
electronics

Article

Historical Graph Management in
Dynamic Environments

Kyoungsoo Bok 1, Gihoon Kim 2, Jongtae Lim 2 and Jaesoo Yoo 2,*
1 Department of SW Convergence Technology, Wonkwang University, Iksandae 460, Iksan,

Jeonbuk 54538, Korea; ksbok@wku.ac.kr
2 Department of Information and Communication Engineering, Chungbuk National University,

Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea; argenston@naver.com (G.K.);
jtlim@chungbuk.ac.kr (J.L.)

* Correspondence: yjs@chungbuk.ac.kr; Tel.: +82-43-261-3230

Received: 24 March 2020; Accepted: 26 May 2020; Published: 28 May 2020
����������
�������

Abstract: Since dynamic graph data continuously change over time, it is necessary to manage
historical data for accessing a snapshot graph at a specific time. In this paper, we propose a new
historical graph management scheme that consists of an intersection snapshot and a delta snapshot to
enhance storage utilization and historical graph accessibility. The proposed scheme constantly detects
graph changes and calculates a common subgraph ratio between historical graphs over time. If the
common subgraph ratio is lower than a threshold value, the intersection snapshot stores the common
subgraphs within a time interval. A delta snapshot stores the subgraphs that are not contained in the
intersection snapshot. Several delta snapshots are connected to the intersection snapshot to maintain
the modified subgraph over time. The efficiency of storage space is improved by managing common
subgraphs stored in the intersection snapshot. Furthermore, the intersection and delta snapshots can
be connected to search a graph at a specific time. We show the superiority of the proposed scheme
through various performance evaluations.

Keywords: dynamic graph; historical data; storage utilization; common subgraph; intersection
snapshot; delta snapshot

1. Introduction

Graph data have been used to represent the interactions or relationships between objects through
vertexes and edges [1–3]. In recent years, new information has been constantly generated and existing
information changes through social networks, citation networks, and the Internet of Things (IoT) [4–8].
The graph data that represent such information generate dynamic graphs that continuously change
through various update operations [9–11]. Dynamic graphs with continuous changes generate a large
amount of historical data [12–15]. To track the history of changes in graphs or to search for graphs
at a specific time in the past in a dynamic environment, a historical graph is required to manage the
continuous changes in the vertices and edges that make up the graph [16–20]. When a snapshot graph
Gn = (Vn, En) exists in a specific time n, the history graph G = 〈G1, G2, . . . , Gcurrent〉 consists of all the
changed graphs Gn from the past to the present. Here, Vn and En are sets of vertices and edges present
at the time n. That is, historical graphs do not store only the graphs at a specific point in time or the
final graphs that have changed, but they also store changes in the vertices and edges that have changed
continuously in the initial graph so that we can analyze the graph changes or view the graph’s status
at a specific time.

A typical graph is used to express relationships or interactions between objects and to search
for or analyze relationships between objects. A historical graph is used to search for vertices and

Electronics 2020, 9, 895; doi:10.3390/electronics9060895 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-9926-9947
http://dx.doi.org/10.3390/electronics9060895
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/6/895?type=check_update&version=3

Electronics 2020, 9, 895 2 of 21

edges that exist at specific points or intervals or to analyze changes in a graph over time, since they
store changes in the graph that have changed from the past to the present. For example, if we model
relationships between virus-infected people or connections as a graph, we can provide a confirmed
spread path by creating a web map of the COVID-19 diffusion path, which has become a recent social
issue, and provide time-to-time status of the spread of the virus along the path of the confirmed
person’s movement [21,22]. In addition, if we model relationships and information delivery among
users on social networks as graphs, we can search for or analyze queries such as “What has become of
the spread of information over time?”, “What is the 2020 issue compared to 2019?”, and “Who is the
most influential user in 2019?” [16,17]. DataBase systems and Logic Programming (DBLP) and the
citation network can model the relationships between the papers and the authors as a graph, identify
the changes in the cited paper as time changes, and provide researchers with changes in the research
topic through analysis of the relationship between the author and the paper from the past to the
present [5,6].

Facebook, a leading social network service, has 1.39 billion active users and Twitter has 228
million active users as of March 2015 [9]. In this environment, storing and managing the sharing
information on social network services over time as historical graphs take a lot of storage space,
and it takes a lot of time to search or analyze graphs that exist in a specific time or a specific time
interval [23–28]. The graph storage structure for storing graphs individually over each time has
been proposed. The Spatio-Temporal Interaction Networks and Graphs Extensible Presentation
(STINGER) uses a linked list-based structure to store large amounts of graph [24]. Degree Aware Robin
Hood Hashing (DegAwareRHH) determine where data is stored by using the robin-hood hashing
technique [25]. In the existing graph storage structure, a large amount of common subgraphs will be
stored if graphs are maintained for the entire time domain even if there are some subgraph changes.
The common subgraph storage for equivalent information causes storage space wastage. For example,
a relationship graph for a user in a social network only has changes in some friend relationships rather
than the entire friend relationship.

Historical graph management schemes that access a large amount of existing graph data and
track the history of graph data through a scalable structure have been proposed [29–32]. Historical
graph management schemes are divided into a copy method and a log method [28]. The copy method
maintains all time-based graphs to quickly search for subgraphs that exist at a specific time. However,
since most applications only change part of the graph, the unchanged subgraph is stored in duplicate,
which uses a lot of storage space. To solve this problem of storage space, the log method was proposed
to store mainly changed subgraphs. A compact representation of graph snapshots called Version Graph
preserves the subgraph for a specified time period after setting the preservation interval [29]. Since the
Version Graph does not store all graphs but only the change history, it has good space efficiency in
terms of the spatial perspective. However, it has the drawback of slow access speed, because it has to
access the change history sequentially from the first graph to check the graph data at the required time
period. A distributed hierarchical index structure called DeltaGraph increases the efficiency of storage
space by utilizing the graph change history to reduce unnecessary graph storage [30]. However, graph
access was inefficient due to the sequential access to the change history. The existing schemes exhibited
a trade-off relationship between two approaches as they showed poor performance at their weak point
in terms of storage and access. Thus, a scheme that could take both methods into account appropriately
for graph storage and thus access historical graph more efficiently was necessary, in consideration of
all circumstances.

In this paper, we propose an efficient historical graph management scheme to reduce the storage
space and improve the processing time for snapshot queries. The proposed scheme stores a common
subgraph in an intersection snapshot and a modified subgraph over time in a delta snapshot by
using the feature that the parts of the graph change over time. The intersection snapshot and delta
snapshots are connected to enable the accessing of graphs at a specific time. The proposed scheme can
increase the space efficiency because it does not store duplicate historical graph to solve the problem of

Electronics 2020, 9, 895 3 of 21

space consumption. A historical graph is represented by the modified Compressed Sparse Row (CSR)
technique to reduce the graph storage space. The proposed scheme has the following characteristics.

• It integrates and manages all changed information on a single graph using a provenance model
that manages the history of data changes.

• It analyzes changes in graphs managed through the provenance model and generates an
intersection snapshot and a delta snapshot if the change rate is above the threshold.

• The intersection snapshot stores common subgraphs for reducing the duplicate storage and
leading to a reduction in storage space.

• The delta snapshot stores subgraphs at each time that is not included in the intersection snapshot
to retrieve the changed subgraph.

• It stores the intersection snapshot and delta snapshot to reduce storage space on the history graph
using a modified Compressed Sparse Row (CSR).

The rest of this paper is organized as follows. Section 2 describes related works, the proposed
historical graph management scheme is described in Section 3, and the performance evaluation of
the proposed scheme is presented in Section 4 through comparison with existing schemes. Section 5
presents the conclusion.

2. Related Work

STINGER is a graph storage structure based on linked lists of blocks to support fast insertions,
deletions, and updates [24]. An edge is represented as a tuple of neighbor vertex ID, type, weight,
and two timestamps. All edges in a given block have the same edge type. Each vertex is stored in the
Logical Vertex Array (LVA), in which a pointer to a block that stores how several edges connect to a
corresponding vertex is maintained. A pointer to a block has location information about the block for
edge storage, and multiple blocks are connected as a form of connection list. Thus, it can store a large
amount of graph in a scalable manner. STINGER employs an edge-type array for fast access to each
edge, and the edge-type array (ETA) is used to minimize the sequential access, which is a drawback of
the connection list due to the inherent structure when accessing graphs based on edges rather than
vertices. The edge-type array (ETA) is a secondary index that points to all edge blocks of a given type.
The ETA contains a pointer to indicate the location information of the block to which a particular edge
belongs according to the type of edge. The STINGER supports read-only queries of vertices and edges,
as well as the insertion and deletion of both vertices and edges.

DegAwareRHH is a distributed graph data storage structure for a dynamic graph [25].
DegAwareRHH is the adjacency list structure using robin-hood hashing. Each edge is stored in
two types of tables such as a low-degree table and a middle-high degree table. The low-degree table
stores edges in a single table. The middle-high-degree table consists of a vertex table and edge chunks.
The vertex table stores source vertices’ information. Adjacency edges are stored into edge chunks, and
the vertex table holds pointers to edge chunks. Storing a large amount of graph data efficiently in a
distributed manner requires that a graph storage location is determined to maintain data locality by
utilizing an existing robin hood hashing scheme that stores graphs in a manner that considers graph
locality when new graphs are added to the page on which existing data are stored. If the added graph
is to be stored at the location of the existing graph, the existing graph location is moved. Vertices with
a large number of connected edges require a large space to represent each edge.

A Linked-node analytics using Large Multiversioned Arrays (LLAMA) was proposed to resolve
the waste of storage space in existing structures and improve scalability for the storage of a dynamic
graph [33]. LLAMA is a scalable graph storage structure that utilizes a multiversion array. A snapshot
is made once a graph changes to store change histories. It has the advantage that it can cope with
constant changes, which is a characteristic of dynamic graphs. A scalable structure is created by
dividing a single snapshot into a vertex table and edge table in the configuration. The vertex table
maintains the snapshot ID of where the out-going vertex is located, the location information of edges

Electronics 2020, 9, 895 4 of 21

connected to the out-going vertex, and the number of connected vertices; the edge table maintains the
in-coming vertex ID to express the out-going and in-coming vertices of edges. A single dynamic graph
is expressed by maintaining the aforementioned structure of the snapshot in many versions. Once data
change according to the changes in the dynamic graph, a new snapshot is made. For data without
changes, the edge information in the edge table contains pointer information that points to a room of
the edge table in the previous snapshot. Scalable graph data can be stored efficiently in the storage
space by utilizing multiversion snapshots.

