
electronics

Article

Evaluation of Robust Spatial Pyramid Pooling Based
on Convolutional Neural Network for Traffic Sign
Recognition System

Christine Dewi 1,2 , Rung-Ching Chen 1,* and Shao-Kuo Tai 1,*
1 Department of Information Management, Chaoyang University of Technology, Taichung 41349, Taiwan;

christine.dewi13@gmail.com
2 Faculty of Information Technology, Satya Wacana Christian University, Central Java 50711, Indonesia
* Correspondence: crching@cyut.edu.tw (R.-C.C.); sgdai@cyut.edu.tw (S.-K.T.)

Received: 29 April 2020; Accepted: 25 May 2020; Published: 27 May 2020
����������
�������

Abstract: Traffic sign recognition (TSR) is a noteworthy issue for real-world applications such as
systems for autonomous driving as it has the main role in guiding the driver. This paper focuses on
Taiwan’s prohibitory sign due to the lack of a database or research system for Taiwan’s traffic sign
recognition. This paper investigates the state-of-the-art of various object detection systems (Yolo V3,
Resnet 50, Densenet, and Tiny Yolo V3) combined with spatial pyramid pooling (SPP). We adopt
the concept of SPP to improve the backbone network of Yolo V3, Resnet 50, Densenet, and Tiny
Yolo V3 for building feature extraction. Furthermore, we use a spatial pyramid pooling to study
multi-scale object features thoroughly. The observation and evaluation of certain models include vital
metrics measurements, such as the mean average precision (mAP), workspace size, detection time,
intersection over union (IoU), and the number of billion floating-point operations (BFLOPS). Our
findings show that Yolo V3 SPP strikes the best total BFLOPS (65.69), and mAP (98.88%). Besides,
the highest average accuracy is Yolo V3 SPP at 99%, followed by Densenet SPP at 87%, Resnet 50
SPP at 70%, and Tiny Yolo V3 SPP at 50%. Hence, SPP can improve the performance of all models in
the experiment.

Keywords: spatial pyramid pooling; Yolo V3; object recognition; convolutional neural network

1. Introduction

In all countries, traffic signs have essential information for drivers on the road, including the
speed limitation, direction indication, stop information, and so on [1]. Traffic sign recognition systems
(TSRS) are crucial in numerous applications in the real world, such as autonomous driving, traffic
surveillance, driver protection and assistance, road network sustenance, and investigation of traffic
disturbances [1]. Two related subjects that important in TSRS are traffic sign detection (TSD) and traffic
sign recognition (TSR). TSD directly affects the safety of drivers and because of their ignorance can
easily cause damage. Automatic systems that support drivers can improve unsafe driving behavior
based on the detection and recognition of signs [2]. TSRS are difficult and complicated tasks in
consequence of several problems, including occlusion, illumination, color variation, rotation, and skew
that appear from camera setup in the surroundings. Further, there could be multiple signs in an image
with different colors, sizes, and shapes [3,4].

The reality of traffic signs deliberates to have distinguishable features and to be specific, such as
simple shapes and uniform colors. The detection and recognition of traffic signs imply a constrained
problem. In addition, there are some differences in the design of signs between the countries. In certain
cases, there can be significant differences in the design of signs in various countries. These differences are

Electronics 2020, 9, 889; doi:10.3390/electronics9060889 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-1284-234X
https://orcid.org/0000-0001-7621-1988
http://dx.doi.org/10.3390/electronics9060889
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/6/889?type=check_update&version=2

Electronics 2020, 9, 889 2 of 21

easier to identify by humans, but for an automated detection system can be a major challenge. Therefore,
the development of a strong TSRS system is an important and challenging issue in consequence of
the latency in the testing time. For this work, we will focus on Taiwan’s prohibitory sign detection
and recognition. Our motivation is the lack of a database or research system for Taiwan’s traffic
sign recognition.

This paper summarizes and examines eight convolutional neural network (CNN) models combined
with spatial pyramid pooling (SPP) for object detection. We fine-tune them on Taiwan’s prohibitory
sign dataset, which is built by ourselves to perform traffic sign detection. Based on our inspection,
no other scientific paper investigates diverse deep-learning object detectors specifically tailored to the
area of traffic sign detection problems while estimating various key factors, such as mean average
precision (mAP), intersection over union (IoU), and time of detection.

The main objectives of this study are as follows: (1) Presentation of a brief survey of object
detection algorithms based on CNN, specifically Yolo V3, Yolo V3 SPP, Densenet, Densenet SPP,
Resnet 50, Resnet 50 SPP, Tiny Yolo V3, and Tiny Yolo V3 SPP. (2) Examination and evaluation of
diverse state-of-the-art object detectors, mainly for the traffic sign detection problem. The performance
evaluation of these models includes crucial metrics, such as the mAP, detection time, intersection over
union (IoU), and the number of billion floating-point operations (BFLOPS). (3) For more complete and
accurate learning of multi-scale object features, we use spatial pyramid pooling to collect different
scale local features in the same convolutional layer. (4) The experiments show that Yolo V3 SPP strikes
the best accuracy and SPP, which can improve the performance of all models.

The rest of the paper is organized as follows. The materials and methods were discussed in
Section 2. Section 3 briefly describes our experiment results. Further, Section 4 analyzes, compares and
discusses traffic sign detection results. Subsequently, we give conclusions and future research work in
Section 5.

2. Materials and Methods

2.1. CNN for Object Detection

There have been several classic object recognition networks in the last few years [5], for instance
AlexNet [6] (2012), VGG [7] (2014), GoogLeNet [8] (2015–2016), ResNet [9,10] (2016), SqueezeNet [11]
(2016), Xception [12] (2016), MobileNet [13] (2017–2018), ShufficNet [14] (2017–2018), SE-Net [15]
(2017), DenseNet [16] (2017), and CondenseNet [17] (2017), Initially, the convolutional neural network
was developed and enlarged to achieve greater precision accuracy. However, networks have grown
smaller and more efficient in recent years. In highly accurate target sensing tasks, the new deep
learning algorithms, especially those that apply to CNN, such as You Only Look Once, (Yolo) v3,
show huge potential [18]. The multiscale and sliding window approach that produces bounding
boxes and scores via CNN can be implemented efficiently within a ConvNet [19], and R-CNN [20].
Besides, R-CNN is also expensive in time and memory, as it executes a CNN forward-pass for all object
proposal without sharing computation. To solve this problem, spatial pyramid pooling networks
(SPPnets) [21] were introduced to increase the efficiency of R-CNN through computational sharing.
SPPnet calculates feature maps from the entire input image only once and then supplies feature in
arbitrary-size sub-images to generate fixed-length representations and for detectors training. However,
SSPnet eliminates the replicated evaluation of convolutional feature maps, it still needs training in a
multi-stage pipeline as the fixed-length feature vectors generated by numerous SPP layers are also
moved on to fully-connected layers. Therefore, the whole process is still slow. Certain techniques,
including single shot multiBox detector (SSD) [22] and Yolo [23], exemplify all the processing in a single
fully-convolutional neural network rather than making a persistent pipeline of regional proposals
and object classification. This knowledge conducts to a significantly more expeditious object detector.
The one-stage method relies on the end-to-end regression approach technology. Yolo V3 [24] applied
Darknet-53 to substitute Darknet-19 as the backbone network and employed multiscale prediction [25].

Electronics 2020, 9, 889 3 of 21

2.2. Spatial Pyramid Pooling (SPP)

In terms of object recognition tasks, spatial pyramid pooling (SPP) [26,27] was significantly victorious.
Consider its severity, it is competing among methods that use more complicated spatial models. For the
interpretation of the spatial pyramid, the image is split into a range of finer grids at each level of the
pyramid. In addition, it is commonly-known as spatial pyramid matching (SPM) [28], a development
of the bag-of-words (BoW) model [29], which is one of the most famous and successful methods in
computer vision methods. SPP has continued been an important component and superior system to win
the competition in the classification [30,31] and detection [32] before the recent ascendance of CNN.

Some benefits of SPP [21] could be explained as follow: First, SPP can produce a fixed-length output
despite the input dimension. Second, SPP applies multi-level spatial bins, while the sliding window
pooling employs just a single-window size. Next, SPP allows us not only to generate images from
arbitrarily sized images for testing but also to feed images with different sizes and scales during training.
Additionally, training with variable-size images raises invariance in size and decreases overfitting.
In addition, SPP is extremely effective in object detection. In the foremost object detection method
R-CNN, the features from candidate windows are obtained through deep convolutional networks.
Furthermore, SPP can combine features derived at variable scales to the flexibility of input scales. CNN
layers receive some despotic input sizes, but they generate outputs of variable sizes. The softmax
classifiers or fully-connected layers require fixed-length vectors. Such vectors can be generated by the
BoW approach [29] that pools the features together at the same time. SPP improves the performance of
BoW in that stage, and it can preserve spatial information by pooling in local spatial bins. The space
bins have proportional sizes to the image size, and regardless of the image size the number of bins
is fixed. On the contrary, the sliding window pooling of former deep networks and the number of
sliding windows depends on the scale of the data. Hence, to implement the deep network for images
of arbitrary sizes, the last pooling layer will substitute with an SPP layer. In the particular spatial bin,
we pool the replies of each filter and apply max pooling. The outputs of the spatial pyramid pooling
are kM dimensional vectors with the number of bins indicated as M. Further, k is the number of filters
in the latest convolutional layer. The fixed-dimensional vectors are the input to the fully-connected
layer. By using SPP, the input image can vary in size, which allows not only arbitrary aspect ratios
but also enables absolute scales. The input image can resize to any scale and adopt an identical deep
network. When the input image is at diverse scales, the network with the equivalent filter sizes will
extract features at various sizes and scales. A network structure with an SPP layer can be seen in
Figure 1. In our work, the SPP blocks layer is inserted to the Yolo V3, Resnet 50, Densenet, and Tiny
Yolo V3 configuration file. Moreover, we use the same SPP blocks layer in the configuration file with a
spatial model. The spatial model uses down sampling in convolutional layers to receive the important
features in the max-pooling layers. It applies three different sizes of the max pool for each image by
using [route]. Different layers −2, −4 and −1, −3, −5, −6 in conv5 were uses in each [route].

2.3. Object Detection Architecture

The principal features of each architecture (Yolo V3, Densenet, Resnet 50, Tiny Yolo V3) are
summarized in this section.

