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Abstract: In recent years, the number of fraud cases in basic medical insurance has increased
dramatically. We need to use a more efficient method to identify the fraudulent users.
Therefore, we deploy the cloud edge algorithm with lower latency to improve the security and
enforceability in the operation process. In this paper, a new feature extraction method and model
fusion technology are proposed to solve the problem of basic medical insurance fraud identification.
The feature second-level extraction algorithm proposed in this paper can effectively extract important
features and improve the prediction accuracy of subsequent algorithms. In order to solve the problem
of unbalanced simulation allocation in the medical insurance fraud identification scenario, a sample
division method based on the idea of sample proportion equilibrium is proposed. Based on the above
methods of feature extraction and sample division, a new training and fitting model fusion algorithm
(tree hybrid bagging, THBagging) is proposed. This method makes full use of the balanced idea of
the tree model algorithm based on Boosting to fuse, and finally achieves the effect of improving the
accuracy of basic medical insurance fraud identification.

Keywords: feature extraction; gradient descent decision tree; model fusion; medical insurance
fraud identification

1. Introduction

For decades, with the growing consolidation and improvement of medical insurance of China,
more than 1.3 billion people [1,2] are sharing the social dividends in the developed process.
Unfortunately, fraudulent attempts to obtain medical insurance funds have continued in recent years.
Basic medical insurance (the term “basic medical insurance” in this paper can be shortly denoted
“medical insurance”) fraud refers to deceiving insurance personnel to obtain insurance compensation
through insurance or fictitious or exaggerated insurance injuries [3]. This behavior infringes the rights
of others and seriously harms social health. The behavior of those who commit medicare fraud is
variable, and criminal methods are constantly emerging, which makes it difficult to identify fraud
through intuitive judgment [4,5]. However, through continuous accumulation of medical insurance
data, data mining [6] and machine learning [7] technologies can be used to analyze massive data to
find the potential rules of fraudsters, and effectively identify the real fraudsters.

In the basic medical insurance identification scenario, traditional methods include screening of
diagnosis and treatment rules [8], data comparison [9], etc. These methods have achieved certain results,
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but due to the relatively backward technical means, there are limitations in many aspects, including the
inability to dig out the common characteristics of illegal personnel, low efficiency and low recognition
accuracy and recall rate due to the need for human participation in the recognition process [10,11].
Through data mining and machine learning technology, we can achieve more efficient and intelligent
identification of medical fraud. At present, the main methods used are clustering [12], decision tree [13],
random forest [14], and so on. Another part of the people also achieved good results through the
neural network method [15–17]. Compared with these commonly used algorithms, the integrated
learning based on the tree model has the characteristics of fast training speed, strong generalization
ability and high prediction accuracy. But in the current research, this method is rarely used in the
research of medical fraud identification. In this paper, the method of integrated learning is used to
construct an intelligent monitoring model of social medical insurance based on a fusion model of
combinatorial classifier, so as to realize the intelligent supervision of fraudulent behaviors.

Both machine learning and integrated learning have high requirements for data sets, and a good
data set can greatly improve the accuracy of experimental results [18–20]. However, the recognition
problem based on medical insurance is a category imbalance problem. For binary classification, the
ratio of positive and negative samples is not 1 to 1, but it reaches 1 to 10 or 1 to 100, which is called
class imbalance. In a machine learning task, the problem brought by the imbalance of the categories is
that for the categories with a relatively small distribution, the model often cannot be well trained and
fitted. The main reason is that its sample size is too small, or that most of the model’s energy is used to
fit more classes, while less classes are underfitted [21]. This article uses the idea of category division
and equalization to process the data, which can solve the above problems well.

Another difficulty of basic medical insurance recognition is that the effective features cannot be
extracted in the feature extraction stage [22]. The behavior of the insured is variable and complex.
How to select useful features from many behavioral characteristics is an important basis to distinguish
law-abiding person and illegal person. Neural network cannot get good classification results, a large
part of the reason is caused by improper feature selection [23]. In this paper, second-level feature
extraction method is innovatively proposed, which can effectively extract important features.

The key contributions of our work can be summarized as follows.

• We propose a novel idea of sample equalization to deal with the problem of category imbalance in
medical insurance identification. The sample data were extracted using the combination of smote
and K-means. For negative samples, we use the smote method to solve the over-fitting problem
of random sampling through synthetic samples. For positive samples, we use K-means clustering
algorithm to select data according to the proportion of each category.

• Aiming at the difficulty of feature selection in the basic medical insurance fraud recognition
scenario, we propose a second-level feature extraction algorithm based on the classification
tree model, which uses the path information represented by the leaf nodes in the tree model
to compress and represent various user behavior. The result data generated by the algorithm
provides data input for subsequent model training.

• This paper proposes a new model fusion algorithm (tree hybrid bagging, THBagging).
The algorithm is based on the fusion of integrated learning theory and existing models.
The strategy of “excellent and different” is integrated organically, which effectively improves the
values of F1 and macro-F1.

• In order to facilitate further research on this task, we publicly provide the source code and data
of the model on the GitHub community as contributions to the community (The experimental
details and source code of the model are publicly available at https://github.com/zhanghekai/
THBagging).

The remainder of this paper is organized as follows. In Section 2, we reviewed the relevant
research related to our task, and in Section 3 introduced the data set used, and proposed a solution to
the imbalance of sample distribution. Section 4 provides the details that drive our proposed fusion
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model framework. In Section 5, we conducted extensive experimental evaluation and analyzed the
effectiveness of the classification experimental results. Finally, the conclusions and future work are
described in Section 6.

