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Abstract: Traffic sign recognition (TSR) is a noteworthy issue for real-world applications such as
systems for autonomous driving as it has the main role in guiding the driver. This paper focuses on
Taiwan’s prohibitory sign due to the lack of a database or research system for Taiwan’s traffic sign
recognition. This paper investigates the state-of-the-art of various object detection systems (Yolo V3,
Resnet 50, Densenet, and Tiny Yolo V3) combined with spatial pyramid pooling (SPP). We adopt
the concept of SPP to improve the backbone network of Yolo V3, Resnet 50, Densenet, and Tiny
Yolo V3 for building feature extraction. Furthermore, we use a spatial pyramid pooling to study
multi-scale object features thoroughly. The observation and evaluation of certain models include vital
metrics measurements, such as the mean average precision (mAP), workspace size, detection time,
intersection over union (IoU), and the number of billion floating-point operations (BFLOPS). Our
findings show that Yolo V3 SPP strikes the best total BFLOPS (65.69), and mAP (98.88%). Besides,
the highest average accuracy is Yolo V3 SPP at 99%, followed by Densenet SPP at 87%, Resnet 50
SPP at 70%, and Tiny Yolo V3 SPP at 50%. Hence, SPP can improve the performance of all models in
the experiment.
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1. Introduction

In all countries, traffic signs have essential information for drivers on the road, including the
speed limitation, direction indication, stop information, and so on [1]. Traffic sign recognition systems
(TSRS) are crucial in numerous applications in the real world, such as autonomous driving, traffic
surveillance, driver protection and assistance, road network sustenance, and investigation of traffic
disturbances [1]. Two related subjects that important in TSRS are traffic sign detection (TSD) and traffic
sign recognition (TSR). TSD directly affects the safety of drivers and because of their ignorance can
easily cause damage. Automatic systems that support drivers can improve unsafe driving behavior
based on the detection and recognition of signs [2]. TSRS are difficult and complicated tasks in
consequence of several problems, including occlusion, illumination, color variation, rotation, and skew
that appear from camera setup in the surroundings. Further, there could be multiple signs in an image
with different colors, sizes, and shapes [3,4].

The reality of traffic signs deliberates to have distinguishable features and to be specific, such as
simple shapes and uniform colors. The detection and recognition of traffic signs imply a constrained
problem. In addition, there are some differences in the design of signs between the countries. In certain
cases, there can be significant differences in the design of signs in various countries. These differences are
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easier to identify by humans, but for an automated detection system can be a major challenge. Therefore,
the development of a strong TSRS system is an important and challenging issue in consequence of
the latency in the testing time. For this work, we will focus on Taiwan’s prohibitory sign detection
and recognition. Our motivation is the lack of a database or research system for Taiwan’s traffic
sign recognition.

This paper summarizes and examines eight convolutional neural network (CNN) models combined
with spatial pyramid pooling (SPP) for object detection. We fine-tune them on Taiwan’s prohibitory
sign dataset, which is built by ourselves to perform traffic sign detection. Based on our inspection,
no other scientific paper investigates diverse deep-learning object detectors specifically tailored to the
area of traffic sign detection problems while estimating various key factors, such as mean average
precision (mAP), intersection over union (IoU), and time of detection.

The main objectives of this study are as follows: (1) Presentation of a brief survey of object
detection algorithms based on CNN, specifically Yolo V3, Yolo V3 SPP, Densenet, Densenet SPP,
Resnet 50, Resnet 50 SPP, Tiny Yolo V3, and Tiny Yolo V3 SPP. (2) Examination and evaluation of
diverse state-of-the-art object detectors, mainly for the traffic sign detection problem. The performance
evaluation of these models includes crucial metrics, such as the mAP, detection time, intersection over
union (IoU), and the number of billion floating-point operations (BFLOPS). (3) For more complete and
accurate learning of multi-scale object features, we use spatial pyramid pooling to collect different
scale local features in the same convolutional layer. (4) The experiments show that Yolo V3 SPP strikes
the best accuracy and SPP, which can improve the performance of all models.

The rest of the paper is organized as follows. The materials and methods were discussed in
Section 2. Section 3 briefly describes our experiment results. Further, Section 4 analyzes, compares and
discusses traffic sign detection results. Subsequently, we give conclusions and future research work in
Section 5.