Version Graph is a graph data structure proposed for accessing the past histories of dynamic
graphs [29]. Information about all vertices and edges that were added to the graph over time is stored
and the lifespan of each vertex and edge is recorded in the graph to check whether vertices and edges
exist in the graph at a specific time. The lifespan is sets of time intervals indicating vertices and
edges is deleted and then reinserted at snapshot graphs. A Strongly Connected Component (SCC) is
employed to search changes over time. Version Graph maintains posting lists with information about
node membership in SCCs. Version Graph minimize the size of posting lists through an appropriate
assignment of identifiers to SCCs. Thus, Version Graph can be accessible to subgraphs that change
over time efficiently; it can maintain all historical graph to facilitate fast access to past graphs.

DeltaGraph is a graph data management system that stores the change histories of how graph
data change over time. It manages past histories using a hierarchical structure [30]. At the end node,
graph data with respect to time are positioned, and intermediate nodes that permit access to each graph
data are laid at the upper nodes. Graphs at specific times are configured as snapshots to maintain
the changes that occur between snapshots through the event list. DeltaGraph is represented as a tree
structure to find a snapshot that will be a reference to starting sequential access by tracking events. End
nodes can be accessed by the shortest accessible distance from the super-root in the uppermost end to
the end node, and they are calculated to access an end node. The super-root is a virtual access node; it
shows a blank graph without vertices or edges. A snapshot is chosen that is a reference to the start of a
sequential search for events using a tree structure. Starting from the chosen snapshot, histories that
change through events at particular times are updated in snapshots to access the graph data at the
preferred time. DeltaGraph accesses an end node by calculating the shortest path to a particular time
so that it can access the graph at that particular time, and it performs sequential access by tracking
histories about graph states between end nodes.

Various approaches have been proposed to store and search for continuous changes in graphs over
time. The existing graph storage structures can store a large amount of graph data by considering data
scalability [24,25,33]. STINGER is a large graph storage structure that takes into account scalability.
Access to vertices and edges is available through LVA and ETA, but past histories of graphs are not
accessible. Using Hash, DegAwareRHH can efficiently distribute and store large amount of graphs
by maintaining locality and classifying vertices according to the number of edges. LLAMA manages
dynamic graphs with multiple versions of arrays using snapshots. Access to each snapshot requires
a lot of processing time because it is phased from the first change history. Therefore, existing graph
storage structures cannot be analyzed, since they do not maintain past graphs. The historic graph
management schemes have been proposed to search for changed past history [29,30]. Version Graph
provides efficient access to subgraphs that have changed over time and maintains all historical data
for quick access to past graphs. However, a lot of storage space is needed because it maintains the
structure of all graphs that have changed in the past. DeltaGraph accesses the leaf nodes by calculating
the shortest path from the tree structure to that time point in order to access the graph at that point.
Since the leaf node includes the event information including vertices or edges are created or deleted,
the process of analyzing events and creating actual graphs while sequentially approaching the leaf
node is necessary to verify the graph at a specific time. It takes a lot of time to access a graph at
a specific time because the actual graph is generated using events while accessing the leaf nodes
sequentially. The historical graph management schemes have to access a large number of histories
sequentially to access past graphs or require a large amount of storage space to maintain all graphs,

Electronics 2020, 9, 895 5 of 21

both of which are problematic. The problems of the two schemes are that they are in a trade-off

relationship. Thus, it is necessary to have a storage management structure that can store graph data
efficiently and access past graphs effectively for historical graph analysis by taking advantage of two
schemes appropriately that are in a trade-off relationship between copy and log-based access. Thus,
we proposes an efficient storage management scheme to search historical graphs by combining copy
and log-based access methods appropriately through utilizing a storage structure that modifies a CSR
technique to reduce the amount of information in graph data and manage historical graphs through
the division of snapshots into two layers.

3. The Proposed Historical Graph Management Scheme

3.1. Overall Structure

Dynamic graphs have much in common with subgraphs, causing wasted space due to duplicate
storage. We present a new a historical graph management scheme that minimizes the storage of
common subgraphs and efficiently access snapshot graphs. The accessibility of past graphs can be
ensured while minimizing common subgraphs by dividing and managing data into intersection and
delta snapshots. An Intersection Snapshot (IS) is generated with common subgraphs according to
a common subgraph ratio. The common subgraphs are managed in the intersection snapshot in an
integrated manner to reduce storage space wastage, and the remaining subgraphs except for the
common graphs are stored in the Delta Snapshot (DS). A single snapshot includes tables of out-going
and in-coming vertices. An out-going vertex represents an edge between two vertices by the number
of vertices connected with an offset that indicates a starting position in the corresponding in-coming
vertex table. Furthermore, the CSR technique is utilized to reduce the amount of information in
graph data.

Figure 1 shows the proposed structure of the historical graph management. The overall structure
of the proposed scheme is configured with an IS at the upper end and DS that consists of changed
subgraphs over time at the lower end. The common subgraphs in the temporal graphs are stored in the
IS, and the DS increases the storage efficiency by only storing the changed subgraphs in the common
subgraph. The time information in a DS is connected to a corresponding ID and maintained for access
to snapshots. Figure 1a,b show that G1 and G2 have a common subgraph, where vi is a vertex and ei j
is an edge connecting vi and v j. The common subgraph {e12, e24, e13 } is stored in IS1, as shown in the
structure of (c) in Figure 1. The subgraph {e25, e62} that is not stored in IS1 is stored in DS1 for G1 and
the subgraph {e21, e53, e56 } is stored in DS2 for G2. To support the historical search, DS1 and DS2 are
connected to the IS1.

Electronics 2020, 9, 895 6 of 21

Electronics 2020, 9, x FOR PEER REVIEW 6 of 20

(a)

(b)

(c)

Figure 1. Proposed historical graph management structure: (a) Graph 𝐺ଵ at time 𝑇ଵ; (b) Graph 𝐺ଶ
at time 𝑇ଶ; (c) Historical graph.

IS is generated by detecting common subgraphs sequentially by time from the first graph data.
IS is generated for which the Common SubGraph Ratio (CSGR) of the historical graphs is larger than
the threshold value. The DS is generated to include subgraphs at each time that is not included in the
detected common subgraphs in the graph data up until the time generated by the IS and the generated
DS is connected to the corresponding IS. The proposed overall structure is constructed by iterating
the above process. Figure 2 shows the flow chart to generate the overall snapshot. We calculate a
CSGR between consecutive graphs to generate 𝐼𝑆௜. That is, we calculate 𝐶𝑆𝐺𝑅௜௡ between 𝐼𝑆௜ and the
next time graph 𝐺௡. 𝐶𝑆𝐺𝑅௜௡ is calculated by Equation (1), where |𝐺௡| is the number of edges for 𝐺௡
and |𝐼𝑆௜ ∩ 𝐺௡| is the number of common edges between 𝐼𝑆௜ and 𝐺௡ . If 𝐶𝑆𝐺𝑅௜௡ is larger than the
threshold ε, the 𝐼𝑆௜ is changed. After updating 𝐼𝑆௜ , the comparison with the next time graph is

Figure 1. Proposed historical graph management structure: (a) Graph G1 at time T1; (b) Graph G2 at
time T2; (c) Historical graph.

IS is generated by detecting common subgraphs sequentially by time from the first graph data. IS
is generated for which the Common SubGraph Ratio (CSGR) of the historical graphs is larger than the
threshold value. The DS is generated to include subgraphs at each time that is not included in the
detected common subgraphs in the graph data up until the time generated by the IS and the generated
DS is connected to the corresponding IS. The proposed overall structure is constructed by iterating the
above process. Figure 2 shows the flow chart to generate the overall snapshot. We calculate a CSGR
between consecutive graphs to generate ISi. That is, we calculate CSGRin between ISi and the next
time graph Gn. CSGRin is calculated by Equation (1), where |Gn| is the number of edges for Gn and
|ISi ∩ Gn| is the number of common edges between ISi and Gn. If CSGRin is larger than the threshold ε,
the ISi is changed. After updating ISi, the comparison with the next time graph is performed iteratively

Electronics 2020, 9, 895 7 of 21

to change the ISi. If CSGRin between ISi and new graph Gn is smaller than ε, ISi is generated as the IS,
and the corresponding DSn are generated as the IS from Gn for k historical graphs.

CSGRin =
|ISi ∩ Gn|

|Gn|
. (1)

Electronics 2020, 9, x FOR PEER REVIEW 7 of 20

Figure 2. The process of generating the overall snapshot.

𝐶𝑆𝐺𝑅௜௡ ൌ |𝐼𝑆௜ ∩ 𝐺௡||𝐺௡| (1)

3.2. Intersection Snapshot

Dynamic graphs are likely to have partial changes over time rather than changes to the entire
graph, and the subgraphs without changes will be duplicated over time. The common subgraphs
waste storage space in an integrated graph requires ISs. The ISs are individually stored to reduce
storage space and search performance. The IS only stores common subgraphs within a time interval
in contrast with snapshots in existing schemes. Since the generated IS does not store common
subgraphs, it can minimize the waste of storage space. Each 𝐼𝑆௜ stores ൏ 𝑇𝐼௜, 𝑁𝑆௜, 𝐶𝑆𝐺௜ ൐. Here, 𝑇𝐼௜ is
a time interval ሾ𝑆𝑇௜, 𝐸𝑇௜ሿ of 𝐼𝑆௜, where 𝑆𝑇௜ and 𝐸𝑇௜ are the first changed time and last changed time
of graph 𝐺௡ connected to 𝐼𝑆௜. Equations (2) and (3) are 𝑆𝑇௜ and 𝐸𝑇௜, where 𝑇ሺ𝐺௡ሻ is a changed time
of 𝐺௡ [29]. 𝑁𝑆௜ is a the number of historical graphs connected to 𝐼𝑆௜ and 𝐶𝑆𝐺௜ is common subgraphs
contained in 𝐼𝑆௜. If a graph 𝐺௡ is a first graph connected in 𝐼𝑆௜, 𝐶𝑆𝐺௜ is calculated by Equation (4)
similar to [17], where ′ ∩ ′ is an intersection operation that stores common subgraph of graphs. 𝑆𝑇௜ ൌ 𝑀𝑖𝑛௡ ୀ ௝௝ ା ேௌ೔ ି ଵ𝑇ሺ𝐺௡ሻ (2) 𝐸𝑇௜ ൌ 𝑀𝑎𝑥௡ ୀ ௝௝ ା ேௌ೔ ି ଵ𝑇ሺ𝐺௡ሻ (3) 𝐶𝑆𝐺௜ ൌ ∩௝ ୀ ଵ௝ ା ேௌ೔ ି ଵ 𝐺௝ (4)

To generate the IS, the common subgraphs in the graphs over time are sequentially detected.
When there are 𝑘 consecutive graphs, the common subgraphs and the change histories are analyzed
by time. If a CSGR is lower than a threshold value after analysis, the IS for 𝑘 historical graphs is
generated. Otherwise, the CSGR for the next historical graph is calculated. We continuously compare
the consecutive graphs, and the Common SubGraph (CSG) and Provenance Information (PI) is stored
in a Graph Pattern Table (GPT) over time. The CSG stores common edges among consecutive graphs.
In dynamic graphs, vertices and edges are inserted and deleted over time. Originally, provenance are
metadata that represent the source information or changing history of data [34–36]. The provenance
can be used to track the data changes and usage histories. The proposed scheme should detect the
changed subgraph over the time to detect the CSG. Therefore, the proposed scheme uses the
provenance to track the update operation of graphs over time. The PI stores the changed information

Figure 2. The process of generating the overall snapshot.