2. Related Work

2.1. Medical Insurance Fraud Identification

In order to identify fraud in basic medical insurance, Chen et al. [13] proposed a data mining-based
medical insurance fraud identification model, which mainly uses a prediction model established by
cluster analysis and classification decision tree algorithms to identify a patient whether your medical
treatment is suspected of fraud. Francis et al. [24] proposed an improved support vector machine (SVM)
method to identify medical insurance fraud by using medical insurance transaction records, and the
results were satisfactory. Tang et al. [25] used principal component analysis and K-means cluster
analysis to analyze the medical insurance industry. Fashoto et al. [12] took the medical insurance
claim data of Nigeria as an example and used the K-means clustering method to group the similar
samples into one class. The one with a small sample size was marked as a fraud group. The fraud
was detected by looking for the outliers based on clusters. Vipula et al. [26] analyzed the advantages
and disadvantages of several commonly used algorithms in supervised and unsupervised methods,
and designed a hybrid model based on unsupervised clustering method and supervised support vector
machine classification algorithm for fraud detection. Junhua et al. [14] used the random forest algorithm
to identify the fraudulent behavior and medical insurance data to verify it. The results show that
the fraud detection model has a good identification effect on the fraudulent behavior. Liou et al. [27]
used data from Taiwan for analysis, and used logistic regression, decision trees, and neural networks
to build a recognition model. By comparing the three methods, a suitable model was selected for
prediction of fraud samples.

The above research has achieved good results, but the feature extraction mode is relatively simple,
and it is impossible to effectively extract important hidden features. Most of them are interpretable
features through human cognition, and these features are for the model. Training is far from enough,
and it cannot improve the accuracy of the model.

Many researchers have adopted the BP neural network method to study the intelligent
identification of basic medical insurance fraud. Hubick [28] from the Australian Medical Insurance
Commission used a neural network algorithm to identify fraud in medical insurance. Lin Yuan et al. [15]
improved the design of the neural network, and realized the improvement of the fraud recognition
accuracy rate by using the three-layer neural network. Bisker et al. [16] uses the improved neural
network algorithm to study the risk early warning of the new rural cooperative medical insurance
fraud, and tests the simulation data. The model has a good effect on the fraud identification.
Anbarasi et al. [29] uses the back propagation (BP) neural network method. In addition, a logistic
regression algorithm is used to improve the neural network. Panigrahi et al. [17] uses a combination
of neural network and bayesian network to identify fraud, through bayesian learning of a historical
database to update the suspicion score.

In summary, in the existing researches, the common methods for intelligently identifying
medical insurance frauds using data mining algorithms are machine learning, neural networks,
integrated learning, etc., and have achieved certain research results [30]. However, many of the
researches are theoretical researches on intelligent monitoring, and lack of real analysis data.
In the empirical research on the real data of medical insurance, there are few data dimensions,
mainly including the self-payment ratio, hospitalization cost, material cost and nursing cost.
The algorithm used is only a single data mining algorithm or an improved data mining algorithm.
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2.2. Dataset Division

In the method of solving the problem of data imbalance, Chawla et al. [31] manually defined
a few samples by defining the smote method to achieve the purpose of balancing the data set,
but this method is difficult to fit high-latitude samples. Based on the over-sampling smote algorithm,
Liang et al. [32] proposed the LR-SMOTE algorithm.An improved over-sampling method for
unbalanced data sets based on K-means and SVM to make the newly generated samples closer
to the sample center, avoid generating abnormal samples or changing the distribution of the data
set. In contrast to overs-ampling, Drummond et al. [33] proposed an undersampling method to
achieve the relative equilibrium among categories by reducing the majority of samples, and then
trained them using the traditional classification algorithm. Ribeiro et al. [34] proposed a classification
method based on multi-objective integrated learning. This method performs comprehensive learning
through multi-objective optimization design methods to deal with unbalanced data sets. However,
the above method only reconciles from one category, and cannot process multiple categories of
data simultaneously.

3. Dataset

3.1. Dataset

The data used in this article is the actual medical settlement data. The data set comes from
the “Internet + Human Society” 2020 Action Plan issued by the Ministry of Human Resources and
Social Security. The data set includes medical insurance medical settlement desensitization data and
cost details of 20,000 insured personnel in 456 medical institutions from July 2016 to December 2016
in Hebei province, Beijing and Tianjin, China. It mainly includes the medical expense records and
expense details of the insured personnel, as well as the information about whether there are any illegal
behaviors of medical insurance fund fraud. Among them, there are 19,000 normal people (positive
samples) and 1000 fraudsters (negative samples), and a total of 74 features are included.

3.2. Data Preprocessing

In order to eliminate noise and bias results, we preprocess the data set as follows:
Noisy Data Filtering. Denoising the basic medical insurance data is the first step in data

preparation. Only based on accurate and valid data can data mining algorithms be used to accurately
identify fraud and ensure the effectiveness of intelligent monitoring research on basic medical insurance
fraud. We perform noise reduction on the data in three steps:

1. Clean the original data. The purpose of data cleaning is to screen out the required data from
the perspective of medical insurance fraud and related needs of modeling. Therefore, this step
eliminates unnecessary data. Mainly includes: (a) Of all the consumption record information,
94.5% of the consumption record information does not get blood transfusion costs, so the data
related to blood transfusion costs will be eliminated. (b) In the original data, there are date
and time fields such as declaration acceptance time, transaction time and operation time, and
in the extraction of short-term dimensions, the date and time fields are relatively important.
Therefore, the date field in the data is converted to a unified standard date format.

2. Deal with missing values in the original data. This paper finds that there are 3000 missing values
in 13 variables. The meaning of missing values should be the amount without the item, so the
missing value part of the above variables is replaced with 0, which means that the amount is zero.