2.3.1. Yolo V3 and Tiny Yolo V3

Yolo V3 was proposed by [24] in 2018. It splits the input image into (S × S) grids cells [33]
with the same size and forecast bounding boxes and probabilities for each grid cell. Yolo V3 uses
multi-scale fusion to make predictions and uses a singular neural network to process the complete
image. The dimension clusters are applied as prior boxes to predict boundary boxes. Therefore,
the k-means method is adopted to carry out dimensional clustering on the target boxes in the dataset
and get nine prior boxes of various sizes, which are evenly spread to feature graphs of various scales.
Further, Yolo V3 allows individual bounding box anchor for each ground truth object [34]. If the

Electronics 2020, 9, 889 4 of 21

core point of the object’s ground truth drops inside a specific grid, and the grid is responsible for
recognizing the object. Figure 2 describes the bounding boxes with the prior dimension and location
prediction. As shown in Figure 2, bx, by, bw, bh are the x, y center coordinates of the width, and height
of our prediction. tx, ty, tw, and tk are the network outputs. Next, cx and cy are the top-left coordinates
of the grid, whereas pw and ph are anchors dimensions for the box [23,35].

bx = σ(tx) + cx (1)

by = σ
(
ty
)
+ cy (2)

bw = pwetw (3)

bh = pheth (4)
Electronics 2020, 9, 889 4 of 24

Figure 1. A network structure with a spatial pyramid pooling (SPP) layer.

2.3. Object Detection Architecture

The principal features of each architecture (Yolo V3, Densenet, Resnet 50, Tiny Yolo V3) are
summarized in this section.

2.3.1. Yolo V3 and Tiny Yolo V3

Yolo V3 was proposed by [24] in 2018. It splits the input image into (S × S) grids cells [33] with
the same size and forecast bounding boxes and probabilities for each grid cell. Yolo V3 uses multi-
scale fusion to make predictions and uses a singular neural network to process the complete image.
The dimension clusters are applied as prior boxes to predict boundary boxes. Therefore, the k-means
method is adopted to carry out dimensional clustering on the target boxes in the dataset and get nine
prior boxes of various sizes, which are evenly spread to feature graphs of various scales. Further,
Yolo V3 allows individual bounding box anchor for each ground truth object [34]. If the core point of
the object's ground truth drops inside a specific grid, and the grid is responsible for recognizing the
object. Figure 2 describes the bounding boxes with the prior dimension and location prediction. As
shown in Figure 2, 𝑏 , 𝑏 , 𝑏 , 𝑏 are the x, y center coordinates of the width, and height of our
prediction. 𝑡 , 𝑡 , 𝑡 , and 𝑡 are the network outputs. Next, 𝑐 and 𝑐 are the top-left coordinates
of the grid, whereas 𝑝 and 𝑝 are anchors dimensions for the box [23,35]. 𝑏 = 𝜎(𝑡) + 𝑐 (1) 𝑏 = 𝜎 𝑡 + 𝑐 (2) 𝑏 = 𝑝 𝑒 (3) 𝑏 = 𝑝 𝑒 (4)

Figure 1. A network structure with a spatial pyramid pooling (SPP) layer.Electronics 2020, 9, 889 5 of 24

Figure 2. Bounding boxes with dimension priors and location prediction.

The Tiny Yolo V3 model is a reduced version of the Yolo V3 model. Yolo V3 applies the
architecture of darknet 53 and then employs many 1 × 1 and 3 × 3 convolution kernels to extract
features. This model is lighter and faster than Yolo while also outperforming other light model's
accuracy. Tiny Yolo V3 shrinkage the number of convolutional layers, usually it only has seven
convolutional layers. The features are derived by a small number of 1 × 1 and 3 × 3 convolutional
layers. In addition, Tiny Yolo V3 uses the pooling layer in place of Yolo V3’s convolutional layer with
a step size of 2 to attain dimensionality reduction. Nevertheless, its convolutional layer structure still
uses the equal structure of the loss function (Convolution2D + BatchNormalization + LeakyRelu) as
Yolo V3. The model is trained and calculated the loss value, and the loss function used by Tiny Yolo
V3 is the same as that of Yolo V3. Hence, the loss function is essentially consist of the position of the
prediction frame (x,y), the prediction frame size (w,h), the class prediction (class), and the confidence
prediction (confidence) [36]. Further, Yolo V3 SPP and Tiny Yolo V3 SPP is implemented by
incorporating three SPP modules in Yolo V3 and Tiny Yolo V3 in front of three detection headers
between the 5 and 6 convolutional layers [37]. Yolo V3 SPP and Tiny Yolo V3 SPP are designed to
improve the detection accuracy of baseline models further.

2.3.2. Densenet

Densenet has over 40 layers and has a higher convergence speed [38]. Further, Densenet needs
to consider additional functionality channels, including single-level dimensions or cross-level
dimensions, to reduce the need for functional replication in the network model and enhance the
retrieval of features [39]. Moreover, Densenet has appealing benefits as follows: It assists feature reuse
and relieves the disappearing gradient problem. Consequently, it also has clear limitations. First,
every layer simply combines the feature maps extracted by concatenating the process from previous
layers. The operation was done without considering the interdependencies between different
channels [40]. Further, the Densenet is principally composed of Dense Block, Transition Layer, and
Growth Rate [41]. Dense Block [42]: every Densenet consists of N Dense Blocks. In any Dense Block,
there exist m layers where each layer is linked feed-forward to all consecutive layers. If 𝑥 is denoted
as the output from the 𝑚𝑡ℎ layer then it is calculated using Equation (5): 𝑥 = 𝐻 ([𝑥 , 𝑥 , … , 𝑥]) (5)

where 𝐻 is the composite function that operated in this layer and a concatenation function between
the individual layers inside it will be processed. The concatenated features are treated through a
combination function that composed of BN, Relu, and Convolution (3 × 3).

A layer between each dense block to which the spatial dimension of the characteristic’s maps
known as the transition layer. It is consisting of (1 × 1) convolution layer and (2 × 2) average pooling.
Growth Rate: The output from each concatenation function in Equation (5) is a feature map f. The size
of the 𝑚𝑡ℎ layers is 𝑓(𝑚 − 1) + 𝑓 , where 𝑓 is the number of channels of the major input image. To
improve the efficiency of the parameter and to monitor the network growth, f is limited to the growth

Figure 2. Bounding boxes with dimension priors and location prediction.

The Tiny Yolo V3 model is a reduced version of the Yolo V3 model. Yolo V3 applies the architecture
of darknet 53 and then employs many 1 × 1 and 3 × 3 convolution kernels to extract features.
This model is lighter and faster than Yolo while also outperforming other light model’s accuracy. Tiny
Yolo V3 shrinkage the number of convolutional layers, usually it only has seven convolutional layers.
The features are derived by a small number of 1 × 1 and 3 × 3 convolutional layers. In addition, Tiny
Yolo V3 uses the pooling layer in place of Yolo V3’s convolutional layer with a step size of 2 to attain
dimensionality reduction. Nevertheless, its convolutional layer structure still uses the equal structure of
the loss function (Convolution2D + BatchNormalization + LeakyRelu) as Yolo V3. The model is trained

Electronics 2020, 9, 889 5 of 21

and calculated the loss value, and the loss function used by Tiny Yolo V3 is the same as that of Yolo V3.
Hence, the loss function is essentially consist of the position of the prediction frame (x,y), the prediction
frame size (w,h), the class prediction (class), and the confidence prediction (confidence) [36]. Further,
Yolo V3 SPP and Tiny Yolo V3 SPP is implemented by incorporating three SPP modules in Yolo V3 and
Tiny Yolo V3 in front of three detection headers between the 5 and 6 convolutional layers [37]. Yolo V3
SPP and Tiny Yolo V3 SPP are designed to improve the detection accuracy of baseline models further.

2.3.2. Densenet

Densenet has over 40 layers and has a higher convergence speed [38]. Further, Densenet needs to
consider additional functionality channels, including single-level dimensions or cross-level dimensions,
to reduce the need for functional replication in the network model and enhance the retrieval of
features [39]. Moreover, Densenet has appealing benefits as follows: It assists feature reuse and
relieves the disappearing gradient problem. Consequently, it also has clear limitations. First, every
layer simply combines the feature maps extracted by concatenating the process from previous layers.
The operation was done without considering the interdependencies between different channels [40].
Further, the Densenet is principally composed of Dense Block, Transition Layer, and Growth Rate [41].
Dense Block [42]: every Densenet consists of N Dense Blocks. In any Dense Block, there exist m layers
where each layer is linked feed-forward to all consecutive layers. If xm is denoted as the output from
the mth layer then it is calculated using Equation (5):

xm = Hm([x1, x2, . . . , xm−1]) (5)

where Hm is the composite function that operated in this layer and a concatenation function between
the individual layers inside it will be processed. The concatenated features are treated through a
combination function that composed of BN, Relu, and Convolution (3 × 3).

A layer between each dense block to which the spatial dimension of the characteristic’s maps
known as the transition layer. It is consisting of (1 × 1) convolution layer and (2 × 2) average pooling.
Growth Rate: The output from each concatenation function in Equation (5) is a feature map f. The size
of the mth layers is f (m− 1) + f0, where f0 is the number of channels of the major input image.
To improve the efficiency of the parameter and to monitor the network growth, f is limited to the
growth rate G with a small integer value. This variable helps to monitor the amount of information
stored in each layer.

2.3.3. Resnet 50

Residual Networks (Resnet) [9] are deep convolutional networks where the basic idea is to skip
blocks of convolutional layers by using shortcut connections. Further, Resnet is characterized by a very
deep network and contains 34 layers to 152 layers [43,44]. This architecture can be seen in Figure 3
and developed by researchers at Microsoft won the ILSVRC 2015 classification task [45]. In the Resnet
model, a residual network structure is implemented. The deep CNN model not only avoids the issue
of model deterioration by using the residual network structure, but it also achieves better efficiency.
The Resnet used skip connections to make convergence more rapid. Even the much deeper layers of
Resnet can be trained more quickly than previous ones. This model also used the batch normalization
technique to avoid overfitting [46]. Both of these feature extractors are built with four residual blocks:
based on the original paper, the first three-layer (namely conv2_x, conv3_x, and conv4_x) extract Region
Proposal Networks (RPN) features, while the final layer of conv4_x is applied for predicting region
proposals. Moreover, box classifier features are gained by the last layer of the fourth residual block
(conv5_x) [47,48].

Electronics 2020, 9, 889 6 of 21

Electronics 2020, 9, 889 6 of 24

rate G with a small integer value. This variable helps to monitor the amount of information stored in
each layer.

2.3.3. Resnet 50

Residual Networks (Resnet) [9] are deep convolutional networks where the basic idea is to skip
blocks of convolutional layers by using shortcut connections. Further, Resnet is characterized by a
very deep network and contains 34 layers to 152 layers [43,44]. This architecture can be seen in
Figure 3 and developed by researchers at Microsoft won the ILSVRC 2015 classification task [45]. In
the Resnet model, a residual network structure is implemented. The deep CNN model not only
avoids the issue of model deterioration by using the residual network structure, but it also achieves
better efficiency. The Resnet used skip connections to make convergence more rapid. Even the much
deeper layers of Resnet can be trained more quickly than previous ones. This model also used the
batch normalization technique to avoid overfitting [46]. Both of these feature extractors are built with
four residual blocks: based on the original paper, the first three-layer (namely conv2_x, conv3_x, and
conv4_x) extract Region Proposal Networks (RPN) features, while the final layer of conv4_x is applied
for predicting region proposals. Moreover, box classifier features are gained by the last layer of the
fourth residual block (conv5_x) [47,48].