3.2. Intersection Snapshot

Dynamic graphs are likely to have partial changes over time rather than changes to the entire
graph, and the subgraphs without changes will be duplicated over time. The common subgraphs
waste storage space in an integrated graph requires ISs. The ISs are individually stored to reduce
storage space and search performance. The IS only stores common subgraphs within a time interval in
contrast with snapshots in existing schemes. Since the generated IS does not store common subgraphs,
it can minimize the waste of storage space. Each ISi. stores 〈TIi, NSi, CSGi〉. Here, TIi is a time interval
[STi, ETi] of ISi, where STi and ETi are the first changed time and last changed time of graph Gn

connected to ISi. Equations (2) and (3) are STi and ETi, where T(Gn) is a changed time of Gn [29]. NSi
is a the number of historical graphs connected to ISi and CSGi is common subgraphs contained in ISi.
If a graph Gn is a first graph connected in ISi, CSGi is calculated by Equation (4) similar to [17], where
‘∩’ is an intersection operation that stores common subgraph of graphs.

STi = Min j+NSi−1
n= j T(Gn) (2)

ETi = Max j+NSi−1
n= j T(Gn) (3)

CSGi = ∩
j+NSi−1
j=1 G j (4)

To generate the IS, the common subgraphs in the graphs over time are sequentially detected.
When there are k consecutive graphs, the common subgraphs and the change histories are analyzed
by time. If a CSGR is lower than a threshold value after analysis, the IS for k historical graphs is
generated. Otherwise, the CSGR for the next historical graph is calculated. We continuously compare

Electronics 2020, 9, 895 8 of 21

the consecutive graphs, and the Common SubGraph (CSG) and Provenance Information (PI) is stored
in a Graph Pattern Table (GPT) over time. The CSG stores common edges among consecutive graphs.
In dynamic graphs, vertices and edges are inserted and deleted over time. Originally, provenance are
metadata that represent the source information or changing history of data [34–36]. The provenance can
be used to track the data changes and usage histories. The proposed scheme should detect the changed
subgraph over the time to detect the CSG. Therefore, the proposed scheme uses the provenance to track
the update operation of graphs over time. The PI stores the changed information of the current graph
through comparison with the previous graph by simplifying the original provenance representation.
In PI, each changed information UI j is represented by

(
OP j, OB j, T j

)
, where OP j is a update operation

such as insert (I) and delete (D), OB j is a changed object such as vertex and edge, and T j is a changed
time of OB j.

Figure 3 shows the generation procedure of IS. Let us assume that there are three graphs that
changed from T1 to T3. Table 1 shows a GPT from T1 to T3. Since the graph G1 is a start graph, the
common edges is itself. The graph G2 has five common edges with G1 and is changed by the four
update operations compared to G1. Similarly, G3 has five common edges and is changed by the six
update operations compared to G2. If the CSGR of G4 is lower than a threshold value, we generate IS1

as shown in Figure 3d.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 20

of the current graph through comparison with the previous graph by simplifying the original
provenance representation. In PI, each changed information 𝑈𝐼௝ is represented by ሺ𝑂𝑃𝑗, 𝑂𝐵𝑗, 𝑇𝑗ሻ ,
where 𝑂𝑃௝ is a update operation such as insert (𝐼) and delete (𝐷), 𝑂𝐵௝ is a changed object such as
vertex and edge, and 𝑇௝ is a changed time of 𝑂𝐵௝.

Figure 3 shows the generation procedure of IS. Let us assume that there are three graphs that
changed from 𝑇ଵ to 𝑇ଷ. Table 1 shows a GPT from 𝑇ଵ to 𝑇ଷ. Since the graph 𝐺ଵ is a start graph, the
common edges is itself. The graph 𝐺ଶ has five common edges with 𝐺ଵ and is changed by the four
update operations compared to 𝐺ଵ. Similarly, 𝐺ଷ has five common edges and is changed by the six
update operations compared to 𝐺ଶ. If the CSGR of 𝐺ସ is lower than a threshold value, we generate 𝐼𝑆ଵ as shown in Figure 3d.

(a) (b)

(c) (d)

Figure 3. Generation of an Intersection Snapshot (IS): (a) 𝐺ଵ at time 𝑇ଵ; (b) 𝐺ଶ at time 𝑇ଶ; (c) 𝐺ଷ at
time 𝑇ଷ; (d) IS.

Table 1. Graph pattern table. PI: Provenance Information.

Graph CSG PI 𝐺ଵ ሼ𝑒ଵଶ, 𝑒ଵଷ, 𝑒ଶସ, 𝑒ଶହ, 𝑒ହଷ, 𝑒଺ଶሽ 𝑁𝑢𝑙𝑙 𝐺ଶ ሼ𝑒ଵଶ, 𝑒ଵଷ, 𝑒ଶସ, 𝑒ଶହ, 𝑒଺ଶሽ ሼሺ𝐼, 𝑒ଶଵ, 𝑇ଶሻ, ሺ𝐼, 𝑒ସ଺, 𝑇ଶሻ, ሺ𝐷, 𝑒ହଷ, 𝑇ଶሻ, ሺ𝐼, 𝑒ହ଺, 𝑇ଶሻሽ 𝐺ଷ ሼ𝑒ଵଶ, 𝑒ଵଷ, 𝑒ଶସ, 𝑒ଶହ, 𝑒଺ଶሽ ሼሺ𝐼, 𝑒ଷ଻, 𝑇ଷሻ, ሺ𝐷, 𝑒ସ଺, 𝑇ଷሻ, ሺ𝐷, 𝑒ହ଺, 𝑇ଷሻ, ሺ𝐼, 𝑣଻, 𝑇ଷሻ, ሺ𝐼, 𝑒ଵ଻, 𝑇ଷሻ, ሺ𝐼, 𝑒଺ଵ, 𝑇ଷሻሽ

3.3. Delta Snapshot

If 𝑘 historical graphs are stored separately during generating IS, it requires a lot of storage space
and search cost. The proposed scheme manages 𝑘 historical graphs as a provenance graph with the
PI to support a historical search. However, dynamic graphs are continuously changed, and then the
size of the provenance graph is continuously increased. Therefore, we generate a DS that stores the
subgraphs that are not contained in the IS for the 𝑘 historical graph and each 𝐷𝑆𝑛 is connect to the
corresponding 𝐼𝑆𝑖. 𝐷𝑆𝑛 of a graph 𝐺𝑛 manages ሺ𝑇𝑛, 𝑆𝐺𝑛ሻ, where 𝑇௡ is a changed time of 𝐺𝑛 and 𝑆𝐺௡
is a subgraph of 𝐺𝑛 that is not contained in 𝐼𝑆𝑖. The provenance graph stores the original graph as
well as the changing history. Since 𝐼𝑆𝑖 stores a common subgraph 𝐶𝑆𝐺௜ , we first remove 𝐶𝑆𝐺௜
included in 𝐼𝑆𝑖 from the provenance graph to generate 𝐷𝑆𝑛. If 𝐺𝑗 is the first graph connected in 𝐼𝑆𝑖, 𝐷𝑆𝑛 is generated by removing all the changed histories. If 𝐺𝑛 is not the first graph connected to 𝐼𝑆𝑖,

Figure 3. Generation of an Intersection Snapshot (IS): (a) G1 at time T1; (b) G2 at time T2; (c) G3 at time
T3; (d) IS.

Table 1. Graph pattern table. PI: Provenance Information.

Graph CSG PI

G1 {e12, e13, e24, e25, e53, e62} Null
G2 {e12, e13, e24, e25, e62}

{
(I, e21, T2), (I, e46, T2), (D, e53, T2), (I, e56, T2)

}
G3 {e12, e13, e24, e25, e62}

{
(I, e37, T3), (D, e46, T3), (D, e56, T3), (I, v7, T3), (I, e17, T3), (I, e61, T3)

}
3.3. Delta Snapshot

If k historical graphs are stored separately during generating IS, it requires a lot of storage space
and search cost. The proposed scheme manages k historical graphs as a provenance graph with the
PI to support a historical search. However, dynamic graphs are continuously changed, and then the

Electronics 2020, 9, 895 9 of 21

size of the provenance graph is continuously increased. Therefore, we generate a DS that stores the
subgraphs that are not contained in the IS for the k historical graph and each DSn is connect to the
corresponding ISi. DSn of a graph Gn manages (Tn, SGn), where Tn is a changed time of Gn and SGn is
a subgraph of Gn that is not contained in ISi. The provenance graph stores the original graph as well as
the changing history. Since ISi stores a common subgraph CSGi, we first remove CSGi included in ISi
from the provenance graph to generate DSn. If G j is the first graph connected in ISi, DSn is generated
by removing all the changed histories. If Gn is not the first graph connected to ISi, DSn is generated
by reflecting the changing history information. SGn is calculated by Equation (5) similar to [29,30],
where PGi is a provenance graph, PIn is the provenance information of SGn, ‘−’ is an operation that
removes certain subgraphs or withdraws update operations, and ‘+’ is an operation that reflects the
update operations.