3. Handle the outliers of the original data. Outliers refer to data that does not conform to normal
rules and has abnormalities. Considering that in the actual situation, the declared amount must be
less than the amount that occurred. Therefore, this article defines the value of the declared amount
of each amount greater than the occurred amount as an abnormal value. However, because it
is impossible to confirm whether it is the declared amount or the abnormality caused by the
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amount error, and the abnormal value is rare, it is a record that does not affect other expense
items, so the amount field of this fee for this record is reset to 0.

Through the above-mentioned denoising of the original data, we get neat medical insurance
details, and we show all the processed features in Table 1.

Table 1. Medical insurance data set features.

Features Description Type Ranges Avg

Medical records

Regular visits

Medical Interval
Effective interval between two consultations
between patients within the consultation time int [0, 60] 35

Number of visits
The total number of visits by patients within the
record time int [1, 50] 24

Number of hospitals
Number of hospitals visited during the time of all
patient records int [1, 20] 5

Number of items
The total number of items that the patient has seen
in all medical records int [0, 30] 13

Cost information

Total cost
The sum of all medical items in the period of all
medical records double [0, 45,239.00] 25,624.24

Amount of drug costs
The total amount of medicine purchased by the
patient during the time period double [0, 32,535.43] 14,263.78

Amount of inspection fee
The total amount spent by the patient for the
examination within the time period of the medical
record

double [0, 4495.67] 2930.52

Amount of treatment fee
The total amount the patient spent on treatment
within the time period of the medical record double [0, 44,399.90] 27,921.70

Insurance reimbursemen

Declaration information

Total declared expenses
The total amount of expenses that the patient
applied for reimbursement within the time period
of the medical record

double [0, 41,699.45] 24,315.90

Total declaration ratio
Patient reimbursement expenses as a proportion of
total incurred expenses double [0, 95.25%] 50.55%

Reimbursement information

Drug reimbursement amount
Total reimbursement of drugs purchased by
patients double [0, 32,532.88] 16,374.40

Subsidy amount The total amount of subsidy received by the patient double [0, 13,652.88] 6740.40

Account reimbursement amount Reimbursement amount available in account double [0, 11,623.14] 5097.70

Account payment amount
The amount paid by the co-ordination fund in the
total cost of the patient’s medical record period double [0, 1623.14] 597.70

Deductible amount
The amount paid by the personal account in the
total cost of the patient’s medical record period double [0, 7752.90] 346.90

Data Splitting. This article intends to judge whether there are fraudulent violations based on
the characteristics of users’ medical treatment and consumption, which is essentially a two-category
problem. The processed sample data in this article contains 17,000 effective information of insured
persons, of which the ratio of negative sample to positive sample is 1:16. The sample ratio is seriously
unbalanced, so handling the sample imbalance problem is an important prerequisite for achieving
accurate identification of fraud, and solving the sample imbalance problem is an important task of this
article. In this paper, a combination of undersampling and oversampling is used to resample the sample
using a hybrid method based on K-means [35] clustering undersampling and smote [36] oversampling.

For negative samples. We use the smote sampling algorithm to solve the overfitting problem
of random oversampling by artificially synthesizing samples. It assumes that the samples between
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the fraud samples with close distance are still the fraud samples. A new fraud sample is generated
randomly between the two samples with close distance through the linear interpolation method, so as
to increase the synthetic fraud samples and balance the proportion of the two data samples. The smote
sampling algorithm requires a given k value, calculates k nearest neighbors for each fraud sample
xi, randomly selects a neighbor xj, and uses Equation (1) to generate a composite sample between xi
and xj.

xnew = xi + Rand(0, 1)× (xj − xi) (1)

Among them, Rand (0, 1) is used to generate a random number between 0 and 1. Finally, add the
newly generated sample xnew to the data set. In this paper, each sample is used to generate a new
fraud sample, a total of 1000 negative samples are generated, and the original negative samples are
combined into a new negative sample.

For positive samples. We use K-means clustering algorithm to cluster samples with certain
similarity. After K-means clustering, normal samples are divided into several clusters. According to
the number of samples in each cluster, the proportion of each cluster to the population is calculated
and recorded as the sampling proportion. Normal samples are randomly selected from each cluster
according to the sampling proportion as new normal samples. The new normal samples contain all the
information of normal samples. It should be emphasized that the purpose of clustering analysis in
this process is to extract samples that are consistent with the overall sample characteristics as much as
possible, not to subdivide each user in the sample. Therefore, when the number of K is determined in
advance by K-means clustering, and in order to find the best K value for clustering effect, the range of
K is artificially set at 5–10. Compare the interia (https://scikit-learn.org/stable/modules/clustering.
html#k-means) in K-means function in Python change trend of attribute value, select the best K value.
The change of evaluation index values of different clustering results is given in Figure 1.

5 6 7 8 9 10
Number of clustering categories

1.46

1.96

2.46

2.96

3.46

in
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3.67

3.19

2.85

2.61 2.55
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Figure 1. Variation of interia value of different clusters.

The value of interia changes greatly when the number of classification categories is less than 8,
but after being divided into 8 categories, the value of interia decreases relatively less. It shows that
when all normal samples are grouped into 8 categories, the samples in the cluster are relatively similar,
which is very different from the samples outside the cluster. It should be emphasized that the purpose
of undersampling using clustering algorithms in this paper is to extract as many samples as possible
that are consistent with the characteristics of the overall sample. Considering that when normal
samples are grouped into 9 and 10 categories, the effect of interia does not change much, and the
proportion of each category is not balanced, the number of normal samples included in individual
categories is very small. Therefore, this article finally chose to cluster the samples into 8 categories.

https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
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After the K-means clustering algorithm is used to cluster all normal insured persons into 8 categories,
the sample size and proportion of each category are shown in Table 2.

Table 2. Statistics on the sample size and proportion of each category after K-means clustering.