Figure 3. Residual block.

2.4. Methods

In this section, we explain our proposed methodology to recognize Taiwan’s prohibitory signs
using spatial pyramid polling combine with Yolo V3. Figure 4 illustrates our Yolo V3 SPP
architecture. Algorithm 1 explains the Yolo V3 SPP recognition process as follows.

Algorithm 1 Yolo V3 SPP Recognition Process
1. Split the input image into (S × S) grids.
2. Create K bounding boxes in concert with the estimation of the anchor boxes for every
grid.
3. Extract all object features from the image using the convolutional neural network.
4. Predict the 𝒃 = [𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏] and the 𝒄𝒍𝒂𝒔𝒔 = [𝑃1, 𝑃2, 𝑃3, 𝑃4] .
5. Appeal the optimum confidence 𝐼𝑜𝑈 of the K bounding boxes with the
threshold 𝐼𝑜𝑈 .
6. If 𝐼𝑜𝑈 > 𝐼𝑜𝑈 means that the bounding box includes the object. Otherwise, the
bounding box does not contain the object.
7. Select the category with the greatest predicted probability as the object category
relating to.
8. Apply the non-maximum suppression (NMS) to conduct a maximum local search to
overcome redundant boxes and output.
9. Object detection result presentation.

Figure 3. Residual block.

2.4. Methods

In this section, we explain our proposed methodology to recognize Taiwan’s prohibitory signs
using spatial pyramid polling combine with Yolo V3. Figure 4 illustrates our Yolo V3 SPP architecture.
Algorithm 1 explains the Yolo V3 SPP recognition process as follows.

Algorithm 1 Yolo V3 SPP Recognition Process

1. Split the input image into (S × S) grids.
2. Create K bounding boxes in concert with the estimation of the anchor boxes for every grid.
3. Extract all object features from the image using the convolutional neural network.

4. Predict the b =
[
bx, by, bw, bh, bc

]T
and the class = [P1, P2, P3, P4]T.

5. Appeal the optimum confidence IoUtruth
pred of the K bounding boxes with the threshold IoUthres.

6. If IoUtruth
pred > IoUthres means that the bounding box includes the object. Otherwise, the bounding box does

not contain the object.
7. Select the category with the greatest predicted probability as the object category relating to.
8. Apply the non-maximum suppression (NMS) to conduct a maximum local search to overcome redundant
boxes and output.
9. Object detection result presentation.

Electronics 2020, 9, 889 7 of 24

Taiwan’s prohibitory sign image class P1, P2, P3, and P4 were used as input of the object
detection process. The algorithm processes some phases as follows; (1) the detected targets are limited
by bounding boxes. (2) The objects in the class of the image are associated. The same target is given
the same mark in each image. (3) The same image will give the same target uniform label. (4) NMS is
used to perform a maximum local search to compress redundant boxes and output, then display the
results of object detection. In our work, Yolo V3, with a spatial model, uses down sampling in
convolutional layers to receive the important features in the max-pooling layers. It applies three
different sizes of the max pool for each image by using [route]. Different layers −2, −4 and −1, −3, −5,
−6 in conv were uses in each [route].

Figure 4. Yolo V3 with spatial pyramid pooling (SPP) architecture.

Yolo V3 SPP model is performed in one phase for detecting and recognizing Taiwan’s
prohibitory sign. This work used the BBox label tool [49] to generate a bounding box for each sign
(no entry, no stopping, no parking, speed limit). Further, the labeling process is executed for all class
labels P1, P2, P3, and P4. Usually, one image can have more than one bounding box, and it means
one image can have more than one label. In the detection phase, a single class detector model was
used, and one class label belongs to one training model. Hence, our experiment uses four training
models. Additionally, object coordinates in the form (𝑥 , 𝑦 , 𝑥 , 𝑦) are the return values of the
bounding box labeling tool. These object coordinates are different from the Yolo input value. On the
contrary, the Yolo input value is the center point of the object and its width and height (x, y, w, h).
Therefore, the system must modify the bounding box coordinate into the Yolo input format. The
modification process use Equations (6)–(11) [50]. 𝑑𝑤 = 1/𝑊 (6)

𝑥 = (𝑥 + 𝑥)2 × 𝑑𝑤 (7)

𝑑ℎ = 1/𝐻 (8)

𝑦 = (𝑦 + 𝑦)2 × 𝑑ℎ (9)

𝑤 = (𝑥 − 𝑥) × 𝑑𝑤 (10) ℎ = (𝑦 − 𝑦) × 𝑑ℎ (11)

where H is the height of the image, 𝑑ℎ is the absolute height of the image, W is the width of the
image, and 𝑑𝑤 is the absolute width of the image. Therefore, float values relative to the width and
height of the image (𝑑𝑤, 𝑑ℎ); this value can be equal from 0.0 to 1.0.

Figure 4. Yolo V3 with spatial pyramid pooling (SPP) architecture.

Taiwan’s prohibitory sign image class P1, P2, P3, and P4 were used as input of the object detection
process. The algorithm processes some phases as follows; (1) the detected targets are limited by
bounding boxes. (2) The objects in the class of the image are associated. The same target is given the
same mark in each image. (3) The same image will give the same target uniform label. (4) NMS is used
to perform a maximum local search to compress redundant boxes and output, then display the results
of object detection. In our work, Yolo V3, with a spatial model, uses down sampling in convolutional
layers to receive the important features in the max-pooling layers. It applies three different sizes of the

Electronics 2020, 9, 889 7 of 21

max pool for each image by using [route]. Different layers −2, −4 and −1, −3, −5, −6 in conv5 were
uses in each [route].

Yolo V3 SPP model is performed in one phase for detecting and recognizing Taiwan’s prohibitory
sign. This work used the BBox label tool [49] to generate a bounding box for each sign (no entry,
no stopping, no parking, speed limit). Further, the labeling process is executed for all class labels
P1, P2, P3, and P4. Usually, one image can have more than one bounding box, and it means one
image can have more than one label. In the detection phase, a single class detector model was used,
and one class label belongs to one training model. Hence, our experiment uses four training models.
Additionally, object coordinates in the form (x1, y1, x2, y2) are the return values of the bounding box
labeling tool. These object coordinates are different from the Yolo input value. On the contrary, the Yolo
input value is the center point of the object and its width and height (x, y, w, h). Therefore, the system
must modify the bounding box coordinate into the Yolo input format. The modification process use
Equations (6)–(11) [50].

dw = 1/W (6)

x =
(x1 + x2)

2
× dw (7)

dh = 1/H (8)

y =
(y1 + y2)

2
× dh (9)

w = (x2 − x1) × dw (10)

h = (y2 − y1) × dh (11)

where H is the height of the image, dh is the absolute height of the image, W is the width of the image,
and dw is the absolute width of the image. Therefore, float values relative to the width and height of
the image (dw, dh); this value can be equal from 0.0 to 1.0.

3. Results

3.1. Dataset

Considering there is no pre-existing dataset for Taiwan’s prohibitory signs, the system had to
customize a database and collect the image by ourselves. The dataset split into 70% for training, 30%
for testing and the dataset contains pictures of multiple scenes. This experiment focused on Taiwan’s
prohibitory sign that consists of 235 no entry images, 250 no stopping images, 185 speed limit images,
and 230 no parking images. Moreover, Table 1 represents Taiwan’s prohibitory signs in detail.

Table 1. Taiwan’s Prohibitory Signs.

ID Class Name Sign

0 P1 No entry

Electronics 2020, 9, 889 8 of 24

3. Results

3.1. Dataset

Considering there is no pre-existing dataset for Taiwan’s prohibitory signs, the system had to
customize a database and collect the image by ourselves. The dataset split into 70% for training, 30%
for testing and the dataset contains pictures of multiple scenes. This experiment focused on Taiwan’s
prohibitory sign that consists of 235 no entry images, 250 no stopping images, 185 speed limit images,
and 230 no parking images. Moreover, Table 1 represents Taiwan’s prohibitory signs in detail.

Table 1. Taiwan’s Prohibitory Signs.

ID Class Name Sign

0 P1 No entry

1 P2 No stopping

2 P3 No parking

3 P4 Speed Limit

3.2. Training Result

The process of training obtained additional data from the original images with the application
of basic geometric transformation methods such as random transformations, rotations, scale shifts,
tears, horizontal flips, and vertical flips. These techniques are commonly used to train large neural
networks. Therefore, the experiment performs some operations during data augmentation using
several parameter settings as follows: rotation_range = 20, zoom_range = 0.10, width_shift_range =
0.2, height_shift_range = 0.2, and shear_range = 0.15. Therefore, the system manually detected and
recognized the traffic sign used a bounding box labelling tool to give a coordinate location for the
object to be detected [51]. The results of the tools are four points of the position coordinate, along
with the class label. Next step, transform the label to Yolo format before training use the Yolo
Annotation tool [49]. The tool changes the values to a format that could be read by the Yolo V3
training algorithm. Moreover, the training model environment is a Nvidia RTX1080Ti GPU
accelerator 11 GB memory, i7 central processing unit (CPU), and 16 GBDDR2 memory.

The Yolo loss function is as follows [52–54]:

𝑙𝑜𝑠𝑠 = 𝑐𝑜𝑜𝑟𝑑𝐸𝑟𝑟 + 𝑖𝑜𝑢𝐸𝑟𝑟 + 𝑐𝑙𝑠𝐸𝑟𝑟 (12)

𝐵𝐶(𝑎, 𝑎) = −[𝑎 log 𝑎 + (1 − 𝑎) log(1 − 𝑎)] (13) 𝑆𝑇(𝑤, ℎ) = 2 − 𝑤 × ℎ (14)

𝑖𝑜𝑢𝐸𝑟𝑟 = 𝐼 [𝐵𝐶(𝑐 , �̂�)] + 𝜆 {𝐼 [𝐵𝐶(𝑐 , �̂�)] (15)

𝑐𝑙𝑠𝐸𝑟𝑟 = 𝐼 𝐵𝐶 (𝑝 (𝑐), �̂� (𝑐)) (16)

1 P2 No stopping

Electronics 2020, 9, 889 8 of 24

3. Results

3.1. Dataset

Considering there is no pre-existing dataset for Taiwan’s prohibitory signs, the system had to
customize a database and collect the image by ourselves. The dataset split into 70% for training, 30%
for testing and the dataset contains pictures of multiple scenes. This experiment focused on Taiwan’s
prohibitory sign that consists of 235 no entry images, 250 no stopping images, 185 speed limit images,
and 230 no parking images. Moreover, Table 1 represents Taiwan’s prohibitory signs in detail.