SGn =


PGi −CSGi −

n+k−1∑
n= j

PIn , i f SGn is the f irst graph connected to IS j

SGn+1 + PIn , otherwise
(5)

Figure 4 shows the generation procedure of DS. Figure 4a is the provenance graph expressed
using the PI shown in Table 1. To generate the DSn of Gn, we first remove a common subgraph
{e12, e13, e24, e25, e62}, as shown in Figure 4b. Since G1 is the first graph connected to IS1, DS1 is generated
by removing all PIs, as shown in Figure 4c. Since G2 has performed the four update operations on G1,
DS2 is generated by reflecting the update operations as shown in Figure 4d. DS3 is also generated by
reflecting the update operations of G3, as shown in Figure 4e.

If the out-going vertex in the stored subgraph is the same as the out-going vertex in the IS, they
are connected via the offset information in the table. The connected DS includes additional information
about each graph that is not duplicated in the IS. Its internal structure is similar to that of the IS. It has
out-going and in-coming vertex tables and time information. The out-going vertex table maintains all
out-going vertices in the edge, and the in-coming vertex table has the in-coming vertex information of
the added edges. The in-coming vertex of an edge in the IS has the location information of the common
graph data using the number of vertices connected to the offset in the in-coming vertex table of an IS.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 20

corresponding 𝐼𝑆𝑖 . 𝐷𝑆𝑛 of a graph 𝐺𝑛 manages ሺ𝑇𝑛, 𝑆𝐺𝑛ሻ, where 𝑇௡ is a changed time of 𝐺𝑛 and 𝑆𝐺௡ is a subgraph of 𝐺𝑛 that is not contained in 𝐼𝑆𝑖. The provenance graph stores the original graph
as well as the changing history. Since 𝐼𝑆𝑖 stores a common subgraph 𝐶𝑆𝐺௜ , we first remove 𝐶𝑆𝐺௜
included in 𝐼𝑆𝑖 from the provenance graph to generate 𝐷𝑆𝑛. If 𝐺𝑗 is the first graph connected in 𝐼𝑆𝑖, 𝐷𝑆𝑛 is generated by removing all the changed histories. If 𝐺𝑛 is not the first graph connected to 𝐼𝑆𝑖, 𝐷𝑆𝑛 is generated by reflecting the changing history information. 𝑆𝐺௡ is calculated by Equation (5)
similar to [29,30], where 𝑃𝐺௜ is a provenance graph, 𝑃𝐼௡ is the provenance information of 𝑆𝐺௡, ‘ − ’
is an operation that removes certain subgraphs or withdraws update operations, and ‘ + ’ is an
operation that reflects the update operations.

𝑆𝐺௡ ൌ ൞𝑃𝐺௜ െ 𝐶𝑆𝐺௜ െ ෍ 𝑃𝐼௡௡ ା ௞ ି ଵ
௡ ୀ ௝ , 𝑖𝑓 𝑆𝐺௡ 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑔𝑟𝑎𝑝ℎ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝐼𝑆௝𝑆𝐺௡ ା ଵ ൅ 𝑃𝐼௡ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5)

Figure 4 shows the generation procedure of DS. Figure 4a is the provenance graph expressed
using the PI shown in Table 1. To generate the 𝐷𝑆௡ of 𝐺௡ , we first remove a common subgraph {𝑒ଵଶ, 𝑒ଵଷ, 𝑒ଶସ, 𝑒ଶହ, 𝑒଺ଶ} , as shown in Figure 4b. Since 𝐺ଵ is the first graph connected to 𝐼𝑆ଵ , 𝐷𝑆ଵ is
generated by removing all PIs, as shown in Figure 4c. Since 𝐺ଶ has performed the four update
operations on 𝐺ଵ, 𝐷𝑆ଶ is generated by reflecting the update operations as shown in Figure 4d. 𝐷𝑆ଷ
is also generated by reflecting the update operations of 𝐺ଷ, as shown in Figure 4e.

(a)

(b)

Figure 4. Cont.

Electronics 2020, 9, 895 10 of 21Electronics 2020, 9, x FOR PEER REVIEW 10 of 20

(c) (d)

(e)

Figure 4. Generation of Delta Snapshot (DS): (a) Provenance graph; (b) Removing Common SubGraph
(CSG); (c) 𝐷𝑆ଵ; (d) 𝐷𝑆ଶ; (e) 𝐷𝑆ଷ.

If the out-going vertex in the stored subgraph is the same as the out-going vertex in the IS, they
are connected via the offset information in the table. The connected DS includes additional
information about each graph that is not duplicated in the IS. Its internal structure is similar to that
of the IS. It has out-going and in-coming vertex tables and time information. The out-going vertex
table maintains all out-going vertices in the edge, and the in-coming vertex table has the in-coming
vertex information of the added edges. The in-coming vertex of an edge in the IS has the location
information of the common graph data using the number of vertices connected to the offset in the in-
coming vertex table of an IS.

3.4. Graph Representation

Generally, the existence of edges that connect vertices is represented by a sparse matrix in graph
data. However, if graph data are represented by a sparse matrix, it requires a matrix size that includes
the total number of vertices. Furthermore, most values in a matrix whose edges do not exist are
represented by zero. Thus, the CSR is used to store the sparse matrix representation of graph data
more efficiently [37]. CSR representation does not represent an unnecessary matrix whose edges are
not present but connects only existing data according to the order of rows. The proposed scheme
modifies the CSR method to connect snapshots. Figure 5a shows the representation of a dynamic
graph through a sparse matrix. Most values in the matrix are filled with zero, which represents
unnecessarily data. Figure 5b shows the sparse matrix at times 𝑇ଵ and 𝑇ଶ using the CSR
representation technique. Each row is represented in the Row Pointer Array (RPA), which indicates
a position in the Column Indices Array (CIA). The RPA represents a sparse matrix with location
information about the row in which the data actually exist. The space efficiency can be increased by
not representing unnecessary space as described above.

Figure 4. Generation of Delta Snapshot (DS): (a) Provenance graph; (b) Removing Common SubGraph
(CSG); (c) DS1; (d) DS2; (e) DS3.

3.4. Graph Representation

Generally, the existence of edges that connect vertices is represented by a sparse matrix in graph
data. However, if graph data are represented by a sparse matrix, it requires a matrix size that includes
the total number of vertices. Furthermore, most values in a matrix whose edges do not exist are
represented by zero. Thus, the CSR is used to store the sparse matrix representation of graph data more
efficiently [37]. CSR representation does not represent an unnecessary matrix whose edges are not
present but connects only existing data according to the order of rows. The proposed scheme modifies
the CSR method to connect snapshots. Figure 5a shows the representation of a dynamic graph through
a sparse matrix. Most values in the matrix are filled with zero, which represents unnecessarily data.
Figure 5b shows the sparse matrix at times T1 and T2 using the CSR representation technique. Each
row is represented in the Row Pointer Array (RPA), which indicates a position in the Column Indices
Array (CIA). The RPA represents a sparse matrix with location information about the row in which the
data actually exist. The space efficiency can be increased by not representing unnecessary space as
described above.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 20

(e)

Figure 4. Generation of Delta Snapshot (DS): (a) Provenance graph; (b) Removing Common SubGraph
(CSG); (c) 𝐷𝑆ଵ; (d) 𝐷𝑆ଶ; (e) 𝐷𝑆ଷ.

If the out-going vertex in the stored subgraph is the same as the out-going vertex in the IS, they
are connected via the offset information in the table. The connected DS includes additional
information about each graph that is not duplicated in the IS. Its internal structure is similar to that
of the IS. It has out-going and in-coming vertex tables and time information. The out-going vertex
table maintains all out-going vertices in the edge, and the in-coming vertex table has the in-coming
vertex information of the added edges. The in-coming vertex of an edge in the IS has the location
information of the common graph data using the number of vertices connected to the offset in the in-
coming vertex table of an IS.

3.4. Graph Representation

Generally, the existence of edges that connect vertices is represented by a sparse matrix in graph
data. However, if graph data are represented by a sparse matrix, it requires a matrix size that includes
the total number of vertices. Furthermore, most values in a matrix whose edges do not exist are
represented by zero. Thus, the CSR is used to store the sparse matrix representation of graph data
more efficiently [37]. CSR representation does not represent an unnecessary matrix whose edges are
not present but connects only existing data according to the order of rows. The proposed scheme
modifies the CSR method to connect snapshots. Figure 5a shows the representation of a dynamic
graph through a sparse matrix. Most values in the matrix are filled with zero, which represents
unnecessarily data. Figure 5b shows the sparse matrix at times 𝑇ଵ and 𝑇ଶ using the CSR
representation technique. Each row is represented in the Row Pointer Array (RPA), which indicates
a position in the Column Indices Array (CIA). The RPA represents a sparse matrix with location
information about the row in which the data actually exist. The space efficiency can be increased by
not representing unnecessary space as described above.

(a) (b)

Figure 5. Compressed Sparse Row (CSR): (a) Sparse matrix representation for dynamic graphs; (b)
Existing CSR representation.

The existing CSR representation technique has the drawback that it represents all common
subgraphs in the dynamic environment. The proposed scheme represents graph data inside each
snapshot by modifying the CSR representation method. The proposed scheme modifies the CSR

Figure 5. Compressed Sparse Row (CSR): (a) Sparse matrix representation for dynamic graphs;
(b) Existing CSR representation.

The existing CSR representation technique has the drawback that it represents all common
subgraphs in the dynamic environment. The proposed scheme represents graph data inside each
snapshot by modifying the CSR representation method. The proposed scheme modifies the CSR
technique to reduce the amount of information in graph data that is duplicated in the dynamic
environment and connects common subgraphs with hierarchical snapshots. Figure 6 shows a sparse

Electronics 2020, 9, 895 11 of 21

matrix using the modified CSR technique. Common subgraphs are represented as IS1 and graph data
except for the common subgraph are presented in DS1 and DS2. The CIA is modified to connect IS1

and DS1, DS2, and the common subgraphs are connected by storing an offset in the CIA of IS1 inside
the lower end of DS1 and DS2.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 20

technique to reduce the amount of information in graph data that is duplicated in the dynamic
environment and connects common subgraphs with hierarchical snapshots. Figure 6 shows a sparse
matrix using the modified CSR technique. Common subgraphs are represented as 𝐼𝑆ଵ and graph data
except for the common subgraph are presented in 𝐷𝑆ଵ and 𝐷𝑆ଶ. The CIA is modified to connect 𝐼𝑆ଵ
and 𝐷𝑆ଵ, 𝐷𝑆ଶ, and the common subgraphs are connected by storing an offset in the CIA of 𝐼𝑆ଵ inside
the lower end of 𝐷𝑆ଵ and 𝐷𝑆ଶ.

Figure 6. Modified compressed sparse row.