Category Number of Samples Proportion of Each Category in the Total

1 1297 8%
2 2376 15%
3 2568 16%
4 647 4%
5 6708 42%
6 169 1%
7 956 6%
8 1279 8%

Sample division. We draw 2000 positive samples from each cluster according to the sampling
ratio, and form a new sample with 2000 negative samples. According to this method, 5 sets of data are
drawn according to the ratio without replacement, and finally the negative samples are reused to form
5 sets of new samples. The advantage of this method is to solve the problem of uneven distribution of
categories, and has the advantage of oversampling, which expands the sample set. Using a variety
of different models for training can also achieve the effect of reducing overfitting, and also avoid
the problem of excessive data discarding in downsampling, and can make full use of the data set.
Therefore, such an imbalanced sample distribution can solve the problem well.

4. The Proposed Approach

4.1. The Overall Framework

Figure 2 shows the overall framework that describes the use of the proposed THBagging model
in fraud detection of medical insurance. The framework consists of two stages: model building
and prediction. In the model construction stage, our goal is to build a composite classifier by using
several basic classifiers constructed by the tree model classification algorithm. In the prediction stage,
this fusion model classifier is used to predict whether new samples that have never appeared are
fraudulent users.

Figure 2. The overall framework of our proposed approach.

Our framework first extracts available features from the training samples. Then, a hybrid method
combining K-means clustering undersampling and smote oversampling is used to divide the samples
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in a balanced manner. Using this divided data, we construct a fusion classification model by combining
different basic classifiers. For the feature second-level extraction, the input of the second layer in
the fusion model is a combination of the leaf node features and the original features obtained by the
first layer. The parameters of each part of the fusion classification model are trained and obtained.
After building the fusion classifier, in the prediction stage, it is used to predict whether the new sample
is a fraudulent user. From the new sample, our framework first preprocesses and extracts features.
Then input these features into the fused model classifier that has been trained. Finally, the classifier
outputs the prediction result: fraudulent or normal.

4.2. THBagging Model

4.2.1. The First Layer of the THBagging Model

The first layer algorithm of THBagging model uses one GBDT [37], two XGBoost [38] and two
LightGBM [39], which are all algorithm models based on Boosting idea. The consideration of not using
the random forest algorithm [40] in the first layer is that the first layer is mainly feature extraction and
combination in feature engineering. The random forest algorithm is an integrated learning algorithm
based on bagging. It mainly focuses on the variance of the fitted samples. The time is independent
of each other, so after the sample falls into the leaf nodes of each decision tree, the correlation or
combination type between the leaf nodes is not very strong, so as a combined feature, it will not
be a very good feature. The GBDT and XGBoost models based on the Boosting algorithm are the
deviations of the fitted samples. The current decision tree is fitted with the deviation of the previous
decision tree, which is a continuous optimization process, so whether the sample falls between the leaf
nodes of the decision tree is relevant. Another advantage is that the training data of the tree model
does not require one-hot processing, which can solve the problem of sparse features.

The original data set has been divided into 5 new data sets through undersampling and
oversampling methods, and the 5 new data sets are input into the five models of the first layer
for training. For each model of the first layer, use the 10-fold cross-validation [41] method to find the
best parameters of each model for the input data set. Finally, the important parameters of the five
models of the first layer of THBagging algorithm in this paper are shown in Section 5.3.

4.2.2. Second-Level Feature Extraction

The second-level feature extraction method uses the leaf node number of the sample falling into
the model as the new feature. For the tree classification algorithm, each non-leaf node is selected by
a feature in the feature set for division. The prediction result of the tree classification algorithm is
the linear weighting of the prediction results of each base classifier, and the prediction result of the
base classifier for a sample is the result of the sample falling into the leaf node of the base classifier,
then this leaf node number can be used as feature utilization. As shown in Figure 3, taking one of the
tree models in the first layer of the THBagging model as an example, each subtree under the model
is numbered in sequence, and the resulting sequence number is the new feature name. If there are n
subtrees in the tree model, then n leaf node features can be obtained. The final sample will fall into the
leaf node of each subtree. The leaf nodes of each subtree are numbered starting from 1. The number of
the leaf node where the sample is located is the value of the new feature corresponding to the subtree.
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Figure 3. Feature second-level extraction.

For example, in the GBDT algorithm, the CART regression tree is used as the base classifier. In the
basic medical insurance fraud recognition scenario in this paper, it is assumed that a sample falls into
a leaf node of the k regression tree, and its number is 2. The path traversed is that the number of
hospitalization days is greater than 7, the number of visits in the month is greater than 10, and the
amount of medicine is less than 90. The number 2 represents the above-mentioned combination
feature, and k represents the name of the combination feature. If the label of this sample is 1, then these
features represent the attributes of the sample with label 1. These combined features are difficult to
find through artificial data mining.

Then the features generated by the second-level feature extraction and the features extracted by
the primary feature are combined into a complete feature, which is used as the input of the second
layer in the THBagging model.

4.2.3. The Second Layer of the THBagging Model

In this paper, the combination of the second layer and the first layer base classifier of THBagging
algorithm is that the first group of models uses GBDT + RF, the second group of models uses XGBoost
+ LightGBM, the third group of models uses XGBoost + RF, and the fourth group of models uses
LightGBM + XGBoost, the fifth group model uses LightGBM + GBDT. In this section we introduce the
core part of the model used in the second layer.

The RF algorithm is used in the second layer of the first group and third group models.
First, we use bootstrap method to generate m training sets. Then, for each training set, we construct a
decision tree. When we split the features of node searching, we do not find all the features that can
maximize the index (such as information gain), but extract a part of the features in the feature, find the
optimal solution among the extracted features, and apply it to node splitting. RF algorithm adopts the
idea of integration, which is equivalent to sampling samples and features, so it can avoid overfitting.