Table 1. Taiwan’s Prohibitory Signs.

ID Class Name Sign

0 P1 No entry

1 P2 No stopping

2 P3 No parking

3 P4 Speed Limit

3.2. Training Result

The process of training obtained additional data from the original images with the application
of basic geometric transformation methods such as random transformations, rotations, scale shifts,
tears, horizontal flips, and vertical flips. These techniques are commonly used to train large neural
networks. Therefore, the experiment performs some operations during data augmentation using
several parameter settings as follows: rotation_range = 20, zoom_range = 0.10, width_shift_range =
0.2, height_shift_range = 0.2, and shear_range = 0.15. Therefore, the system manually detected and
recognized the traffic sign used a bounding box labelling tool to give a coordinate location for the
object to be detected [51]. The results of the tools are four points of the position coordinate, along
with the class label. Next step, transform the label to Yolo format before training use the Yolo
Annotation tool [49]. The tool changes the values to a format that could be read by the Yolo V3
training algorithm. Moreover, the training model environment is a Nvidia RTX1080Ti GPU
accelerator 11 GB memory, i7 central processing unit (CPU), and 16 GBDDR2 memory.

The Yolo loss function is as follows [52–54]:

𝑙𝑜𝑠𝑠 = 𝑐𝑜𝑜𝑟𝑑𝐸𝑟𝑟 + 𝑖𝑜𝑢𝐸𝑟𝑟 + 𝑐𝑙𝑠𝐸𝑟𝑟 (12)

𝐵𝐶(𝑎, 𝑎) = −[𝑎 log 𝑎 + (1 − 𝑎) log(1 − 𝑎)] (13) 𝑆𝑇(𝑤, ℎ) = 2 − 𝑤 × ℎ (14)

𝑖𝑜𝑢𝐸𝑟𝑟 = 𝐼 [𝐵𝐶(𝑐 , �̂�)] + 𝜆 {𝐼 [𝐵𝐶(𝑐 , �̂�)] (15)

𝑐𝑙𝑠𝐸𝑟𝑟 = 𝐼 𝐵𝐶 (𝑝 (𝑐), �̂� (𝑐)) (16)

2 P3 No parking

Electronics 2020, 9, 889 8 of 24

3. Results

3.1. Dataset

Considering there is no pre-existing dataset for Taiwan’s prohibitory signs, the system had to
customize a database and collect the image by ourselves. The dataset split into 70% for training, 30%
for testing and the dataset contains pictures of multiple scenes. This experiment focused on Taiwan’s
prohibitory sign that consists of 235 no entry images, 250 no stopping images, 185 speed limit images,
and 230 no parking images. Moreover, Table 1 represents Taiwan’s prohibitory signs in detail.

Table 1. Taiwan’s Prohibitory Signs.

ID Class Name Sign

0 P1 No entry

1 P2 No stopping

2 P3 No parking

3 P4 Speed Limit

3.2. Training Result

The process of training obtained additional data from the original images with the application
of basic geometric transformation methods such as random transformations, rotations, scale shifts,
tears, horizontal flips, and vertical flips. These techniques are commonly used to train large neural
networks. Therefore, the experiment performs some operations during data augmentation using
several parameter settings as follows: rotation_range = 20, zoom_range = 0.10, width_shift_range =
0.2, height_shift_range = 0.2, and shear_range = 0.15. Therefore, the system manually detected and
recognized the traffic sign used a bounding box labelling tool to give a coordinate location for the
object to be detected [51]. The results of the tools are four points of the position coordinate, along
with the class label. Next step, transform the label to Yolo format before training use the Yolo
Annotation tool [49]. The tool changes the values to a format that could be read by the Yolo V3
training algorithm. Moreover, the training model environment is a Nvidia RTX1080Ti GPU
accelerator 11 GB memory, i7 central processing unit (CPU), and 16 GBDDR2 memory.

The Yolo loss function is as follows [52–54]:

𝑙𝑜𝑠𝑠 = 𝑐𝑜𝑜𝑟𝑑𝐸𝑟𝑟 + 𝑖𝑜𝑢𝐸𝑟𝑟 + 𝑐𝑙𝑠𝐸𝑟𝑟 (12)

𝐵𝐶(𝑎, 𝑎) = −[𝑎 log 𝑎 + (1 − 𝑎) log(1 − 𝑎)] (13) 𝑆𝑇(𝑤, ℎ) = 2 − 𝑤 × ℎ (14)

𝑖𝑜𝑢𝐸𝑟𝑟 = 𝐼 [𝐵𝐶(𝑐 , �̂�)] + 𝜆 {𝐼 [𝐵𝐶(𝑐 , �̂�)] (15)

𝑐𝑙𝑠𝐸𝑟𝑟 = 𝐼 𝐵𝐶 (𝑝 (𝑐), �̂� (𝑐)) (16)

3 P4 Speed Limit

Electronics 2020, 9, 889 8 of 24

3. Results

3.1. Dataset

Considering there is no pre-existing dataset for Taiwan’s prohibitory signs, the system had to
customize a database and collect the image by ourselves. The dataset split into 70% for training, 30%
for testing and the dataset contains pictures of multiple scenes. This experiment focused on Taiwan’s
prohibitory sign that consists of 235 no entry images, 250 no stopping images, 185 speed limit images,
and 230 no parking images. Moreover, Table 1 represents Taiwan’s prohibitory signs in detail.

Table 1. Taiwan’s Prohibitory Signs.

ID Class Name Sign

0 P1 No entry

1 P2 No stopping

2 P3 No parking

3 P4 Speed Limit

3.2. Training Result

The process of training obtained additional data from the original images with the application
of basic geometric transformation methods such as random transformations, rotations, scale shifts,
tears, horizontal flips, and vertical flips. These techniques are commonly used to train large neural
networks. Therefore, the experiment performs some operations during data augmentation using
several parameter settings as follows: rotation_range = 20, zoom_range = 0.10, width_shift_range =
0.2, height_shift_range = 0.2, and shear_range = 0.15. Therefore, the system manually detected and
recognized the traffic sign used a bounding box labelling tool to give a coordinate location for the
object to be detected [51]. The results of the tools are four points of the position coordinate, along
with the class label. Next step, transform the label to Yolo format before training use the Yolo
Annotation tool [49]. The tool changes the values to a format that could be read by the Yolo V3
training algorithm. Moreover, the training model environment is a Nvidia RTX1080Ti GPU
accelerator 11 GB memory, i7 central processing unit (CPU), and 16 GBDDR2 memory.

The Yolo loss function is as follows [52–54]:

𝑙𝑜𝑠𝑠 = 𝑐𝑜𝑜𝑟𝑑𝐸𝑟𝑟 + 𝑖𝑜𝑢𝐸𝑟𝑟 + 𝑐𝑙𝑠𝐸𝑟𝑟 (12)

𝐵𝐶(𝑎, 𝑎) = −[𝑎 log 𝑎 + (1 − 𝑎) log(1 − 𝑎)] (13) 𝑆𝑇(𝑤, ℎ) = 2 − 𝑤 × ℎ (14)

𝑖𝑜𝑢𝐸𝑟𝑟 = 𝐼 [𝐵𝐶(𝑐 , �̂�)] + 𝜆 {𝐼 [𝐵𝐶(𝑐 , �̂�)] (15)

𝑐𝑙𝑠𝐸𝑟𝑟 = 𝐼 𝐵𝐶 (𝑝 (𝑐), �̂� (𝑐)) (16)

Electronics 2020, 9, 889 8 of 21

3.2. Training Result

The process of training obtained additional data from the original images with the application
of basic geometric transformation methods such as random transformations, rotations, scale shifts,
tears, horizontal flips, and vertical flips. These techniques are commonly used to train large neural
networks. Therefore, the experiment performs some operations during data augmentation using
several parameter settings as follows: rotation_range = 20, zoom_range = 0.10, width_shift_range = 0.2,
height_shift_range = 0.2, and shear_range = 0.15. Therefore, the system manually detected and
recognized the traffic sign used a bounding box labelling tool to give a coordinate location for the
object to be detected [51]. The results of the tools are four points of the position coordinate, along with
the class label. Next step, transform the label to Yolo format before training use the Yolo Annotation
tool [49]. The tool changes the values to a format that could be read by the Yolo V3 training algorithm.
Moreover, the training model environment is a Nvidia RTX1080Ti GPU accelerator 11 GB memory,
i7 central processing unit (CPU), and 16 GBDDR2 memory.

The Yolo loss function is as follows [52–54]:

loss =
s2∑

i−0

coordErr + iouErr + clsErr (12)

BC(a, â) = −[a log â + (1− a) log(1− â)] (13)

ST(w, h) = 2−w× h (14)

iouErr =
s2∑

i−0

B∑
j−0

Iobj
i j [BC(ci, ĉi)] + λnoobj

s2∑
i−0

B∑
j−0

{Inoobj
i j [BC(ci, ĉi)] (15)

clsErr =
s2∑

i−0

Iobj
i j

∑
cεclasses

BC(pi(c), p̂i(c)) (16)

coordErr =
s2∑

i−0

B∑
j−0
{Iobj

i j × ST
(
wi j, hi j

)
× [BC(xi, x̂i) + BC(yi, ŷi)]

+λcoord
s2∑

i−0

B∑
j−0
{Iobj

i j × ST
(
wi j, hi j

)
×[(wi, ŵi)

2 + BC(hi, ĥi)]}

(17)

where (x̂, ŷ, ŵ, ĥ, ĉ, p̂) are the central coordinates, width, height, confidence, and category probability
of the predicted bounding box, and those symbols without the cusp are real labels. B symbolizes that
any grid divines B bounding boxes Inoobj

ij represents that the object drops within the jth bounding box

of the ith grids. Inoobj
ij exhibits that there are no targets in the bounding box. Further, IouErr is the IoU

error. The grid that includes the object and the grid without an object has different weights. Therefore,
λnoobj = 0.5 is added to undermine the impact of a large number of grids without objects on the loss
value. The classification error is ClsErr. Cross-entropy is used to calculate losses and works only on the
grid with a target. Moreover, Yolo V3 employ the sigmoid function as the activation function for the class
prediction. The sigmoid function more effectively finishes the issue when the same target has two labels
than the softmax function [55]. Furthermore, the coordinate error is CoordErr. The cross-entropy loss is
used for the coordinates in the core point, and the variance loss is applied for the width and height. Our
experiment set the λcoord to 0.5, means that the errors of width and height in the calculation are less
effective. For a coordinate error, the calculation will be done when the grid predicts an object [53].