The proposed scheme can represent the information of vertices and edges in the internal
structure of a snapshot. Figure 7 shows a sparse matrix that represents a single graph. Each attribute
information of vertices and edges can be represented as shown in Figure 7. A large amount of
unnecessary space is consumed to represent the graph data. Figure 8 shows the sparse matrix in
Figure 7 represented using the modified CSR technique. In Figure 8, the ID of each vertex in the
sparse matrix and the Edge Weights (EWs) that depart from vertices are represented by single
intersection and DSs. The actual data in the database can be traced by utilizing ID 1124 of vertex 𝑣ଵ,
and various sizes of information can be stored by utilizing the key-value type storage structure if
more varied data are preferred to be inserted, as shown in the weight 0.1 of edge 𝑒ଵଶ that is connected
to the vertex.

Figure 7. Representation of graph data using a sparse matrix.

Figure 6. Modified compressed sparse row.

The proposed scheme can represent the information of vertices and edges in the internal structure
of a snapshot. Figure 7 shows a sparse matrix that represents a single graph. Each attribute information
of vertices and edges can be represented as shown in Figure 7. A large amount of unnecessary space
is consumed to represent the graph data. Figure 8 shows the sparse matrix in Figure 7 represented
using the modified CSR technique. In Figure 8, the ID of each vertex in the sparse matrix and the Edge
Weights (EWs) that depart from vertices are represented by single intersection and DSs. The actual
data in the database can be traced by utilizing ID 1124 of vertex v1, and various sizes of information
can be stored by utilizing the key-value type storage structure if more varied data are preferred to be
inserted, as shown in the weight 0.1 of edge e12 that is connected to the vertex.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 20

technique to reduce the amount of information in graph data that is duplicated in the dynamic
environment and connects common subgraphs with hierarchical snapshots. Figure 6 shows a sparse
matrix using the modified CSR technique. Common subgraphs are represented as 𝐼𝑆ଵ and graph data
except for the common subgraph are presented in 𝐷𝑆ଵ and 𝐷𝑆ଶ. The CIA is modified to connect 𝐼𝑆ଵ
and 𝐷𝑆ଵ, 𝐷𝑆ଶ, and the common subgraphs are connected by storing an offset in the CIA of 𝐼𝑆ଵ inside
the lower end of 𝐷𝑆ଵ and 𝐷𝑆ଶ.

Figure 6. Modified compressed sparse row.

The proposed scheme can represent the information of vertices and edges in the internal
structure of a snapshot. Figure 7 shows a sparse matrix that represents a single graph. Each attribute
information of vertices and edges can be represented as shown in Figure 7. A large amount of
unnecessary space is consumed to represent the graph data. Figure 8 shows the sparse matrix in
Figure 7 represented using the modified CSR technique. In Figure 8, the ID of each vertex in the
sparse matrix and the Edge Weights (EWs) that depart from vertices are represented by single
intersection and DSs. The actual data in the database can be traced by utilizing ID 1124 of vertex 𝑣ଵ,
and various sizes of information can be stored by utilizing the key-value type storage structure if
more varied data are preferred to be inserted, as shown in the weight 0.1 of edge 𝑒ଵଶ that is connected
to the vertex.

Figure 7. Representation of graph data using a sparse matrix. Figure 7. Representation of graph data using a sparse matrix.

Electronics 2020, 9, 895 12 of 21

Electronics 2020, 9, x FOR PEER REVIEW 12 of 20

Figure 8. Modified CSR representation.

3.5. Graph Search

The graph search in the proposed scheme is more efficient when searching for histories over a
certain period of time, since it manages common subgraphs in an integrated manner. For a graph
search, the corresponding IS is accessed to read common graphs and DSs in the lower end to access
overall graphs. Assuming that the 𝑖-th IS and 𝑛-th DS are represented by 𝐼𝑆௜ and 𝐷𝑆௡, a graph at
time 𝑇௡ can be expressed by Equation (6) similar to [17]. Here, ‘∪’ is a union operation to merge the
two graphs. 𝐺௡ ൌ 𝐼𝑆௜ ∪ 𝐷𝑆௡ (6)

It is an example that accesses 𝐺ଷ through the overall structure in Figure 9. First, whether 𝐷𝑆ଷ is
connected with 𝐼𝑆ଶ is verified. Once access to 𝐼𝑆ଶ connected to the DS at the corresponding time is
complete, 𝐷𝑆ଷ is accessed to access each vertex in the same manner as in the IS. Since there is no new
information about the creation of edges among edges connected to out-going vertex 𝑣ଵ in the DS,
offset (0, 2) of the in-coming vertex table of 𝐼𝑆ଶ that represents the information of edges connected
with 𝑣ଵ in the out-going vertex table of 𝐼𝑆ଶ is stored to read the common subgraphs. 𝐼𝑆ଶ refers to
the offset (0, 2) that points to the in-coming vertex table 𝑣ଶ and 𝑣ଷ connected to 𝑣ଵ in the out-going
vertex table to represent an edge that is a connection between two vertices. Offset 0 refers to the
location of the in-coming vertex table, and offset 2 refers to the number of in-coming vertices
connected to out-going vertex 𝑣ଵ. In the case of the next out-going vertex 𝑣ଶ of the DS, a new edge 𝑒ଶ଺ is generated. Thus, the in-coming vertex table pointed to by 𝑣ଶ represents 𝑣଺, which indicates
new connection information, and the remainder of the common information is indicated by the in-
coming vertex table offset of 𝐼𝑆ଶ and can be accessed. Finally, all information in the DS is read
through the above procedure to respond to the historical graph query at the corresponding time.

Figure 9. Historical graph search.

Figure 8. Modified CSR representation.

3.5. Graph Search

The graph search in the proposed scheme is more efficient when searching for histories over a
certain period of time, since it manages common subgraphs in an integrated manner. For a graph
search, the corresponding IS is accessed to read common graphs and DSs in the lower end to access
overall graphs. Assuming that the i-th IS and n-th DS are represented by ISi and DSn, a graph at
time Tn can be expressed by Equation (6) similar to [17]. Here, ‘∪ ’ is a union operation to merge the
two graphs.

Gn = ISi ∪ DSn (6)

It is an example that accesses G3 through the overall structure in Figure 9. First, whether DS3 is
connected with IS2 is verified. Once access to IS2 connected to the DS at the corresponding time is
complete, DS3 is accessed to access each vertex in the same manner as in the IS. Since there is no new
information about the creation of edges among edges connected to out-going vertex v1 in the DS, offset
(0, 2) of the in-coming vertex table of IS2 that represents the information of edges connected with v1

in the out-going vertex table of IS2 is stored to read the common subgraphs. IS2 refers to the offset
(0, 2) that points to the in-coming vertex table v2 and v3 connected to v1 in the out-going vertex table
to represent an edge that is a connection between two vertices. Offset 0 refers to the location of the
in-coming vertex table, and offset 2 refers to the number of in-coming vertices connected to out-going
vertex v1. In the case of the next out-going vertex v2 of the DS, a new edge e26 is generated. Thus, the
in-coming vertex table pointed to by v2 represents v6, which indicates new connection information,
and the remainder of the common information is indicated by the in-coming vertex table offset of IS2

and can be accessed. Finally, all information in the DS is read through the above procedure to respond
to the historical graph query at the corresponding time.

Electronics 2020, 9, 895 13 of 21

Electronics 2020, 9, x FOR PEER REVIEW 12 of 20

Figure 8. Modified CSR representation.

3.5. Graph Search

The graph search in the proposed scheme is more efficient when searching for histories over a
certain period of time, since it manages common subgraphs in an integrated manner. For a graph
search, the corresponding IS is accessed to read common graphs and DSs in the lower end to access
overall graphs. Assuming that the 𝑖-th IS and 𝑛-th DS are represented by 𝐼𝑆௜ and 𝐷𝑆௡, a graph at
time 𝑇௡ can be expressed by Equation (6) similar to [17]. Here, ‘∪’ is a union operation to merge the
two graphs. 𝐺௡ ൌ 𝐼𝑆௜ ∪ 𝐷𝑆௡ (6)

It is an example that accesses 𝐺ଷ through the overall structure in Figure 9. First, whether 𝐷𝑆ଷ is
connected with 𝐼𝑆ଶ is verified. Once access to 𝐼𝑆ଶ connected to the DS at the corresponding time is
complete, 𝐷𝑆ଷ is accessed to access each vertex in the same manner as in the IS. Since there is no new
information about the creation of edges among edges connected to out-going vertex 𝑣ଵ in the DS,
offset (0, 2) of the in-coming vertex table of 𝐼𝑆ଶ that represents the information of edges connected
with 𝑣ଵ in the out-going vertex table of 𝐼𝑆ଶ is stored to read the common subgraphs. 𝐼𝑆ଶ refers to
the offset (0, 2) that points to the in-coming vertex table 𝑣ଶ and 𝑣ଷ connected to 𝑣ଵ in the out-going
vertex table to represent an edge that is a connection between two vertices. Offset 0 refers to the
location of the in-coming vertex table, and offset 2 refers to the number of in-coming vertices
connected to out-going vertex 𝑣ଵ. In the case of the next out-going vertex 𝑣ଶ of the DS, a new edge 𝑒ଶ଺ is generated. Thus, the in-coming vertex table pointed to by 𝑣ଶ represents 𝑣଺, which indicates
new connection information, and the remainder of the common information is indicated by the in-
coming vertex table offset of 𝐼𝑆ଶ and can be accessed. Finally, all information in the DS is read
through the above procedure to respond to the historical graph query at the corresponding time.

Figure 9. Historical graph search. Figure 9. Historical graph search.

4. Performance Evaluation

4.1. Experimenral Results

The performance of the proposed scheme was verified by comparing the storage usage and
query processing times with those of existing schemes. Furthermore, threshold values were also
evaluated to determine which threshold showed the best efficiency. Version Graph and DeltaGraph
were used as existing comparison schemes in the performance experiment. The experiment was
conducted in an environment of Intel Core i5-4440 CPU 3.10 GHz with 8 GB memory. Two data sets
were used for the experiment evaluation. Dataset1 is graph data that represent the monthly change
in Internet service provider for 2004–2007 provided by Center for Applied Internet Data Analysis
(CAIDA) [38], and Dataset2 is the historical graph data [39] generated by citation information from USA
patents for 1975–1999 [40]. The data provided by CAIDA consist of approximately 25,000 vertices and
100,000 edges for temporal graphs. The citation information of USA patents consists of approximately
3,770,000 vertices and 16,510,000 edges. The history data in the citation information of USA patents
is static information that includes the overall citation information. Therefore, 122 historical graphs
are generated by partial modification to represent dynamic situations. The storage usage and query
response times were measured to evaluate the proposed scheme’s space efficiency and access speed.
The proposed scheme was evaluated according to the threshold for creating an IS to verify the optimum
space efficiency and compared with existing schemes for history graph retrieval.