The second layer of the second group of models uses the LightGBM algorithm. We first discretize
continuous floating-point eigenvalues into k integers and construct a histogram of width k at the same
time. By selecting only the node with the largest split gain for splitting, the overhead caused by the
smaller gain of some nodes is avoided. LightGBM’s improved binary tree splitting gain formula is:

Gain =
1
2
[

G2
L

HL + λ
+

G2
R

HR + λ
− (GL + GR)

2

HL + HR + λ
]− γ (2)
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where γ is the complexity cost introduced by adding new leaf nodes, and λ is the regular term
coefficient. GL and GR are the first order derivatives of the left and right subtree sample loss functions,
respectively, and HL and HR are the second order derivatives of the left and right subtree sample loss

functions, respectively. G2
L

HL+λ is the score of the left subtree of the node to be split, and G2
R

HR+λ is the
score of the right subtree of the node to be split.

The second layer of the fourth group of the model uses the XGBoost algorithm. When solving
the extreme value of the loss function, the Newton method is used to expand the loss function to the
second order. In addition, a regularization term is added to the loss function. The objective function
during training consists of two parts. The first part is the loss of the gradient lifting algorithm, and the
second part is the regularization term. The loss function is defined as:

L(φ) =
n

∑
i=1

l(y′i, yi) + ∑
k

Ω( fk) (3)

where n is the number of training function samples, l is the loss of a single sample, assuming it is
a convex function. y′i is the model’s predicted value for the training sample, and yi is the true label
value of the training sample. The regularization term defines the complexity of the model:

Ω( f ) = γT +
1
2

λ||ω2|| (4)

where γ and λ are manually set parameters, ω is the vector formed by the values of all leaf nodes in
the decision tree, and T is the number of leaf nodes.

GBDT algorithm is used in the second layer of the fifth group of models. GBDT can find a variety
of distinguishing features and feature combinations. We make multiple iterations of GBDT, and each
iteration produces a weak classifier. Each classifier is trained on the basis of the residual of the previous
round of classifier, and then the accuracy of the final classifier is continuously improved by reducing
the deviation. Our classification tree model is:

F(x) =
M

∑
m=1

J

∑
j=1

cmj I(x ∈ Rmj) (5)

where m is the number of samples in the data set, rmj is the leaf node area of the m-th tree, j =

{1, 2, · · · , J}, J are the number of leaf nodes of the regression tree m, and cmj is the best residual fitting
value. I(.) is the indicating function. If the content in parentheses holds (i.e., x ∈ Rmj), the return value
is 1, otherwise the return value is 0. F(x) is the required classification tree model.

Finally, the prediction results will be determined by the vote of the classifiers of these combined
models. We use the Bagging algorithm to average the output of multiple classifiers:

H(x) =
T

∑
i=1

wihi(x) (6)

where T is the number of classifiers, wi is the weight of individual learner hi, we require wi ≥ 0,
∑T

i=1 wi = 1.

4.2.4. Feature Importance Calculation

Because the fusion model uses different tree models, in order to unify the calculation of feature
importance in THBagging model, we will accumulate the degree of enhancement of a feature in the
segmentation criteria in each tree split as a measure of the importance of the feature, and take the
mean value on all trees, which is the relative importance of the feature [42,43]. Since the features in the
medical insurance fraud identification data set are continuous values, we use the square error as the
segmentation criterion [44].
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The global importance Jj of feature j is the sum of the importance of feature j in each single tree,
which is measured after averaging:

Jj =
1
M

M

∑
m=1

Jj(Tm) (7)

where M is the number of trees and Tm is the m-th tree. The importance of feature j in a single tree is
as follows:

Jj(T) =
L−1

∑
t=1

λ2
t I(Vt = j) (8)

where L is the number of leaf nodes of the tree, and L− 1 is the number of split nodes in the tree
Tm (that is, the number of non-leaf nodes, the constructed tree is a binary tree with left and right
children). Vt is the segmentation feature associated with node t. The I(·) function indicates that if
the segmentation feature of node t is j, the value is 1; otherwise, the value is 0; λ2

t is the reduction of
the squared error after node t is split, representing the lifting degree of the segmentation criterion on
node t.

5. Experiments

In this section, we first introduce the annotation of ground truth data, compared Open IE baseline
methods and evaluation metrics. Then, we conduct extensive experiments to evaluate the effectiveness
of our proposed major algorithms in the system. Finally, the experimental results are discussed,
including: (a) analysis of candidate fact extraction, (b) analysis of running time for different methods,
(c) investigation of the quality of experimental variance, and (d) comparative analysis of variant models.

5.1. Evaluation Metrics

The three metrics are applied for our evaluation, including F-measure, Macro-F1 and AUC-ROC.

5.1.1. F-Measure

F-measure, which is the harmonic mean of Precision and Recall, is a standard and widely used
measure for evaluating classification algorithms [45]. There are four possible outcomes for an instance
in a target project: an instance can be classified as law-abiding person when it actually is law-abiding
person (true positive, TP), as law-abiding person when it is in fact illegal person (false positive, FP),
as illegal person when it is in fact law-abiding person (false negative, FN), as illegal person when it
actually is illegal person (true negative, TN). Based on these possible outcomes, the detailed definitions
of Precision, Recall and F1 are obtained as follows:

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 =
2PR

P + R
(9)

5.1.2. Macro-F1

Macro-F1 [46] is a metric which evaluates the averaged F1 of all the different class-labels. Let TPt,
FPt, FNt denote the true-positives, false-positives and false-negatives for the t-th label in label set S
respectively. Macro-F1 gives equal weight to each label in the averaging process. Formally, Macro-F1 is
defined as:

Macro− F1 =
1
|S| ∑

t∈S

2PtRt

Pt + Rt
, where

Pt =
TPt

TPt + FPt
, Rt =

TPt

TPt + FNt
,

(10)
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5.1.3. Area under the Receiver Operator Characteristic Curve

ROC [47] is a non-parametric method used to evaluate models. It plots the precision/recall values
reached for all possible cutoff values ranging with the interval [0, 1]. Therefore, it is independent of
the cutoff, different from the precision and recall metrics. A curve of the false positive rate is plotted
against the true positive rate. We report the AUC-ROC [48] values. The AUC-ROC value measures the
probability that a randomly chosen clean entity. An area of 1 represents a perfect classifier, whereas for
a random classifier an area of 0.5 is expected.