Figure 5 explains the reliability of the training process using Yolo V3 (a) and Yolo V3 SPP (b).
The training loss value for each model is 0.0141 and 0.0125, respectively. Our work uses max_batches = 8000
iterations, policy = steps, scale = 0.1, 0.1 and steps = 6400, 7200. At the beginning of the training process,
the system is beginning with zero or no information and a high learning rate. Therefore, as the neural

Electronics 2020, 9, 889 9 of 21

network is presented with growing amounts of data, the weights must change less aggressively. Thus,
the learning rate needs to be decreased over time. Further, in the configuration file, this decrease in
learning rate is accomplished by first specifying that our learning rate decreasing policy is stepwise.
For instance, the learning rate starts from 0.001 and remains constant for 6400 iterations. It then multiplies
by scales to obtain the new learning rate. If the scale = 0.1, 0.1 and the current iteration number is 1000
(0.001) then current_learning_rate = learning_rate × scales [0] × scales [1] = 0.001 × 0.1 × 0.1 = 0.00001.
From Figure 5, we can conclude that Yolo V3 SPP is more stable than Yolo V3 during the training process.Electronics 2020, 9, 889 10 of 24

(a)

(b)

Figure 5. Training loss value, mean average precision (mAP), and average precision (AP) performance
for all classes using Yolo V3 (a) and Yolo V3 SPP (b).

Figure 6a describes the dependability of the training process using Densenet. The training
process remains stable after 4500 epochs and finishes at 40,000 iterations. During training, Densenet
uses max_batches = 45,000, mask_scale = 1, and the training loss value reach 0.0031. In the Figure 6b,

Figure 5. Training loss value, mean average precision (mAP), and average precision (AP) performance
for all classes using Yolo V3 (a) and Yolo V3 SPP (b).

Electronics 2020, 9, 889 10 of 21

Figure 6a describes the dependability of the training process using Densenet. The training process
remains stable after 4500 epochs and finishes at 40,000 iterations. During training, Densenet uses
max_batches = 45,000, mask_scale = 1, and the training loss value reach 0.0031. In the Figure 6b,
Densenet SPP uses max_batches = 45,000, mask_scale = 1, and the iteration remain constant at
9800 epochs with the loss value at 0.0078.

Electronics 2020, 9, 889 11 of 24

Densenet SPP uses max_batches = 45,000, mask_scale = 1, and the iteration remain constant at 9800
epochs with the loss value at 0.0078.

(a)

(b)

Figure 6. Training loss value, mAP, and AP performance for all classes using Densenet (a) and
Densenet SPP (b).

Figure 6. Training loss value, mAP, and AP performance for all classes using Densenet (a) and Densenet
SPP (b).

Electronics 2020, 9, 889 11 of 21

Figure 7a shows the persistence of the training process using Resnet 50. The training stage remains
stable after 4500 epochs. Resnet 50 uses max_batches = 45,000, mask_scale = 1, and the training loss
value reach 0.0040. Further, Resnet 50 SPP uses max_batches = 45,000, mask_scale = 1, and the iteration
remain constant at 28,000 epochs with the loss value at 0.0045 in the Figure 7b.

Electronics 2020, 9, 889 12 of 24

Figure 7a shows the persistence of the training process using Resnet 50. The training stage
remains stable after 4,500 epochs. Resnet 50 uses max_batches = 45,000, mask_scale = 1, and the
training loss value reach 0.0040. Further, Resnet 50 SPP uses max_batches = 45,000, mask_scale = 1,
and the iteration remain constant at 28,000 epochs with the loss value at 0.0045 in the Figure 7b.

(a)

Electronics 2020, 9, 889 13 of 24

(b)

Figure 7. Training loss value, mAP, and AP performance for all classes using Resnet 50 (a) and Resnet
50 SPP (b).

Training loss value, mAP, and AP performance for all classes using Tiny Yolo V3 could be seen
in Figure 8. Figure 8a shows the reliability of the training process using Tiny Yolo V3. Tiny Yolo V3
uses max_batches = 500,200, and the training loss value reach 0.0185 at 84,300 iterations. Therefore,
Tiny Yolo V3 SPP uses max_batches = 500,200, and the iteration stops at 72,700, with the loss value
0.0144 in Figure 8b. The training process is unstable, and it takes a long time to train this model. The
complete results of training mAP and AP performance of all models and classes are shown in Table 2.

Table 2. Training loss value, mAP, and AP performance for class P1, P2, P3, and P4.

Model Loss
Value Name AP

(%) TP FP Precision Recall F1-
Score

IoU
(%)

mAP
@0.50
(%)

Yolo V3 0.0141

P1 97.5 77 0

0.99 0.99 0.99 88.20 98.73
P2 98.8 83 0
P3 99.9 62 1
P4 98.7 76 2

Yolo V3 SPP 0.0125

P1 97.5 78 0

0.99 0.99 0.99 90.09 98.88
P2 98.8 83 0
P3 99.9 62 1
P4 98.9 79 3

Densenet 0.0031

P1 97.4 78 2

0.98 0.99 0.99 88.19 98.33
P2 100 83 0
P3 100 62 2
P4 99.9 76 2

Densenet SPP 0.0078 P1 98.8 78 1 0.98 0.99 0.99 88.55 98.53

Figure 7. Training loss value, mAP, and AP performance for all classes using Resnet 50 (a) and Resnet
50 SPP (b).

Electronics 2020, 9, 889 12 of 21

Training loss value, mAP, and AP performance for all classes using Tiny Yolo V3 could be seen in
Figure 8. Figure 8a shows the reliability of the training process using Tiny Yolo V3. Tiny Yolo V3 uses
max_batches = 500,200, and the training loss value reach 0.0185 at 84,300 iterations. Therefore, Tiny
Yolo V3 SPP uses max_batches = 500,200, and the iteration stops at 72,700, with the loss value 0.0144 in
Figure 8b. The training process is unstable, and it takes a long time to train this model. The complete
results of training mAP and AP performance of all models and classes are shown in Table 2.

Electronics 2020, 9, 889 14 of 24

P2 100 82 1
P3 100 62 1
P4 99.4 75 2

Resnet 50 0.004

P1 96.2 75 4

0.93 0.96 0.94 73.11 97.09
P2 98.2 80 3
P3 97.2 59 7
P4 96 74 9

Resnet 50 SPP 0.0045

P1 97.4 78 1

0.97 0.98 0.98 79.33 97.7
P2 100 83 0
P3 96.6 61 2
P4 96.8 73 5

Tiny Yolo V3 0.0144

P1 79.6 49 1

0.93 0.7 0.8 75.29 82.69
P2 86.0 59 2
P3 88.7 52 11
P4 76.4 51 2

Tiny Yolo V3
SPP 0.0185

P1 84.2 59 2

0.98 0.79 0.88 79.23 84.79
P2 90.0 71 0
P3 95.4 56 2
P4 69.6 52 1

(a)

Electronics 2020, 9, 889 15 of 24

(b)

Figure 8. Training loss value, mAP, and AP performance for all classes using Tiny Yolo V3 (a) and
Tiny Yolo V3 SPP (b).

Table 2 represents the training loss value, mAP, AP, precision, recall, F1, IoU performance, and
calculation time for class P1, P2, P3, and P4. The samples are split into three types: true positive (TP)
samples, referring to the number of samples that are properly specified, false positive (FP) samples,
referring to the number of samples that have not been identified, true negative (TN) referring to the
number of samples that have not been recognized.

Precision (P) and recall (R) [56] are represented by [57,58] in Equations (18) and (19).

𝑃 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (18)

𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (19)

Another evaluation index, F1 [59–61] is shown as follows.

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (20)

The integral over the precision p(o) is the average mean average precision (mAP) and shown in
Equation (21). 𝑚𝐴𝑃 = 𝑝(0)𝑑𝑜 (21)

Figure 8. Training loss value, mAP, and AP performance for all classes using Tiny Yolo V3 (a) and Tiny
Yolo V3 SPP (b).

Electronics 2020, 9, 889 13 of 21

Table 2. Training loss value, mAP, and AP performance for class P1, P2, P3, and P4.

Model Loss Value Name AP (%) TP FP Precision Recall F1-Score IoU (%) mAP@0.50 (%)

Yolo V3 0.0141

P1 97.5 77 0

0.99 0.99 0.99 88.20 98.73
P2 98.8 83 0
P3 99.9 62 1
P4 98.7 76 2

Yolo V3 SPP 0.0125

P1 97.5 78 0

0.99 0.99 0.99 90.09 98.88
P2 98.8 83 0
P3 99.9 62 1
P4 98.9 79 3

Densenet 0.0031

P1 97.4 78 2

0.98 0.99 0.99 88.19 98.33
P2 100 83 0
P3 100 62 2
P4 99.9 76 2

Densenet
SPP

0.0078

P1 98.8 78 1

0.98 0.99 0.99 88.55 98.53
P2 100 82 1
P3 100 62 1
P4 99.4 75 2

Resnet 50 0.004

P1 96.2 75 4

0.93 0.96 0.94 73.11 97.09
P2 98.2 80 3
P3 97.2 59 7
P4 96 74 9

Resnet 50
SPP

0.0045

P1 97.4 78 1

0.97 0.98 0.98 79.33 97.7
P2 100 83 0
P3 96.6 61 2
P4 96.8 73 5

Tiny Yolo
V3

0.0144

P1 79.6 49 1

0.93 0.7 0.8 75.29 82.69
P2 86.0 59 2
P3 88.7 52 11
P4 76.4 51 2

Tiny Yolo
V3 SPP

0.0185

P1 84.2 59 2

0.98 0.79 0.88 79.23 84.79
P2 90.0 71 0
P3 95.4 56 2
P4 69.6 52 1

Table 2 represents the training loss value, mAP, AP, precision, recall, F1, IoU performance, and
calculation time for class P1, P2, P3, and P4. The samples are split into three types: true positive (TP)
samples, referring to the number of samples that are properly specified, false positive (FP) samples,
referring to the number of samples that have not been identified, true negative (TN) referring to the
number of samples that have not been recognized.

Precision (P) and recall (R) [56] are represented by [57,58] in Equations (18) and (19).

P =
TP

TP + FP
(18)

R =
TP

TP + FN
(19)

Another evaluation index, F1 [59–61] is shown as follows.

F1 =
2× Precision×Recall

Precision + Recall
(20)

The integral over the precision p(o) is the average mean average precision (mAP) and shown in
Equation (21).

mAP =

∫ 1

0
p(0)do (21)

where p(o) is the precision of the object detection. IoU computes the overlap ratio between the boundary
box of the prediction (pred) and ground-truth (gt) [1].