Figure 10 compares the amount of storage space used by IS generation in the proposed scheme.
The proposed scheme uses the CSGR threshold value in the changed graph to generate IS. The candidate
threshold values were set to 0.5, 0.6, and 0.7 to generate the IS. If the CSGR threshold is small, the
size of the subgraph stored in the DS increases, although many ISs are not generated. Conversely,
large CSGR thresholds result in a large number of ISs being generated, and the size of the subgraphs
stored in the DS is reduced. Since Dataset1 does not have many vertices and edges that make up the
graph, there is not much change in the size of the storage space according to the CSGR threshold.
However, since Dataset2 contains many vertices and edges compared to Dataset1, there is a lot of
variation in storage space with changes in CSGR thresholds. Storage space usage was the highest when
the CSGR threshold was 0.7, although there were differences in relative performance depending on
data characteristics. The space efficiency was improved by up to 28% when using 0.6 of the threshold
compared to the other threshold values.

Electronics 2020, 9, 895 14 of 21
Electronics 2020, 9, x FOR PEER REVIEW 14 of 20

(a)

(b)

Figure 10. Storage usage according to the threshold: (a) Dataset1; (b) Dataset2.

The proposed scheme reduces the size of storage space using the modified CSR when managing
historical graphs through IS and DS. Performance evaluation is performed while changing the CSGR
threshold to check the size change of storage space according to the application of the modified CSR
technique. In Figure 10, when the CSGR threshold was set to 0.7, the relative performance
improvement resulting from the application of CSR was the best because storage space usage was
the highest. Similar to Figure 10, when the CSGR threshold was set to 0.6, the overall storage space
usage was the smallest. The space efficiency was improved by up to 51% when using modified CSR
compared to the proposed scheme without modified CSR, as shown in Figure 11. This result showed
that the amount of information is reduced by using modified CSR.

.

Figure 11. Storage usages using or without modified CSR.

Figure 10. Storage usage according to the threshold: (a) Dataset1; (b) Dataset2.

The proposed scheme reduces the size of storage space using the modified CSR when managing
historical graphs through IS and DS. Performance evaluation is performed while changing the CSGR
threshold to check the size change of storage space according to the application of the modified CSR
technique. In Figure 10, when the CSGR threshold was set to 0.7, the relative performance improvement
resulting from the application of CSR was the best because storage space usage was the highest.
Similar to Figure 10, when the CSGR threshold was set to 0.6, the overall storage space usage was the
smallest. The space efficiency was improved by up to 51% when using modified CSR compared to the
proposed scheme without modified CSR, as shown in Figure 11. This result showed that the amount of
information is reduced by using modified CSR.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 20

(b)

Figure 10. Storage usage according to the threshold: (a) Dataset1; (b) Dataset2.

The proposed scheme reduces the size of storage space using the modified CSR when managing
historical graphs through IS and DS. Performance evaluation is performed while changing the CSGR
threshold to check the size change of storage space according to the application of the modified CSR
technique. In Figure 10, when the CSGR threshold was set to 0.7, the relative performance
improvement resulting from the application of CSR was the best because storage space usage was
the highest. Similar to Figure 10, when the CSGR threshold was set to 0.6, the overall storage space
usage was the smallest. The space efficiency was improved by up to 51% when using modified CSR
compared to the proposed scheme without modified CSR, as shown in Figure 11. This result showed
that the amount of information is reduced by using modified CSR.

.

Figure 11. Storage usages using or without modified CSR.

Figure 12 shows the query processing time according to the CSGR threshold. Depending on the
CSGR threshold, the size of IS and DS was different. To examine the search efficiency for historical
graphs, the query processing time is compared, creating a graph storage structure according to CSGR
thresholds and changing the time range to search. Five query types were created to search for graphs
that exist within a specific time range for historical graphs that have changed on a monthly basis. As
a result of comparing query processing time while changing the time range of the graph to be
searched, the processing time increases relatively as the time range increases. When the query time
range was 7, the query processing time was the smallest, but the relative performance according to
the CSGR threshold was the largest. This indicates that IS and DS produced by CSGR thresholds have
a significant impact on performance when the time range to search is small. A large query time ranges
requires access to historical graphs existing in many time ranges, so the relative performance
differences between CSGR thresholds are not significant. The best performance was found at 0.6 of

Figure 11. Storage usages using or without modified CSR.

Electronics 2020, 9, 895 15 of 21

Figure 12 shows the query processing time according to the CSGR threshold. Depending on the
CSGR threshold, the size of IS and DS was different. To examine the search efficiency for historical
graphs, the query processing time is compared, creating a graph storage structure according to CSGR
thresholds and changing the time range to search. Five query types were created to search for graphs
that exist within a specific time range for historical graphs that have changed on a monthly basis.
As a result of comparing query processing time while changing the time range of the graph to be
searched, the processing time increases relatively as the time range increases. When the query time
range was 7, the query processing time was the smallest, but the relative performance according to
the CSGR threshold was the largest. This indicates that IS and DS produced by CSGR thresholds
have a significant impact on performance when the time range to search is small. A large query time
ranges requires access to historical graphs existing in many time ranges, so the relative performance
differences between CSGR thresholds are not significant. The best performance was found at 0.6 of the
threshold. A smaller CSGR threshold value increased the number of DSs connected to the IS, which
decreased the number of ISs. Since the number of ISs was small, the time required to access the ISs
was decreased, thereby showing better performance. Using a large threshold value generated a large
number of ISs thereby increasing the time required to access the ISs, leading to an increased query
processing time. It is necessary to select an appropriate threshold value that considers both space
efficiency and retrieval performance.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 20

the threshold. A smaller CSGR threshold value increased the number of DSs connected to the IS,
which decreased the number of ISs. Since the number of ISs was small, the time required to access
the ISs was decreased, thereby showing better performance. Using a large threshold value generated
a large number of ISs thereby increasing the time required to access the ISs, leading to an increased
query processing time. It is necessary to select an appropriate threshold value that considers both
space efficiency and retrieval performance.

Figure 12. Processing time according to threshold.

The proposed scheme is designed to increase the efficiency of history searches while reducing
the storage space on the history graph. In order to demonstrate the excellence of the proposed
scheme, we compare it with the existing scheme in terms of the size of storage space. Figure 13 shows
the storage space of the existing schemes and the proposed scheme. Since the efficiency of storage
space is best when the CSGR threshold is 0.6 in its own performance evaluation of the proposed
technique, the proposed technique in this experiment compared the size of the storage space with the
existing technique after setting the CSGR threshold to 0.6. Since the efficiency of storage space is the
best when the CSGR threshold is 0.6 in its own performance evaluation of the proposed scheme, we
compare it with the existing schemes in terms of the size of the storage space after setting the CSGR
threshold to 0.6. Since Dataset1 has relatively few vertices and edges that make up the graph
compared to Dataset2, the space for storing historical graphs is small compared to Dataset2. Version
Graph takes up the largest storage space because it stores information on all vertices and edges that
have changed over time. However, DeltaGraph and the proposed scheme take up a relatively small
amount of space because it stores only the changed information based on the baseline snapshot graph.
DeltaGraph uses the tree structure to manage the baseline snapshot graph and to manage the changes
made to the baseline snapshot graph as an event list. However, the proposed scheme uses less storage
space than DeltaGraph because IS is generated using CSGR, the ratio of common graphs that have
not changed over time, and only changes are stored in DS. In addition, the storage space is the
smallest because it compresses and stores graphs using CSR. The results of two experiments showed
that Version Graph maintained the structures of all graphs and the life information of all elements,
and approximately 80% of space waste was consumed compared to the proposed scheme. Since
DeltaGraph has to store a large amount of history data to track the history, it consumed
approximately 47% more space than that of the proposed scheme. The proposed scheme utilized
common subgraphs efficiently, which revealed a better performance than comparable schemes.

Figure 12. Processing time according to threshold.

The proposed scheme is designed to increase the efficiency of history searches while reducing the
storage space on the history graph. In order to demonstrate the excellence of the proposed scheme,
we compare it with the existing scheme in terms of the size of storage space. Figure 13 shows the
storage space of the existing schemes and the proposed scheme. Since the efficiency of storage space is
best when the CSGR threshold is 0.6 in its own performance evaluation of the proposed technique,
the proposed technique in this experiment compared the size of the storage space with the existing
technique after setting the CSGR threshold to 0.6. Since the efficiency of storage space is the best when
the CSGR threshold is 0.6 in its own performance evaluation of the proposed scheme, we compare it
with the existing schemes in terms of the size of the storage space after setting the CSGR threshold to
0.6. Since Dataset1 has relatively few vertices and edges that make up the graph compared to Dataset2,
the space for storing historical graphs is small compared to Dataset2. Version Graph takes up the
largest storage space because it stores information on all vertices and edges that have changed over
time. However, DeltaGraph and the proposed scheme take up a relatively small amount of space

Electronics 2020, 9, 895 16 of 21

because it stores only the changed information based on the baseline snapshot graph. DeltaGraph
uses the tree structure to manage the baseline snapshot graph and to manage the changes made to the
baseline snapshot graph as an event list. However, the proposed scheme uses less storage space than
DeltaGraph because IS is generated using CSGR, the ratio of common graphs that have not changed
over time, and only changes are stored in DS. In addition, the storage space is the smallest because it
compresses and stores graphs using CSR. The results of two experiments showed that Version Graph
maintained the structures of all graphs and the life information of all elements, and approximately 80%
of space waste was consumed compared to the proposed scheme. Since DeltaGraph has to store a
large amount of history data to track the history, it consumed approximately 47% more space than that
of the proposed scheme. The proposed scheme utilized common subgraphs efficiently, which revealed
a better performance than comparable schemes.

Electronics 2020, 9, x FOR PEER REVIEW 16 of 20

(a)

(b)

Figure 13. Storage usage comparison: (a) Dataset1; (b) Dataset2.