5.2. Compared Baseline Methods

In order to evaluate our method more comprehensively, we compared a set of classic and latest
baselines, as shown in Table 3:

Table 3. Baseline algorithm comparison.

Algorithm Description

LightGBM [39] uses the amount and dimensions of compressed data to reduce the amount of training data.

GBDT [37]
achieves an algorithm for classifying or regressing data by using linear combinations of
basis functions and continuously reducing residuals generated during the training process.

XGBoost [38]
adds a regularization term to the cost function based on the GBDT algorithm, and uses the
exact or approximate method to greedily search for the highest-scoring segmentation point,
perform the next segmentation and expand the leaf nodes.

RF [49]
used CART decision tree as a weak learner, and improved the establishment of decision
tree. RF selects an optimal feature for left and right sub-tree partitioning of the decision
tree, which further enhances the generalization ability of the model.

GBDT + LR [50]

uses GBDT to train the model to obtain new leaf nodes, and then combines the leaf node
features with the original features into new features, and then inputs them to the logistic
regression model for training. The proposed model is based on the model’s inspiration,
so it is also used as a comparative experiment.

FDS [29]
uses a combination of neural network and bayesian network to identify fraud. The suspicion
score is updated by means of Bayesian learning using history database of both law-abiding
person and illegal person.

AHP [17]

uses the back propagation (BP) neural network method. In addition, a logistic regression
algorithm is used to improve the neural network. In order to reduce the interference of
the neural network, a method of reducing weak factors is used, and only the normal data
training method is used to solve the problem of sparse data in medical insurance data.

THBaggingmod

replaced the integrated classifier in the second layer of the model with a common
classification algorithm to prove the superiority of our choice of integrated classifier.
We performed more than 40 different combinations of experiments and showed the best
results in the results table.

THBagging f ea

uses some existing data processing methods for experiments, instead of the second-level
feature extraction we proposed. By comparing with other data processing methods,
the effectiveness of the proposed method is proved.

THBaggingsame

uses five groups of the same model combination as the base model. That is, the model
of the first layer is exactly the same, and the model of the second layer is also the same.
The combination of models uses the five basic models mentioned in THBagging.

THBaggingnum
changed the number of model group sums, removed the base model with many
classification errors, and added a new combination model.

THBagging

is a fusion model. After many experiments, it was found that the best model combination
structure is GBDT + RF, XGBoost + LightGBM, XGBoost + RF, LightGBM + RF and
LightGBM + GBDT. The final result uses Bagging fusion method. In order to judge the pros
and cons of the proposed models, each group of submodels is set as a baseline algorithm
for comparison.
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5.3. Implementation Details

All our experiments were performed on 64 core IntelXeon CPU E5-2680 v4@2.40 GHz with 512
GB RAM and 8 NVIDIA Tesla P100-PICE GPUs. The operating system and software platforms are
Ubuntu 5.4.0 and Python 3.7.0. Python has a lot of open source algorithm libraries, which provides a lot
of convenience for experiments. We use sklearn to import these algorithm libraries for experiments.
On the one hand, the parameters of the classifier are obtained through a lot of testing and adjustment;
On the other hand, they are the results of the classifier’s independent selection after training. We show
various parameters used in the experiment in Table 4.

Table 4. THBagging model parameter selection and setting.

Algorithm Number of Base Classifiers Tree Depth Number of Nodes Ranom Sampling Ratio

The First Layer

GBDT 128 5 20 -
XGBoost 256 7 10 -
XGBoost 128 5 20 -

LightGBM 128 3 10 -
LightGBM 500 3 10 -

The Second Layer

RF 128 5 20 80%
LightGBM 256 7 10 -

RF 128 5 20 90%
XGBoost 128 3 10 -

GBDT 500 3 10 -

5.4. Analysis and Comparison of Experimental Results

5.4.1. Second-Level Feature Extraction Importance Analysis

In order to verify the importance of the second-level feature extraction in Section 4.2.2,
the second-level extracted features are compared with the original features, and the feature importance
can be used for verification. Generally speaking, importance scores measure the value of features in the
model’s promotion decision tree construction. In the research of medical insurance fraud recognition,
the more attributes are used to construct a classification tree in the model, the higher its importance.
If there are second-level extracted features ranked high, it proves that the second-level extracted
features have a good effect.

We use the feature importance calculation formula introduced in Section 4.2.3 to obtain the
importance value of each feature used. The feature importance ranking is shown in Figure 4. From the
figure, it can be seen that the English names are the original features, and the numbers represent the
second-level feature extraction. Seventeen of the top 20 important features belong to the second-level
feature extraction feature, indicating that the second-level feature extraction effectively extracts
important features.
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Figure 4. Feature importance ranking.