IoU =
Areapred ∩ Areagt

Areapred ∪ Areagt
(22)

Electronics 2020, 9, 889 14 of 21

Based on Table 2, Yolo V3 SPP obtains the maximum mAP, around 98.88% with IoU 90.09%
followed by Yolo V3 at 98.73% with IoU 88.20%, Densenet SPP at 98.53% with IoU 88.55%, Densenet
98.33% with IoU 88.19%, Resnet 50 SPP at 97.7% with IoU 79.33%, Resnet 50 at 97.09% with IoU 73.11%,
Tiny Yolo V3 SPP at 84.79% with IoU 79.23%, and Tiny Yolo V3 at 82.69% with IoU 75.29%. The trend is
SPP can increase the mAP and IoU on each model in the experiment. SPP can be combined with any
model and will strengthen that model. For instance, the worst model in the experiment was Tiny Yolo
V3 with mAP 82.69% and IoU 75.29%. In addition, SPP can improve the performance of Tiny Yolo V3,
so for Tiny Yolo V3 SPP, the mAP becomes 84.79% (rise 2.1%) and IoU 79.23 (rise 3.94%).

4. Discussion

In this stage, we use twenty Taiwan’s prohibitory sign images for testing with different sizes
and conditions. The accuracy and time measurements of the experiments are presented in Table 3.
In general, Yolo V3 SPP exhibits better accuracy than other models. The highest average accuracy is
Yolo V3 SPP at 99% followed by Yolo V3 at 92%, Densenet SPP at 87%, Densenet at 82%, Resnet 50
SPP at 70%, Resnet 50 at 50%, Tiny Yolo V3 SPP at 50%, and Tiny Yolo V3 at 40%. The trend is that
the accuracy of the combination model with SPP increases with the detection time, which is means
that the combination model with SPP involves more time to detect the sign. For instance, for Yolo
V3 SPP, the average time of detection is 17.6 milliseconds, while Yolo V3 requires 16.7 millisecond.
The longest detection time is Densenet SPP; this model requires around 40 milliseconds. Following
this, Densenet needs 38.3 milliseconds to detect the sign. On the other hand, the fastest model in the
experiment is Tiny Yolo V3. Therefore, Tiny Yolo V3 needs 5.4 milliseconds, and Tiny Yolo V3 SPP
requires 8 milliseconds to recognize the sign. Further, the SPP affects the performance of accuracy
and detection time. In the experiment result, the images are tested one by one to show that SPP can
improve the detection and recognition performance of traffic signs compared to those not using SPP.
For example, there are 5 images that cannot be detected using Resnet 50 models, but Resnet 50 SPP can
detect all traffic signs in the images properly as shown in Table 3.

Table 3. Testing accuracy using Taiwan’s prohibitory sign images of various sizes.

Image
Yolo V3 Yolo V3

SPP Densenet Densenet
SPP Resnet 50 Resnet 50

SPP
Tiny Yolo

V3
Tiny Yolo
V3 SPP

acc ms acc ms acc ms acc ms acc ms acc ms acc ms acc ms

1 0.97 15 0.97 14.4 0.73 48 0.81 24 0.84 16.9 0.49 20.7 0.35 6.4 0.44 12.9
2 0.9 20 0.98 21.3 0.92 27.5 0.89 51.9 0.68 15.6 0.6 22.5 - 4.9 - 3.2
3 0.83 19 0.99 15.2 0.94 41.3 0.92 21.1 0.79 15.3 0.86 24.3 - 2.8 - 5.3
4 0.95 21 0.99 26.1 0.8 49 0.76 48.8 - 16.7 0.61 24.1 1 4.7 0.99 3.5
5 0.89 18 0.99 14.8 0.85 45.9 0.83 21 0.91 9.2 0.91 11.8 - 2.7 0.37 3.9
6 0.98 18 0.99 14.4 0.87 30.9 0.86 41.1 - 15.7 0.51 10.6 - 3.2 - 6.3
7 0.96 20 1 23.2 0.85 46.4 0.88 47.9 - 16.6 0.81 23 1 2.8 0.79 21.3
8 1 16 1 16.8 0.9 30.2 0.96 45.9 0.6 15.8 0.9 17.6 0.99 3.1 0.9 13.9
9 0.88 21 0.99 15.1 0.76 40.6 0.74 29.2 - 15.5 0.64 20.3 - 14.3 - 3.3

10 0.9 15 0.98 32.6 0.63 28.5 0.82 53.2 - 19.8 0.51 24.1 - 2.7 0.94 3.3
11 0.96 22 0.99 14.5 0.82 28.6 0.96 34.9 0.39 16.1 0.43 16.8 0.54 10.3 - 8.5
12 0.79 15 0.99 15 0.74 27.2 0.95 42.9 0.55 9.4 0.68 10.2 0.98 4.4 0.87 3.5
13 1 14 1 16.6 0.92 45.8 0.95 49.1 0.93 13.9 0.94 10 - 3.5 - 3.3
14 1 15 1 17.2 0.92 37.3 0.95 36.5 0.85 21.9 0.92 25.6 - 3.8 - 7.1
15 0.92 15 0.97 14.7 0.8 45.6 0.95 27.4 0.76 15.5 0.61 11.8 0.99 19.8 0.87 19.2
16 0.87 15 0.99 14.9 0.79 47 0.5 46.8 0.29 10.9 0.31 20 - 3.9 - 8.4
17 0.98 13 1 14.6 0.74 42.2 0.91 59.1 0.92 9 0.69 18.8 - 2.8 - 19.9
18 0.95 15 1 14.8 0.89 42.1 0.9 23.9 0.9 21.1 0.87 22.5 0.99 2.7 1 3.9
19 0.87 15 0.99 21.2 0.72 24.8 0.82 43.1 0.28 9.9 0.78 25.8 0.94 3.4 1 5.8
20 0.88 15 0.99 15.2 0.86 38 0.94 52.2 0.68 20.6 0.9 24.7 0.98 5.6 0.98 3.4

Average 0.92 17 0.99 17.6 0.82 38.3 0.87 40 0.52 15.3 0.7 19.3 0.4 5.4 0.5 8

Electronics 2020, 9, 889 15 of 21

Convolution subsampling and max-pooling have dissimilar benefits. Hence, Convolution
subsampling can be better reversed, probably in the subsequent upsampling layers. Different layers
−2, −4 and −1, −3, −5, −6 in conv5 were uses in each [route]. However, Max pooling acts somewhat to
remove some high-frequency noise from the image by selecting only max values from the adjacent
regions. By combining both, SPP seems to affect the advantages of both, improving the backbone
network of YoloV3, Resnet 50, Densenet, and Tiny Yolo V3.

Figure 9a describes the Class P4 recognition result using Yolo V3. Image P4-5.jpg was predicted
in 14.7 milliseconds with 88% accuracy. The bounding box coordinate position as follows: left_x: 91,
top_y: 202, width: 239, and height: 321. Using the same image, Yolo V3 SPP in Figure 9b reaches
the highest accuracy 99% and needs 15.2 milliseconds for detecting time. The coordinate position is
left_x: 75, top_y: 231, width: 277, and height: 283. Next, detection results using Densenet and Densenet
SPP explain in Figure 9c,d. They use default mask_scale value 1.00 and got 86% and 94% accuracy,
respectively. Figure 9e,g show the unique detection using Resnet 50 and Tiny Yolo V3. They draw two
bounding boxes in one detection stage with the correct label (class P4). Resnet 50 predict the Class P4
sign with 34% accuracy (left_x: -51, top_y: 222, width: 549, and height: 295) and 68% accuracy (left_x:
68, top_y: 108, width: 270, and height: 536). Then, Tiny Yolo V3 requires 5.4 millisecond to detect the
signs and obtains 98% accuracy (left_x: 35, top_y: 47, width: 342, and height: 645) and 97% accuracy
(left_x: 60, top_y: 264, width: 251, and height: 212). From the test result in Figure 9, we can conclude
that all models can detect the class P4 well with different bounding box coordinate.

Electronics. 2020, 9, x FOR PEER REVIEW 18 of 24

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Taiwan’s prohibitory sign (Class P4, Image P4-5.jpg) recognition result using (a) Yolo V3,
(b) Yolo V3 SPP, (c) Densenet, (d) Densenet SPP, (e) Resnet 50, (f) Resnet 50 SPP, (g) Tiny Yolo V3,
and (h) Tiny Yolo V3 SPP.

Figure 10 indicates the comparison of BFLOPS, workspace size, and layers for each model in the
experiments. Yolo V3 generates total BFLOPS 65.312, allocate additional workspace size 52.43 MB,
and loads 107 layers from weights file. Similar to this, Yolo V3 SPP loads 114 layers and requires
workspace size 52.43 with a total BFLOPS of 65.69. Next, Densenet and Densenet SPP load 306 layers
and 312 layers, provide a large workspace size 104.86 MB with a total BFLOPS 31.869 and 33.535,
respectively. Furthermore, Resnet 50 and Resnet 50 SPP filled 69 layers and 75 layers, divide
additional workspace size 26.33 MB with a total BFLOPS 26.439 and 28.661, successively. Moreover,
Tiny Yolo V3 and Tiny Yolo V3 SPP load fewer layers compare to others. They only load 24 layers
and 30 layers, requires 52.43 MB workspace size with a total BFLOPS 5.452 and 5.766. In addition,
Tiny Yolo V3 loads the fewest layers (24 layers) and BFLOPS (5.452). Densenet SPP contains the most
layers (312 layers) and requires a large workspace size (104.86). The highest total BFLOPS achieved
by Yolo V3 SPP (65.69). SPP can improve the total BFLOFS 0.378 from 65.312 to 65.69, thus making
Yolo V3 SPP more robust, stable, and accurate.

Figure 9. Taiwan’s prohibitory sign (Class P4, Image P4-5.jpg) recognition result using (a) Yolo V3,
(b) Yolo V3 SPP, (c) Densenet, (d) Densenet SPP, (e) Resnet 50, (f) Resnet 50 SPP, (g) Tiny Yolo V3, and
(h) Tiny Yolo V3 SPP.