Historical graphs should maintain changed graphs from the past to the present and be able to
search past graphs. Figure 14 shows the query processing time of the proposed scheme and the
existing schemes. To evaluate the search efficiency for historical graphs, the proposed scheme sets
the CSGR threshold to 0.6 and compares the query processing time with the existing schemes. Five
query types were created to search for graphs that exist within a specific time range for historical
graphs that have changed on a monthly basis. Since Version Graph stores information about all
vertices and edges that have changed over time, many vertices and edges should be compared even
if the search time range is small. Therefore, Version Graph takes more query processing time than
DeltaGraph and the proposed scheme, even if the search time range is small, but even if the search
time range is changed, the query processing time does not change much. Since DeltaGraph stores
historical graphs in a tree structure, the query processing time is the fastest when the search time
range is small. However, DeltaGraph creates a graph by comparing the list of events stored on the
leaf node based on a snapshot, so the query processing time decreases significantly as the search time
range increases. The proposed scheme stores unchanged common subgraphs on the changed graph
in IS and only actual modified subgraphs in DS. Therefore, because a baseline snapshot is created
based on the ratio of changes in the graph, smaller search time ranges take relatively more time to
process queries than DeltaGraph, but as search time increases, there is less time to process queries
than the existing schemes. The performance evaluation showed that DeltaGraph had the best
performance if the search time range was small, but Version Graph showed the best performance as
the time range increased. The proposed scheme has lower query processing performance than

Figure 13. Storage usage comparison: (a) Dataset1; (b) Dataset2.

Historical graphs should maintain changed graphs from the past to the present and be able to
search past graphs. Figure 14 shows the query processing time of the proposed scheme and the existing
schemes. To evaluate the search efficiency for historical graphs, the proposed scheme sets the CSGR
threshold to 0.6 and compares the query processing time with the existing schemes. Five query types
were created to search for graphs that exist within a specific time range for historical graphs that have
changed on a monthly basis. Since Version Graph stores information about all vertices and edges that

Electronics 2020, 9, 895 17 of 21

have changed over time, many vertices and edges should be compared even if the search time range is
small. Therefore, Version Graph takes more query processing time than DeltaGraph and the proposed
scheme, even if the search time range is small, but even if the search time range is changed, the query
processing time does not change much. Since DeltaGraph stores historical graphs in a tree structure,
the query processing time is the fastest when the search time range is small. However, DeltaGraph
creates a graph by comparing the list of events stored on the leaf node based on a snapshot, so the query
processing time decreases significantly as the search time range increases. The proposed scheme stores
unchanged common subgraphs on the changed graph in IS and only actual modified subgraphs in DS.
Therefore, because a baseline snapshot is created based on the ratio of changes in the graph, smaller
search time ranges take relatively more time to process queries than DeltaGraph, but as search time
increases, there is less time to process queries than the existing schemes. The performance evaluation
showed that DeltaGraph had the best performance if the search time range was small, but Version
Graph showed the best performance as the time range increased. The proposed scheme has lower
query processing performance than DeltaGraph if the time range to search is small, but as the time
range increases, it shows better performance than the existing schemes. This is because the proposed
scheme manages common subgraphs using the change rate of the graph, so it does not take much time
to search for the changed subgraph.

Electronics 2020, 9, x FOR PEER REVIEW 17 of 20

DeltaGraph if the time range to search is small, but as the time range increases, it shows better
performance than the existing schemes. This is because the proposed scheme manages common
subgraphs using the change rate of the graph, so it does not take much time to search for the changed
subgraph.

Figure 14. Query processing time according to the query range.

4.2. Discussion

Various historical graph management schemes have been proposed to track and manage the
history of changes in dynamic graphs with continuous changes. The typical historical graph
management schemes are Version Graph and DeltaGraph. We analyze and compare the existing
schemes and the proposed scheme in terms of storage space and query processing time. Version
Graph records lifespan information to determine the existence of vertices and edges at a specific time
to maintain the structure of all graphs that have changed in the past. The lifespan is expressed as the
time interval in which vertices and edges exists. Therefore, the size of the Version Graph can continue
to increase if the graph changes a lot, and the lifespan information stored on the graph takes up a lot
of space, especially if insertion and deletion are repeated. DeltaGraph manages the history of changes
in graph over time in a tree structure. The leaf nodes in the tree structure store the changes by time
zone based on specific snapshot graphs as events. The proposed scheme manages changes made in
chronological order through the provenance model and generates IS using CSGR when many
changes in the graph occur. Therefore, the proposed scheme creates IS if there are many changes to
the graph and stores only the changed subgraphs in the DS. It also reduces historical graph storage
space by compressing and storing graphs through the modified CSR technique. As a result of the
performance evaluation, DeltaGraph uses less storage space than Version Graph because it stores
only the changed event lists based on the baseline snapshot. The proposed scheme uses the smallest
space because it not only reduces the number of subgraphs that are duplicated through CSGR but
also compresses the graph through the modified CSR.

Historical graphs should be able to store graph history changes and search for graphs that have
changed from the past to the present. Version Graph expresses the changes in the subgraphs in a
hierarchical structure and searches for graph changes over time using SCC. However, since it
represents changes in the overall graph as a single integrated model, searching for a graph that exists
at a specific time takes a lot of query processing time because it checks the lifespan for the entire
graph. DeltaGraph searches the baseline snapshot graph through the tree structure, sequentially
approaches the leaf nodes, and generates the graph using the event list. Therefore, since DeltaGraph
provides quick access to a baseline snapshot graph through a hierarchical structure, it has the best
query processing performance when the time range to search is small. However, DeltaGraph creates

Figure 14. Query processing time according to the query range.

4.2. Discussion

Various historical graph management schemes have been proposed to track and manage the history
of changes in dynamic graphs with continuous changes. The typical historical graph management
schemes are Version Graph and DeltaGraph. We analyze and compare the existing schemes and the
proposed scheme in terms of storage space and query processing time. Version Graph records lifespan
information to determine the existence of vertices and edges at a specific time to maintain the structure
of all graphs that have changed in the past. The lifespan is expressed as the time interval in which
vertices and edges exists. Therefore, the size of the Version Graph can continue to increase if the graph
changes a lot, and the lifespan information stored on the graph takes up a lot of space, especially if
insertion and deletion are repeated. DeltaGraph manages the history of changes in graph over time in
a tree structure. The leaf nodes in the tree structure store the changes by time zone based on specific
snapshot graphs as events. The proposed scheme manages changes made in chronological order
through the provenance model and generates IS using CSGR when many changes in the graph occur.
Therefore, the proposed scheme creates IS if there are many changes to the graph and stores only the

Electronics 2020, 9, 895 18 of 21

changed subgraphs in the DS. It also reduces historical graph storage space by compressing and storing
graphs through the modified CSR technique. As a result of the performance evaluation, DeltaGraph
uses less storage space than Version Graph because it stores only the changed event lists based on
the baseline snapshot. The proposed scheme uses the smallest space because it not only reduces the
number of subgraphs that are duplicated through CSGR but also compresses the graph through the
modified CSR.

Historical graphs should be able to store graph history changes and search for graphs that have
changed from the past to the present. Version Graph expresses the changes in the subgraphs in a
hierarchical structure and searches for graph changes over time using SCC. However, since it represents
changes in the overall graph as a single integrated model, searching for a graph that exists at a specific
time takes a lot of query processing time because it checks the lifespan for the entire graph. DeltaGraph
searches the baseline snapshot graph through the tree structure, sequentially approaches the leaf nodes,
and generates the graph using the event list. Therefore, since DeltaGraph provides quick access to a
baseline snapshot graph through a hierarchical structure, it has the best query processing performance
when the time range to search is small. However, DeltaGraph creates a graph while traversing the
event list stored on the leaf node based on the baseline snapshot graph, so as the time range to search
increases, the query processing performance decreases significantly. The proposed scheme can store
common subgraphs in IS, store changed subgraphs in DS, and connect IS and DS to search history
subgraphs. Since the proposed scheme does not have a baseline snapshot structure such as DeltaGraph,
smaller time ranges to search result in lower query processing performance than DeltaGraph. However,
since the proposed scheme creates IS by taking account of the graph change rate through CSGR, if
there are many changes in the graph, it creates a new IS and stores only the changed subgraphs in the
DS. Therefore, the proposed scheme improves query processing performance over DeltaGraph as the
time range to search increases. Performance evaluations show that VERSION GRAPH has little change
in query processing performance when the time range to search is small, but with increased time range
to search graph history, there is little change in query processing performance. The proposed scheme
shows the best performance when the time range to search is smaller than DeltaGraph, but when the
time range to search is large, the query processing performance is lower than that of DeltaGraph.

5. Conclusions

In this paper, we proposed a graph management scheme that can effectively store and search
for changes in graphs that have changed from the past. The proposed scheme manages the graph by
dividing it into IS and DS using the characteristics that changes in the graph over time occur only at
some vertices and edges, and the ratio of changes in the graph. As a baseline snapshot graph, IS stores
common subgraphs that have not been changed, while DS stores only subgraphs that have been
changed based on IS. When a graph is changed, a modified graph history is managed by integrating it
into one graph using the provenance model, and a new IS is created when the graph changes above
the threshold using CSGR. This resolves the problem of redundant storage of unchanged subgraphs.
In addition, the proposed scheme can reduce storage space on the historical graphs because it stores
them by transforming the CSR that compresses and stores the graph. The query performance can be
improved by only accessing change histories except for common subgraphs during a historical graph
search. The experiment results showed that the proposed scheme improved space efficiency by up to
80% compared to existing schemes. However, it cannot guarantee better performance for a small range
of queries, even though it improved the query processing time by approximately 20% compared to
existing schemes for a large range of queries. In the near future, we will design an index structure to
improve the performance of history searches.

Author Contributions: Conceptualization, K.B., G.K. and J.Y.; methodology K.B., G.K. and J.Y.; software, G.K.;
validation, K.B., J.L. and G.K.; formal analysis, K.B., G.K. and J.Y.; data curation, G.K. and J.L.; writing—original
draft preparation, K.B. and G.K.; writing—review and editing, J.L. and J.Y. All authors have read and agreed to
the published version of the manuscript.

Electronics 2020, 9, 895 19 of 21

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2019R1A2C2084257), by Next-Generation Information Computing Development
Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (No.
NRF-2017M3C4A7069432), by the Ministry of Education of the Republic of Korea and the National Research
Foundation of Korea (NRF-2017S1A5B8059946), and by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.B0101-15-0266, Development of
High Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ma, S.; Li, J.; Hu, C.; Lin, X.; Huai, J. Big graph search: Challenges and techniques. Front. Comput. Sci. 2016,
10, 387–398. [CrossRef]

2. Junghanns, M.; Petermann, A.; Neumann, M.; Rahm, E. Management and Analysis of Big Graph Data:
Current Systems and Open Challenges. In Handbook of Big Data Technologies; Springer: Cham, Switzerland,
2017; pp. 457–505.