5.4.2. Analysis of Performance Results for Different Models

Compare with baseline algorithm. From the experimental results of Table 5, the results obtained
by using the fusion model are better than the methods of machine learning and neural network. The P
and R of the proposed method based on integrated learning are above 70% and 45% respectively,
and at least higher than the baseline algorithm 2.93% and 2% at F1 and macro-F1. Macro-F1 treats all
categories equally and is not easily affected by common categories. Especially in the case of imbalanced
sample categories, the effect of Macro-F1 is better. It not only shows the superiority of the data division
method, but also shows that the THBagging model is more robust in uneven samples. The proposed
THBagging belongs to the fusion model, and its F1 value and macro-F1 value are higher than all the
basic classification model combinations used, indicating that the concept of model fusion is successful.

Table 5. Precision (P), recall (R) and F1 results (%) for different models.

Method P R F1 Macro-F1 Running Time (s)

LightGBM 67.53 38.56 48.31 46.92 3.2
XGBoost 65.36 37.27 47.62 46.37 4.3

GBDT 73.23 33.02 45.46 44.28 6.8
RF 70.22 35.10 46.83 45.82 6.9

GBDT + LR 44.83 53.71 48.83 48.07 10.1

GBDT + RF 52.17 47.21 49.36 48.65 7.1
XGBoost + LightGBM 69.54 46.92 51.25 50.18 6.7

XGBoost + RF 49.82 55.24 50.49 49.67 7.4
LightGBM + GBDT 58.83 41.09 51.33 50.72 5.6

LightGBM + RF 66.34 38.14 51.07 49.86 5.8

FDS 64.47 41.61 52.48 52.67 14.3
AHP 63.39 42.28 51.07 50.44 15.0

THBaggingmod 67.44 40.81 53.26 52.43 13.8
THBagging 70.21 48.32 55.41 54.67 14.2

The ROC curve of the proposed model is shown in Figure 5, and the area under the curve
represents the value of AUC, which is an evaluation index to measure the merits of the two-class model.
The AUC value of the THBagging model is higher than that of all baseline algorithms, indicating that
the positive examples predicted in the classification process are more likely to be ranked before the
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negative examples. The THBagging model has the ability to consider the classification of positive and
negative examples at the same time, and can still make a reasonable evaluation of the classifier in the
case of imbalanced samples.

The THBagging algorithm is integrated by multiple tree model algorithms, and each tree model
algorithm is calculated in parallel, so its time complexity is the same as the tree model is O (tree
depth × tree of tree). Because the THBagging algorithm is a fusion algorithm, it is slower than other
single-model algorithms. Regarding the prediction time, because the THBagging algorithm is an offline
algorithm, it is very close to the prediction time of other models in the experiment, and the prediction
time of the offline algorithm is not high, so it is completely within the acceptable range.

It can be seen from the experimental results in Table 6 that the proposed model experimental
results have a small variance in F1 and macro-F1, indicating that the algorithm results are universal
and there are no abnormal phenomena such as fluctuations, which provides a guarantee for the
subsequent analysis of algorithm results. It can be seen from Figure 6 that in each group of experiments,
the correlation coefficient matrix shows that the correlation coefficient of the five combined models in
THBagging algorithm is not large and the correlation between the models is not high. On this basis,
the model can produce better results.
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Figure 5. Quantitative analysis of model fusion.

Figure 6. Correlation coefficient matrix of the tree hybrid bagging (THBagging) model.
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Table 6. The variance (10−5) of performance results for different models.

Method σ(P)/10−5 σ(R)/10−5 σ(F1)/10−5 σ(macro− F1)/10−5 σ(Time)

LightGBM 0.3163 1.1613 0.3243 0.3421 2.4233
XGBoost 0.8632 0.6442 0.3012 0.3082 5.6425

GBDT 0.9003 1.2258 0.1812 0.2021 5.6892
RF 0.1003 0.8413 0.1545 0.1987 5.1233

GBDT + LR 1.6037 1.0471 1.7332 0.2032 8.4207

GBDT + RF 1.3284 0.8657 0.3246 0.3087 5.6687
XGBoost + LightGBM 0.9637 0.7931 0.2133 0.2436 4.9876

XGBoost + RF 0.8765 0.6842 0.2657 0.2564 5.2968
LightGBM + GBDT 1.1132 1.0746 0.1834 0.2081 4.8726

LightGBM + RF 1.0037 0.8693 0.1671 0.1773 5.3697

FDS 0.8243 0.8776 0.1332 0.2236 5.2132
AHP 0.8926 0.8453 0.1415 0.2580 0.5021

THBaggingmod 0.8677 0.5687 0.1912 0.2824 4.8256
THBagging 0.7410 0.4238 0.1346 0.1856 4.6402

Compare with the variant model.
—THBaggingmod: In order to verify the superiority of the tree model classifier, we change

the second layer of the model into a common classification algorithm. Here the second level
classification algorithm uses SVM [51], KNN [52], DT [53] and LR [54]. In order to keep consistent
with the combination times of THBagging model, we still conducted experiments with five sets of
arbitrarily matched models, and the best results after several experiments are shown in Table 5.
The best combinations were XGBoost + SVM, XGBoost + KNN, GBDT + LR, LightGBM + DT
and LightGBM + LR. According to the experimental results, the experimental results using the
tree model are better, because the tree model can choose more important features for classification.
From the Table 6, it can be seen that the ordinary classifier has a large variance, which reflects that the
THBaggingmod algorithm does not have good stability.

—THBagging f ea: We use existing data processing methods to balance the problem of large
differences in the number of positive and negative samples, and compare it with our proposed
equalization method (smote + K-means). The comparative data processing methods used here include
SMOTE [31], LR-SMOTE [32] and MOEL [34]. In order to reflect the rationality of the experiment,
we only adjusted the data processing in the following experiments, and the experimental model
remained consistent. We show the test results in the Table 7. No matter what kind of evaluation
index, the data balancing method we proposed has reached the highest value. F1 and macro-F1 are at
least 2.76% and 2.48% higher than the baseline algorithm. This is because the existing data balancing
methods only deal with data from one aspect, that is, increase or decrease the number of a category,
which obviously cannot achieve a good data balance. We consider the problem of data balance from
multiple categories at the same time.