Figure 10 indicates the comparison of BFLOPS, workspace size, and layers for each model in the
experiments. Yolo V3 generates total BFLOPS 65.312, allocate additional workspace size 52.43 MB,
and loads 107 layers from weights file. Similar to this, Yolo V3 SPP loads 114 layers and requires
workspace size 52.43 with a total BFLOPS of 65.69. Next, Densenet and Densenet SPP load 306 layers
and 312 layers, provide a large workspace size 104.86 MB with a total BFLOPS 31.869 and 33.535,

Electronics 2020, 9, 889 16 of 21

respectively. Furthermore, Resnet 50 and Resnet 50 SPP filled 69 layers and 75 layers, divide additional
workspace size 26.33 MB with a total BFLOPS 26.439 and 28.661, successively. Moreover, Tiny Yolo V3
and Tiny Yolo V3 SPP load fewer layers compare to others. They only load 24 layers and 30 layers,
requires 52.43 MB workspace size with a total BFLOPS 5.452 and 5.766. In addition, Tiny Yolo V3 loads
the fewest layers (24 layers) and BFLOPS (5.452). Densenet SPP contains the most layers (312 layers)
and requires a large workspace size (104.86). The highest total BFLOPS achieved by Yolo V3 SPP
(65.69). SPP can improve the total BFLOFS 0.378 from 65.312 to 65.69, thus making Yolo V3 SPP more
robust, stable, and accurate.Electronics 2020, 9, 889 19 of 24

Figure 10. Billion floating-point operations (BFLOPS), workspace sizes, and layers comparison.

Figure 11 shows the detection effectiveness of different algorithms. It can be seen that the
localization accuracy of Yolo V3 SPP (Figure 11b) was higher than the others. Yolo V3 SPP can detect
all two signs in the image. In Figure 11a or Figure 11c–f, all algorithms failed to detect all class P1
signs in the image, detecting only a single sign. However, for the last two images in Figure 11g,h, all
algorithms exhibited false detection and missed detection.

(a) (b)

Figure 10. Billion floating-point operations (BFLOPS), workspace sizes, and layers comparison.

Figure 11 shows the detection effectiveness of different algorithms. It can be seen that the
localization accuracy of Yolo V3 SPP (Figure 11b) was higher than the others. Yolo V3 SPP can detect
all two signs in the image. In Figure 11a or Figure 11c–f, all algorithms failed to detect all class P1
signs in the image, detecting only a single sign. However, for the last two images in Figure 11g,h,
all algorithms exhibited false detection and missed detection.

Electronics 2020, 9, 889 17 of 21

Electronics. 2020, 9, x FOR PEER REVIEW 19 of 24

Figure 10. Billion floating-point operations (BFLOPS), workspace sizes, and layers comparison.

Figure 11 shows the detection effectiveness of different algorithms. It can be seen that the
localization accuracy of Yolo V3 SPP (Figure 11b) was higher than the others. Yolo V3 SPP can detect
all two signs in the image. In Figure 11a or Figure 11c–f, all algorithms failed to detect all class P1
signs in the image, detecting only a single sign. However, for the last two images in Figure 11g,h, all
algorithms exhibited false detection and missed detection.

(a) (b) Electronics. 2020, 9, x FOR PEER REVIEW 20 of 24

(c) (d)

(e) (f)

(g) (h)

Figure 11. Taiwan’s prohibitory sign (Class P1) recognition result using (a) Yolo V3, (b) Yolo V3 SPP,
(c) Densenet, (d) Densenet SPP, (e) Resnet 50, (f) Resnet 50 SPP, (g) Tiny Yolo V3, and (h) Tiny Yolo
V3 SPP.

5. Conclusions

This paper presents an experimental comparative analysis of eight models of traffic signs based
on deep neural networks. We investigate the principal aspects of certain detectors, such as precision
accuracy, detection time, workspace size, and the number of floating-point operations within CNN.
In addition, this paper refers to the spatial pyramid pooling (SPP) and modifies the backbone network
of Yolo V3, Resnet 50, Densenet, and Tiny Yolo V3. We employ SPP to raise the local region at diverse
scales in the equivalent convolutional layer for learning multi-scale object features more details. The
mAP comparison of all models shows that Yolo V3 SPP outperforms other models in the experiment.
Yolo V3 SPP exhibits the highest total BFLOPS (65.69), and mAP (98.88%). SPP can improve the total
BFLOFS 0.378 from 65.312 to 65.69, thus making Yolo V3 SPP more robust for detecting the sign. The
experimental results disclose that SPP can rectify the effectiveness of detecting and recognizing
Taiwan’s prohibitory signs. SPP improves the performance and backbone network of YoloV3, Resnet

Figure 11. Taiwan’s prohibitory sign (Class P1) recognition result using (a) Yolo V3, (b) Yolo V3 SPP,
(c) Densenet, (d) Densenet SPP, (e) Resnet 50, (f) Resnet 50 SPP, (g) Tiny Yolo V3, and (h) Tiny Yolo
V3 SPP.

Electronics 2020, 9, 889 18 of 21

5. Conclusions

This paper presents an experimental comparative analysis of eight models of traffic signs based
on deep neural networks. We investigate the principal aspects of certain detectors, such as precision
accuracy, detection time, workspace size, and the number of floating-point operations within CNN.
In addition, this paper refers to the spatial pyramid pooling (SPP) and modifies the backbone network
of Yolo V3, Resnet 50, Densenet, and Tiny Yolo V3. We employ SPP to raise the local region at
diverse scales in the equivalent convolutional layer for learning multi-scale object features more details.
The mAP comparison of all models shows that Yolo V3 SPP outperforms other models in the experiment.
Yolo V3 SPP exhibits the highest total BFLOPS (65.69), and mAP (98.88%). SPP can improve the total
BFLOFS 0.378 from 65.312 to 65.69, thus making Yolo V3 SPP more robust for detecting the sign.
The experimental results disclose that SPP can rectify the effectiveness of detecting and recognizing
Taiwan’s prohibitory signs. SPP improves the performance and backbone network of YoloV3, Resnet
50, Densenet, and Tiny Yolo V3. Although SPP requires longer time, this model is better for detecting
multiple images. As shown in Figure 11b, Yolo V3 SPP can detect all signs in the image while others
not. Nevertheless, Tiny Yolo V3 and Tiny Yolo V3 SPP load fewer layers (24 layers) compare to others.
Densenet SPP contains the most layers (312 layers) and requires a large workspace size (104.86 MB).
Related to the detection time, the fastest models in the experiment are Tiny Yolo V3, and the longest
models are Densenet SPP.

In future research work, we will enhance our dataset to all of Taiwan’s traffic signs and add
experimental data in multiple scenarios and different weathers conditions for training and testing.
We will expand the dataset through generative adversarial networks (GAN) [62–64] to obtain better
performance and results.

Author Contributions: Conceptualization, C.D., R.-C.C. and S.-K.T.; data curation, C.D.; formal analysis, C.D.;
funding acquisition, R.-C.C.; investigation, C.D. and R.-C.C.; methodology, C.D. and R.-C.C.; project administration,
R.-C.C. and S.-K.T.; software, C.D.; supervision, R.-C.C. and S.-K.T.; validation, R.-C.C.; visualization, C.D.;
writing—original draft, C.D.; writing—review and editing, C.D. and R.-C.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan. The Nos are
MOST-107-2221-E-324-018-MY2 and MOST-106-2218-E-324-002, Taiwan. This research is also partially sponsored
by Chaoyang University of Technology (CYUT) and the Higher Education Sprout Project, Ministry of Education
(MOE), Taiwan, under the project name: “The R&D and the cultivation of talent for health-enhancement products.”

Acknowledgments: The authors would like to acknowledge all the colleagues and partners from Chaoyang
University of Technology, Satya Wacana Christian University, and others that take part in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Arcos-García, Á.; Álvarez-García, J.A.; Soria-Morillo, L.M. Evaluation of deep neural networks for traffic
sign detection systems. Neurocomputing 2018, 316, 332–344. [CrossRef]

2. Fatmehsari, Y.R.; Ghahari, A.; Zoroofi, R. A Gabor wavelet for road sign detection and recognition using a
hybrid classifier. In Proceedings of the MCIT’2010: International Conference on Multimedia Computing and
Information Technology, Sharjah, United Arab Emirates, 2–4 March 2010; pp. 25–28.

3. Wang, C.Y.; Cheng-Yue, R. Traffic Sign Detection using You Only Look Once Framework. Neurocomputing
2017, 2514, 1–9.

4. Ruta, A.; Li, Y.; Liu, X. Real-time traffic sign recognition from video by class-specific discriminative features.
Pattern Recognit. 2010, 43, 416–430. [CrossRef]

5. Nguyen, K.; Huynh, N.T.; Nguyen, P.C.; Nguyen, K.-D.; Vo, N.D.; Nguyen, T.V. Detecting Objects from Space:
An Evaluation of Deep-Learning Modern Approaches. Electronics 2020, 9, 583. [CrossRef]

6. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
Commun. ACM 2017, 120, 1–9. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2018.08.009
http://dx.doi.org/10.1016/j.patcog.2009.05.018
http://dx.doi.org/10.3390/electronics9040583
http://dx.doi.org/10.1145/3065386

Electronics 2020, 9, 889 19 of 21

7. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition.
In Proceedings of the 3rd International Conference on Learning Representations (ICLR2015), San Diego, CA,
USA, 7–9 May 2015.

8. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
GoogLeNet Going Deeper with Convolutions. arXiv 2014, arXiv:1409.4842.

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
26 June–1 July 2016.

10. Park, H.C.; Kim, Y.J.; Lee, S.W. Adenocarcinoma recognition in endoscopy images using optimized
convolutional neural networks. Appl. Sci. 2020, 10, 1650. [CrossRef]

11. Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet. arXiv 2016,
arXiv:1602.07360.

12. Chollet, F. Deep Learning with Separable Convolutions. arXiv 2016, arXiv:1610.02357.
13. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. In Proceedings of the
Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009.

14. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for
Mobile Devices. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

15. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018. [CrossRef]

16. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In
Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HA, USA,
21–26 July 2017.

17. Huang, G.; Liu, S.; Van Der Maaten, L.; Weinberger, K.Q. CondenseNet: An Efficient DenseNet Using
Learned Group Convolutions. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

18. Feng, R.; Fan, C.; Li, Z.; Chen, X. Mixed Road User Trajectory Extraction From Moving Aerial Videos Based
on Convolution Neural Network Detection. IEEE Access 2020, 8, 43508–43519. [CrossRef]

19. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition,
localization and detection using convolutional networks. In Proceedings of the 2nd International Conference
on Learning Representations, ICLR 2014—Conference Track Proceedings, Banff, AB, Canada, 14–16 April
2014; pp. 1–16.

20. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 580–587.

21. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1–14. [CrossRef] [PubMed]

22. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox
detector. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Amsterdam, The Netherlands, 10–16 October 2016; pp. 21–37.

23. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. (YOLO) You Only Look Once. Cvpr 2016, arXiv:1506.02640.
24. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
25. Bangquan, X.; Xiong, W.X. Real-time embedded traffic sign recognition using efficient convolutional neural

network. IEEE Access 2019, 7, 53330–53346. [CrossRef]
26. Grauman, K.; Darrell, T. The pyramid match kernel: Discriminative classification with sets of image features.

In Proceedings of the IEEE International Conference on Computer Vision, Beijing, China, 17–20 October
2005; pp. 1458–1465.