3. Bok, K.; Jeong, J.; Choi, D.; Yoo, J. Detecting Incremental Frequent Subgraph Patterns in IoT Environments.
Sensors 2018, 18, 4020. [CrossRef] [PubMed]

4. Zhu, Z.; Su, J.; Kong, L. Measuring influence in online social network based on the user-content bipartite
graph. Comput. Hum. Behav. 2015, 52, 184–189. [CrossRef]

5. Gollapalli, S.D.; Mitra, P.; Giles, C.L. Ranking experts using author-document-topic graphs. In Proceedings
of the ACM/IEEE-CS Joint Conference on Digital Libraries, Indianapolis, IN, USA, 22–26 July 2013.

6. Zhang, S.; Zhao, D.; Cheng, R.; Cheng, J.; Wang, H. Finding Influential Papers in Citation Networks.
In Proceedings of the International Conference on Data Science in Cyberspace, Changsha, China, 13–16
June 2016.

7. Shivraj, V.L.; Rajan, M.A.; Balamuralidhar, P. A graph theory based generic risk assessment framework
for internet of things (IoT). In Proceedings of the International Conference on Advanced Networks and
Telecommunications Systems, Bhubaneswar, India, 17–20 December 2017.

8. Edouard, A.; Cabrio, E.; Tonelli, S.; Thanh, N.L. Graph-based Event Extraction from Twitter. In Proceedings
of the International Conference Recent Advances in Natural Language Processing, Varna, Bulgaria, 2–8
September 2017.

9. Ching, A.; Edunov, S.; Kabiljo, M.; Logothetis, D.; Muthukrishnan, S. One trillion edges: Graph processing at
facebook-scale. Proc. VLDB Endow. 2015, 8, 1804–1815. [CrossRef]

10. Steer, B.A.; Cuadrado, F.; Clegg, R.G. Raphtory: Streaming analysis of distributed temporal graphs. Future
Gener. Comput. Syst. 2020, 102, 453–464. [CrossRef]

11. Aridhi, S.; Montresor, A.; Velegrakis, Y. BLADYG: A Graph Processing Framework for Large Dynamic
Graphs. Big Data Res. 2017, 9, 9–17. [CrossRef]

12. Labouseur, A.G.; Birnbaum, J.; Olsen, P.W., Jr.; Spillane, S.R.; Vijayan, J.; Hwang, J.-H.; Han, W.-S. The G*
graph database: Efficiently managing large distributed dynamic graphs. Distrib. Parallel Database 2015, 33,
479–514. [CrossRef]

13. Vlassopoulos, C.; Kontopoulos, I.; Apostolou, M.; Artikis, A.; Vogiatzis, D. Dynamic graph management for
streaming social media analytics. In Proceedings of the ACM International Conference on Distributed and
Event-Based Systems, Irvine, CA, USA, 20–24 June 2016.

14. Ju, W.; Li, J.; Yu, W.; Zhang, R. iGraph: An incremental data processing system for dynamic graph. Front.
Comput. Sci. 2016, 10, 462–476. [CrossRef]

15. Firth, H.; Missier, P. Workload-aware Streaming Graph Partitioning. In Proceedings of the Workshops of the
EDBT/ICDT 2016 Joint Conference, Bordeaux, France, 15 March 2016.

16. He, H.; Singh, A.K. Graphs-at-a-time: Query language and access methods. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 10–12 June 2008.

17. Khurana, U.; Deshpande, A. Storing and Analyzing Historical Graph Data at Scale. In Proceedings of the
International Conference on Extending Database Technology, Bordeaux, France, 15–16 March 2016.

http://dx.doi.org/10.1007/s11704-015-4515-1
http://dx.doi.org/10.3390/s18114020
http://www.ncbi.nlm.nih.gov/pubmed/30453676
http://dx.doi.org/10.1016/j.chb.2015.04.072
http://dx.doi.org/10.14778/2824032.2824077
http://dx.doi.org/10.1016/j.future.2019.08.022
http://dx.doi.org/10.1016/j.bdr.2017.05.003
http://dx.doi.org/10.1007/s10619-014-7140-3
http://dx.doi.org/10.1007/s11704-016-5485-7

Electronics 2020, 9, 895 20 of 21

18. Semertzidis, K.; Pitoura, E. Top-k Durable Graph Pattern Queries on Temporal Graphs. IEEE Trans. Knowl.
Data Eng. 2019, 31, 181–194. [CrossRef]

19. Goyal, P.; Chhetri, S.R.; Canedo, A. dyngraph2vec: Capturing network dynamics using dynamic graph
representation learning. Knowl. Based Syst. 2020, 187, 104816. [CrossRef]

20. Berglin, E.; Brodal, G.S. A Simple Greedy Algorithm for Dynamic Graph Orientation. Algorithmica 2020, 82,
245–259. [CrossRef]

21. Edler, D.; Vetter, M. The Simplicity of Modern Audiovisual Web Cartography: An Example with the
Open-Source JavaScript Library leaflet.js. KN-J. Cartogr. Geogr. Inf. 2019, 69, 51–62. [CrossRef]

22. Horbiński, T.; Lorek, D. The use of Leaflet and GeoJSON files for creating the interactive web map of the
preindustrial state of t the natural environment. J. Spat. Sci. 2020. [CrossRef]

23. Semertzidis, K.; Pitoura, E. Time Traveling in Graphs using a Graph Database. In Proceedings of the
Workshops of the EDBT/ICDT 2016 Joint Conference, Bordeaux, France, 15 March 2016.

24. Ediger, D.; McColl, R.; Riedy, E.J.; Bader, D.A. STINGER: High performance data structure for streaming
graphs. In Proceedings of the Workshops of IEEE Conference on High Performance Extreme Computing,
Waltham, MA, USA, 10–12 September 2012.

25. Iwabuchi, K.; Sallinen, S.; Pearce, R.; Essen, B.V.; Gokhale, M.; Matsuoka, S. Towards a Distributed
Large-Scale Dynamic Graph Data Store. In Proceedings of the International Parallel and Distributed
Processing Symposium Workshops, Chicago, IL, USA, 23–27 May 2016.

26. Brisaboa, N.R.; Caro, D.; Fariña, A.; Rodríguez, M.A. Using Compressed Suffix-Arrays for a compact
representation of temporal-graphs. Inf. Sci. 2018, 465, 459–483. [CrossRef]

27. Labouseur, A.G.; Olsen, P.W.; Hwang, J.H. Scalable and Robust Management of Dynamic Graph Data.
Proceedings of International Workshop on Big Dynamic Distributed Data, Riva del Garda, Italy, 30
August 2013.

28. Salzberg, B.; Tsotras, V. Comparison of access methods for time-evolving data. ACM Comput. Surv. 1999, 31,
158–221. [CrossRef]

29. Semertzidis, K.; Pitoura, E.; Lillis, K. TimeReach: Historical Reachability Queries on Evolving Graphs. In
Proceedings of the International Conference on Extending Database Technology, Brussels, Belgium, 23–27
March 2015.

30. Khurana, U.; Deshpande, A. Efficient snapshot retrieval over historical graph data. In Proceedings of the
International Conference on Data Engineering, Brisbane, Australia, 8–12 April 2013.

31. Pitoura, E. Historical Graphs: Models, Storage, Processing. In Proceedings of the Business Intelligence and
Big Data: 7th European Summer School, Bruxelles, Belgium, 2–7 July 2017.

32. Kosmatopoulos, A.; Gounaris, A.; Tsichlas, K. Hinode: Implementing a vertex-centric modelling approach to
maintaining historical graph data. Computing 2019, 101, 1885–1908. [CrossRef]

33. Macko, P.; Marathe, V.J.; Margo, D.W.; Seltzer, M.I. LLAMA: Efficient graph analytics using Large
Multiversioned Arrays. In Proceedings of the International Conference on Data Engineering, Seoul,
Korea, 13–17 April 2015.

34. Xie, Y.; Muniswamy-Reddy, K.-K.; Feng, D.; Li, Y.; Long, D.D.E. Evaluation of a Hybrid Approach for Efficient
Provenance Storage. ACM Trans. Storage 2013, 9, 1–29. [CrossRef]

35. Wylot, M.; Cudré-Mauroux, P.; Hauswirth, M.; Groth, P.T. Storing, Tracking, and Querying Provenance in
Linked Data. IEEE Trans. Knowl. Data Eng. 2017, 29, 1751–1764. [CrossRef]

36. Missier, P.; Belhajjame, K.; Cheney, J. The W3C PROV family of specifications for modelling provenance
metadata. In Proceedings of the International Conference on Extending Database Technology, Genoa, Italy,
18–22 March 2013.

37. Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; Vorst, H. Common Issues. In Templates for the Solution of Algebraic
Eigenvalue Problems: A Practical Guide; Society for Industrial and Applied Mathematics: Philadelphia, PA,
USA, 2000; pp. 315–336.

38. CAIDA AS Relationships Dataset. Available online: https://snap.stanford.edu/data/as-caida.tar.gz (accessed
on 13 December 2019).

http://dx.doi.org/10.1109/TKDE.2018.2823754
http://dx.doi.org/10.1016/j.knosys.2019.06.024
http://dx.doi.org/10.1007/s00453-018-0528-0
http://dx.doi.org/10.1007/s42489-019-00006-2
http://dx.doi.org/10.1080/14498596.2020.1713237
http://dx.doi.org/10.1016/j.ins.2018.07.023
http://dx.doi.org/10.1145/319806.319816
http://dx.doi.org/10.1007/s00607-019-00715-6
http://dx.doi.org/10.1145/2501986
http://dx.doi.org/10.1109/TKDE.2017.2690299
https://snap.stanford.edu/data/as-caida.tar.gz

Electronics 2020, 9, 895 21 of 21

39. US Patent Citation Network Dataset. Available online: https://snap.stanford.edu/data/cit-Patents.txt.gz
(accessed on 19 December 2019).

40. Leskovec, J.; Kleinberg, J.M.; Faloutsos, C. Graphs over time: Densification laws, shrinking diameters
and possible explanations. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Chicago, IL, USA, 21–24 August 2005.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://snap.stanford.edu/data/cit-Patents.txt.gz
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Proposed Historical Graph Management Scheme
	Overall Structure
	Intersection Snapshot
	Delta Snapshot
	Graph Representation
	Graph Search

	Performance Evaluation
	Experimenral Results
	Discussion

	Conclusions
	References