Table 7. Comparison of data balance processing methods.

Method P R F1 Macro-F1

SMOTE 64.32 43.25 51.67 50.82
LR-SMOTE 67.54 45.22 52.65 51.96

MOEL 65.81 46.87 52.08 52.19
SMOTE + K-meansours 70.21 48.32 55.41 54.67

—THBaggingnum: In order to verify the influence of different times of model fusion on the
experimental results, we conducted a comparative experiment with model combination times of 3,
4, 5, 6, 7. In the process of modifying the model combination, we remove the base model with many
classification errors and add a new base model. According to the above THBaggingsame experiment,
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it is meaningless to add the same model combination, so we randomly add a new set of model
combinations, and show the best experimental results of different combination times in Table 8.
It can be seen from the table that the performance of THBaggingnum achieves the best performance
with the increase of fusion times when fusion times are 5. Since then, THBaggingnum’s performance
has deteriorated, possibly due to overfitting, with too many results fed into the Bagging algorithm,
reducing the final accuracy of the model. This is also an important reason why our THBagging model
chooses the number of combinations to be 5.

—THBaggingsame: In order to verify the superiority of model combination diversity, we used five
groups of the same combination model as the basic model for the experiment. With the remaining
conditions unchanged, we conducted five experiments with the same base model as THBagging,
and compared with a single base model. The experimental results are shown in Figure 7. From the
figure we can see that the THBaggingsame model approximates, or does not improve, the experimental
results of a single base model. This makes sense because the same model treats the test data as
a category, which is equivalent to running the same model five times and feeding it into the Bagging
algorithm, which makes no sense.

—Number of layers stacked: In order to find the optimal number of layers for model stack,
we experimented with models with different number of layers. The experimental results are shown
in Figure 8. When the number of stacked layers is 2, the model gets the best experimental results.
When the number of layers is 1, the model does not integrate the original features with the leaf
nodes, which makes the experimental precision insufficient. As the number of stacked layers increases,
the accuracy of the model starts to decline. This is because from the second layer, the input feature of
each layer is the fusion of the previous layer feature and the original feature. The higher the number
of layers, the greater the input feature will be. We show the optimal stacking conditions used in the
experiment in Table 9.

Figure 7. Comparison of the same model combination with a single model.

layer 1 layer 2 layer 3 layer 4 layer 5
Number of model layers

46
47
48
49
50
51
52
53
54
55
56
57
58

Qu
al

ity
 m

et
ric

s (
%

)

macro-F1
F-measure

Figure 8. Comparison of experimental results under different layers.
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Table 8. Model fusion experiment.

Num Model Combination F1 macro− F1

3 LightGBM + RF\LightGBM + GBDT\XGBoost + RF 52.96 52.07

4
XGBoost + LightGBM\XGBoost + RF\

LightGBM + RF\LightGBM + GBDT
53.28 52.16

5
GBDT + RF\XGBoost + LightGBM\XGBoost + RF\

LightGBM + RF\LightGBM + GBDT
55.41 54.67

6
GBDT + RF\XGBoost + LightGBM\XGBoost + RF\

LightGBM+ RF\LightGBM + GBDT\LightGBM + XGBoost
54.16 53.37

7
GBDT + RF\XGBoost + LightGBM\XGBoost + RF\LightGBM+ RF\

LightGBM + GBDT\LightGBM + XGBoost\XGBoost + GBDT
52.47 51.43

Table 9. Hierarchical stacking experiment.

Num of Layers Model Combination F1 macro− F1

1 GBDT\XGBoost\XGBoost\LightGBM\LightGBM 53.96 53.06

2
GBDT + RF\XGBoost + LightGBM\XGBoost

+ RF\LightGBM+ RF\LightGBM + GBDT
55.41 54.67

3
GBDT + RF + XGBoost\XGBoost + LightGBM + RF\XGBoost + RF

+ XGBoost\LightGBM + RF+ GBDT\LightGBM + GBDT + XGBoost
54.13 53.47

4

GBDT + RF + XGBoost + LightGBM\XGBoost + LightGBM + RF +

XGBoost\XGBoost + RF + XGBoost + LightGBM\LightGBM + RF

+ GBDT + LightGBM\LightGBM + GBDT + XGBoost + RF

52.68 51.26

5

GBDT + RF + XGBoost + LightGBM + GBDT\XGBoost + LightGBM +

RF + XGBoost + LightGBM\XGBoost + RF + XGBoost + LightGBM +

DBDT\LightGBM + RF + GBDT+ LightGBM + GBDT

\LightGBM + GBDT + XGBoost + RF + XGBoost

51.82 50.68

6. Future and Conclusions

In this paper, the intelligent identification problem of basic medical insurance fraud is analyzed
and discussed. According to the problem scenario, detailed and in-depth feature analysis and extraction
are performed through data analysis and mining, and two rounds of feature extraction are performed
based on the traditional feature extraction mode. Aiming at the problem of imbalanced category
distribution in the basic medical insurance fraud recognition scenario, the THBagging algorithm
was first proposed. This algorithm was used to solve the problems of insufficient sample utilization,
easy overfitting, and low recognition rate in the category distribution problem. Finally, through the
research content of this article, it is proved on the experimental data that THBagging algorithm is
better than traditional algorithms.

In the future, we plan to study the adaptive feature ranking semantic algorithm based on natural
language understanding (NLP) to improve the problem of feature importance screening and analysis.
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