27. Lazebnik, S.; Schmid, C.; Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural
scene categories. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, New York, NY, USA, 17–22 June 2006; pp. 1–8.

http://dx.doi.org/10.3390/app10051650
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://dx.doi.org/10.1109/ACCESS.2020.2976890
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://dx.doi.org/10.1109/ACCESS.2019.2912311

Electronics 2020, 9, 889 20 of 21

28. Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object detection via region-based fully convolutional networks. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December
2016; pp. 379–387.

29. Sivic, J.; Zisserman, A. Video google: A text retrieval approach to object matching in videos. In Proceedings
of the IEEE International Conference on Computer Vision, Nice, France, 14–17 October 2003; pp. 1–8.

30. Yang, J.; Yu, K.; Gong, Y.; Huang, T. Linear spatial pyramid matching using sparse coding for image
classification. In Proceedings of the CVPR Workshops 2009, Miami, FL, USA, 20–25 June 2009; pp. 1794–1801.

31. Wang, J.; Yang, J.; Yu, K.; Lv, F.; Huang, T.; Gong, Y. Locality-constrained linear coding for image classification.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San
Francisco, CA, USA, 13–18 June 2010; pp. 3360–3367.

32. Van De Sande, K.E.A.; Uijlings, J.R.R.; Gevers, T.; Smeulders, A.W.M. Segmentation as selective search for
object recognition. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona,
Spain, 6–13 November 2011; pp. 1879–1886.

33. Chen, H.; He, Z.; Shi, B.; Zhong, T. Research on Recognition Method of Electrical Components Based on
YOLO V3. IEEE Access 2019, 7. [CrossRef]

34. Zhao, L.; Li, S. Object Detection Algorithm Based on Improved YOLOv3. Electronics 2020, 9, 537. [CrossRef]
35. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HA, USA, 21–26 July 2017; pp. 6517–6525.
36. Xiao, D.; Shan, F.; Li, Z.; Le, B.T.; Liu, X.; Li, X. A target detection model based on improved tiny-yolov3

under the environment of mining truck. IEEE Access 2019, 7, 123757–123764. [CrossRef]
37. Zhang, P.; Zhong, Y.; Li, X. SlimYOLOv3: Narrower, faster and better for real-time UAV applications.

In Proceedings of the 2019 International Conference on Computer Vision Workshop, ICCVW 2019, Seoul,
Korea, 27 October–2 November 2019.

38. Huang, L.; Pun, C.M. Audio Replay Spoof Attack Detection Using Segment-based Hybrid Feature and
DenseNet-LSTM Network. In Proceedings of the ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 2567–2571.

39. Yu, C.; He, X.; Ma, H.; Qi, X.; Lu, J.; Zhao, Y. S-DenseNet: A DenseNet Compression Model Based on
Convolution Grouping Strategy Using Skyline Method. IEEE Access 2019, 7, 183604–183613. [CrossRef]

40. Zhang, K.; Guo, Y.; Wang, X.; Yuan, J.; Ding, Q. Multiple feature reweight DenseNet for image classification.
IEEE Access 2019, 7, 9872–9880. [CrossRef]

41. Ghatwary, N.; Ye, X.; Zolgharni, M. Esophageal Abnormality Detection Using DenseNet Based Faster R-CNN
with Gabor Features. IEEE Access 2019, 7, 84374–84385. [CrossRef]

42. Huang, Z.; Zhu, X.; Ding, M.; Zhang, X. Medical Image Classification Using a Light-Weighted Hybrid Neural
Network Based on PCANet and DenseNet. IEEE Access 2020, 8, 24697–24712. [CrossRef]

43. Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat
MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [CrossRef]

44. Fang, W.; Wang, C.; Chen, X.; Wan, W.; Li, H.; Zhu, S.; Fang, Y.; Liu, B.; Hong, Y. Recognizing Global
Reservoirs From Landsat 8 Images: A Deep Learning Approach. IEEE J. Sel. Top. Appl. Earth Observ. Remote
Sens. 2019, 12, 3168–3177. [CrossRef]

45. Ibrahim, Y.; Wang, H.; Bai, M.; Liu, Z.; Wang, J.; Yang, Z.; Chen, Z. Soft Error Resilience of Deep Residual
Networks for Object Recognition. IEEE Access 2020, 8, 19490–19503. [CrossRef]

46. Sai Sundar, K.V.; Bonta, L.R.; Reddy, A.K.B.; Baruah, P.K.; Sankara, S.S. Evaluating Training Time of
Inception-v3 and Resnet-50,101 Models using TensorFlow across CPU and GPU. In Proceedings of the
2nd International Conference on Electronics, Communication and Aerospace Technology, ICECA 2018,
Coimbatore, India, 29–30 March 2018; pp. 1964–1968.

47. Hagerty, J.R.; Stanley, R.J.; Almubarak, H.A.; Lama, N.; Kasmi, R.; Guo, P.; Drugge, R.J.; Rabinovitz, H.S.;
Oliviero, M.; Stoecker, W.V. Deep Learning and Handcrafted Method Fusion: Higher Diagnostic Accuracy
for Melanoma Dermoscopy Images. IEEE J. Biomed. Health Inform. 2019, 23, 1385–1391. [CrossRef]

48. Sai Bharadwaj Reddy, A.; Sujitha Juliet, D. Transfer learning with RESNET-50 for malaria cell-image
classification. In Proceedings of the 2019 IEEE International Conference on Communication and Signal
Processing, ICCSP 2019, Melmaruvathur, India, 4–6 April 2019; pp. 0945–0949.

49. Bbox Label Tool. Available online: https://github.com/puzzledqs/BBox-Label-Tool (accessed on
13 January 2020).

http://dx.doi.org/10.1109/ACCESS.2019.2950053
http://dx.doi.org/10.3390/electronics9030537
http://dx.doi.org/10.1109/ACCESS.2019.2928603
http://dx.doi.org/10.1109/ACCESS.2019.2960315
http://dx.doi.org/10.1109/ACCESS.2018.2890127
http://dx.doi.org/10.1109/ACCESS.2019.2925585
http://dx.doi.org/10.1109/ACCESS.2020.2971225
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1109/JSTARS.2019.2929601
http://dx.doi.org/10.1109/ACCESS.2020.2968129
http://dx.doi.org/10.1109/JBHI.2019.2891049
https://github.com/puzzledqs/BBox-Label-Tool

Electronics 2020, 9, 889 21 of 21

50. Hendry; Chen, R.C. Automatic License Plate Recognition via sliding-window darknet-YOLO deep learning.
Image Vis. Comput. 2019, 87, 47–56. [CrossRef]

51. Huang, Z.; Wang, J. DC-SPP-YOLO: Dense Connection and Spatial Pyramid Pooling Based YOLO for Object
Detection. CoRR 2019, abs/1903.0, 1–23. [CrossRef]

52. Mao, Q.C.; Sun, H.M.; Liu, Y.B.; Jia, R.S. Mini-YOLOv3: Real-Time Object Detector for Embedded Applications.
IEEE Access 2019, 7, 133529–133538. [CrossRef]

53. Wu, F.; Jin, G.; Gao, M.; He, Z.; Yang, Y. Helmet detection based on improved YOLO V3 deep model.
In Proceedings of the 19 IEEE 16th International Conference on Networking, Sensing and Control, ICNSC 2019,
Banff, AB, Canada, 9–11 May 2019; pp. 363–368.

54. Xu, Q.; Lin, R.; Yue, H.; Huang, H.; Yang, Y.; Yao, Z. Research on Small Target Detection in Driving Scenarios
Based on Improved Yolo Network. IEEE Access 2020, 8, 27574–27583. [CrossRef]

55. Fang, W.; Wang, L.; Ren, P. Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments.
IEEE Access 2020, 8, 1935–1944. [CrossRef]

56. Yang, H.; Chen, L.; Chen, M.; Ma, Z.; Deng, F.; Li, M.; Li, X. Tender Tea Shoots Recognition and Positioning
for Picking Robot Using Improved YOLO-V3 Model. IEEE Access 2019, 7, 180998–181011. [CrossRef]

57. Dewi, C.; Chen, R.-C. Human Activity Recognition Based on Evolution of Features Selection and Random
Forest. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC),
Bari, Italy, 6–9 October 2019; pp. 2496–2501.

58. Yuan, Y.; Xiong, Z.; Wang, Q. An Incremental Framework for Video-Based Traffic Sign Detection, Tracking,
and Recognition. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1918–1929. [CrossRef]

59. Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in
orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [CrossRef]

60. Shi, R.; Li, T.; Yamaguchi, Y. An attribution-based pruning method for real-time mango detection with YOLO
network. Comput. Electron. Agric. 2020, 169, 1–11. [CrossRef]

61. Kang, H.; Chen, C. Fast implementation of real-time fruit detection in apple orchards using deep learning.
Comput. Electron. Agric. 2020, 168, 105108. [CrossRef]

62. Dewi, C.; Chen, R.-C.; Hendry; Liu, Y.-T. Similar Music Instrument Detection via Deep Convolution
YOLO-Generative Adversarial Network. In Proceedings of the 2019 IEEE 10th International Conference on
Awareness Science and Technology (iCAST), Morioka, Japan, 23–25 October 2019; pp. 1–6.

63. Yang, J.; Kannan, A.; Batra, D.; Parikh, D. LR-GAN: Layered recursive generative adversarial networks for
image generation. In Proceedings of the 5th International Conference on Learning Representations, ICLR
2017—Conference Track Proceedings, Toulon, France, 24–26 April 2017; pp. 1–21.

64. Zhang, Y.; Liu, S.; Dong, C.; Zhang, X.; Yuan, Y. Multiple cycle-in-cycle generative adversarial networks for
unsupervised image super-resolution. IEEE Trans. Image Process. 2020, 29, 1101–1112. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.imavis.2019.04.007
http://dx.doi.org/10.1016/j.ins.2020.02.067
http://dx.doi.org/10.1109/ACCESS.2019.2941547
http://dx.doi.org/10.1109/ACCESS.2020.2966328
http://dx.doi.org/10.1109/ACCESS.2019.2961959
http://dx.doi.org/10.1109/ACCESS.2019.2958614
http://dx.doi.org/10.1109/TITS.2016.2614548
http://dx.doi.org/10.1016/j.compag.2019.01.012
http://dx.doi.org/10.1016/j.compag.2020.105214
http://dx.doi.org/10.1016/j.compag.2019.105108
http://dx.doi.org/10.1109/TIP.2019.2938347
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	CNN for Object Detection
	Spatial Pyramid Pooling (SPP)
	Object Detection Architecture
	Yolo V3 and Tiny Yolo V3
	Densenet
	Resnet 50

	Methods

	Results
	Dataset
	Training Result

	Discussion
	Conclusions
	References

