which the sinc approximation (19) works well, we
provide the eigenspectrum of the linear integral operator T T †, which (as explained in section II) is
related to the singular values decomposition of the radiation operator T .

Since the integral operator involved in (22) is of Slepian-Pollak type, the eigenspectrum of such
operator is known in closed-form [31]. In particular, it results that the eigenvalues {σ2

n} exhibit a step
like with the knee occurring at the index

N =
2βa
π

η(Xo) (A4)

Furthermore, the eigenfunctions {ṽn(η)} are related to the prolate spheroidal waves functions
(PSWFs) ψn(η, c), in fact, ṽn(η) = ψn(η, c)/

√
λn where c = βa η(Xo) is the so-called spatial bandwidth

product, and λn = βσ2
n/(2π) are the eigenvalues of the Slepian-Pollak operator. Consequently,

the eigenfunctions vn(η) of the eigenvalues problem (21) are given by

vn(η) =
ψn(η , c)√

λn
e−jβaγ(η) (A5)

As can be seen from Equation (A4), the number of relevant eigenvalues depends only on the
geometric parameters of the configuration which are a, Xo, and zo. Furthermore, such number differs
from the case of unbounded observation domain only for the presence of the term η(Xo) ∈ ]0; 1[ ; in
fact, in the case of unbounded observation domain the number of eigenvalues before the knee Nu is
given by Nu = 2βa/π [1]. This means that if Xo is finite, the number of relevant eigenvalues reduces
with respect to the case of unbounded observation domain of a factor η(Xo).

Figure A1 depicted in the Appendix A, shows the behavior of η(Xo) with respect to Xo for
different values of the distance zo. As can be seen from figure, fixing Xo the value of η(Xo) decreases
when the distance zo increases. Consequently, if the value of Xo remains unchanged, the number of
relevant eigenvalues N is more similar to the Nu when the distance zo between the observation domain
and the source is low. Differently, if we want that the number of relevant singular values N remains
unchanged when zo raises, then the extension of the observation domain Xo has to raise according to
Equation (A2) in the Appendix A.
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Appendix D

In this appendix we show all the mathematical steps required to obtain the discrete eigenvalue
problem (23) starting from the continuous model (22). Since the kernel K̃(η, ηo) of the integral
Equation (22) is a band-limited function with respect to the variable η, it can be sampled without loss
of information with a sampling step ∆η equal or lower than the Nyquist distance (i.e., ∆η ≤ π/(βa)).
Consequently, the kernel K̃(η, ηo) can be represented through the Shannon sampling series

K̃(η, ηo) ≈∑
m

K̃ (m∆η, ηo) sinc
(

π

∆η
(η −m∆η)

)
(A6)

where ∆η = π/(χβa) with χ denoting an eventually oversampling factor, hence χ ≥ 1. The same
expansion can be performed also for the eigenfunctions ṽn(η), hence, it results that

ṽn(η) ≈∑
m

ṽn (m∆η) sinc
(

π

∆η
(η −m∆η)

)
(A7)

It is interesting to note that in general the Shannon sampling series of a band-limited function is
made up by an infinite number of terms. However, since the variable η ∈ [η(−Xo), η(Xo)], in such
case the series (A6) and (A7) include only a finite number of terms NS given by the number of points
m∆η which fall in the set [η(−Xo), η(Xo)].

By substituting Equations (A6) and (A7) in (22), we obtain that

Ns

∑
m=1

(∫ η(Xo)

η(−Xo)
K̃ (m∆η, ηo) ṽn(ηo) dηo

)
sinc

(
π

∆η
(η −m∆η)

)
=

Ns

∑
m=1

σ2
n ṽn (m∆η) sinc

(
π

∆η
(η −m∆η)

)
(A8)

Consequently, it results that ∀m ∈ N : m∆η ∈ [η(−Xo), η(Xo)]∫ η(Xo)

η(−Xo)
K̃ (m∆η, ηo) ṽn(ηo) dηo = σ2

n ṽn (m∆η) (A9)

Taking into account Equation (A7), it is possible to rewrite the system of Equation (A9) as

Ns

∑
l=1

(∫ η(Xo)

η(−Xo)
K̃ (m ∆η, ηo) sinc

(
π

∆η
(ηo − l∆η)

)
dηo

)
ṽn (l∆η) = σ2

n ṽn (m∆η) (A10)

∀m : m∆η ∈ [η(−Xo), η(Xo)]. The previous set of equations represents a linear system, hence, it can
be written in the form A ṽ n = σ 2

n ṽ n.
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