2. Materials and Methods

2.1. CNN for Object Detection

There have been several classic object recognition networks in the last few years [5], for instance
AlexNet [6] (2012), VGG [7] (2014), GoogLeNet [8] (2015–2016), ResNet [9,10] (2016), SqueezeNet [11]
(2016), Xception [12] (2016), MobileNet [13] (2017–2018), ShufficNet [14] (2017–2018), SE-Net [15]
(2017), DenseNet [16] (2017), and CondenseNet [17] (2017), Initially, the convolutional neural network
was developed and enlarged to achieve greater precision accuracy. However, networks have grown
smaller and more efficient in recent years. In highly accurate target sensing tasks, the new deep
learning algorithms, especially those that apply to CNN, such as You Only Look Once, (Yolo) v3,
show huge potential [18]. The multiscale and sliding window approach that produces bounding
boxes and scores via CNN can be implemented efficiently within a ConvNet [19], and R-CNN [20].
Besides, R-CNN is also expensive in time and memory, as it executes a CNN forward-pass for all object
proposal without sharing computation. To solve this problem, spatial pyramid pooling networks
(SPPnets) [21] were introduced to increase the efficiency of R-CNN through computational sharing.
SPPnet calculates feature maps from the entire input image only once and then supplies feature in
arbitrary-size sub-images to generate fixed-length representations and for detectors training. However,
SSPnet eliminates the replicated evaluation of convolutional feature maps, it still needs training in a
multi-stage pipeline as the fixed-length feature vectors generated by numerous SPP layers are also
moved on to fully-connected layers. Therefore, the whole process is still slow. Certain techniques,
including single shot multiBox detector (SSD) [22] and Yolo [23], exemplify all the processing in a single
fully-convolutional neural network rather than making a persistent pipeline of regional proposals
and object classification. This knowledge conducts to a significantly more expeditious object detector.
The one-stage method relies on the end-to-end regression approach technology. Yolo V3 [24] applied
Darknet-53 to substitute Darknet-19 as the backbone network and employed multiscale prediction [25].
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2.2. Spatial Pyramid Pooling (SPP)

In terms of object recognition tasks, spatial pyramid pooling (SPP) [26,27] was significantly victorious.
Consider its severity, it is competing among methods that use more complicated spatial models. For the
interpretation of the spatial pyramid, the image is split into a range of finer grids at each level of the
pyramid. In addition, it is commonly-known as spatial pyramid matching (SPM) [28], a development
of the bag-of-words (BoW) model [29], which is one of the most famous and successful methods in
computer vision methods. SPP has continued been an important component and superior system to win
the competition in the classification [30,31] and detection [32] before the recent ascendance of CNN.

Some benefits of SPP [21] could be explained as follow: First, SPP can produce a fixed-length output
despite the input dimension. Second, SPP applies multi-level spatial bins, while the sliding window
pooling employs just a single-window size. Next, SPP allows us not only to generate images from
arbitrarily sized images for testing but also to feed images with different sizes and scales during training.
Additionally, training with variable-size images raises invariance in size and decreases overfitting.
In addition, SPP is extremely effective in object detection. In the foremost object detection method
R-CNN, the features from candidate windows are obtained through deep convolutional networks.
Furthermore, SPP can combine features derived at variable scales to the flexibility of input scales. CNN
layers receive some despotic input sizes, but they generate outputs of variable sizes. The softmax
classifiers or fully-connected layers require fixed-length vectors. Such vectors can be generated by the
BoW approach [29] that pools the features together at the same time. SPP improves the performance of
BoW in that stage, and it can preserve spatial information by pooling in local spatial bins. The space
bins have proportional sizes to the image size, and regardless of the image size the number of bins
is fixed. On the contrary, the sliding window pooling of former deep networks and the number of
sliding windows depends on the scale of the data. Hence, to implement the deep network for images
of arbitrary sizes, the last pooling layer will substitute with an SPP layer. In the particular spatial bin,
we pool the replies of each filter and apply max pooling. The outputs of the spatial pyramid pooling
are kM dimensional vectors with the number of bins indicated as M. Further, k is the number of filters
in the latest convolutional layer. The fixed-dimensional vectors are the input to the fully-connected
layer. By using SPP, the input image can vary in size, which allows not only arbitrary aspect ratios
but also enables absolute scales. The input image can resize to any scale and adopt an identical deep
network. When the input image is at diverse scales, the network with the equivalent filter sizes will
extract features at various sizes and scales. A network structure with an SPP layer can be seen in
Figure 1. In our work, the SPP blocks layer is inserted to the Yolo V3, Resnet 50, Densenet, and Tiny
Yolo V3 configuration file. Moreover, we use the same SPP blocks layer in the configuration file with a
spatial model. The spatial model uses down sampling in convolutional layers to receive the important
features in the max-pooling layers. It applies three different sizes of the max pool for each image by
using [route]. Different layers −2, −4 and −1, −3, −5, −6 in conv5 were uses in each [route].

2.3. Object Detection Architecture

The principal features of each architecture (Yolo V3, Densenet, Resnet 50, Tiny Yolo V3) are
summarized in this section.

2.3.1. Yolo V3 and Tiny Yolo V3

Yolo V3 was proposed by [24] in 2018. It splits the input image into (S × S) grids cells [33]
with the same size and forecast bounding boxes and probabilities for each grid cell. Yolo V3 uses
multi-scale fusion to make predictions and uses a singular neural network to process the complete
image. The dimension clusters are applied as prior boxes to predict boundary boxes. Therefore,
the k-means method is adopted to carry out dimensional clustering on the target boxes in the dataset
and get nine prior boxes of various sizes, which are evenly spread to feature graphs of various scales.
Further, Yolo V3 allows individual bounding box anchor for each ground truth object [34]. If the
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core point of the object’s ground truth drops inside a specific grid, and the grid is responsible for
recognizing the object. Figure 2 describes the bounding boxes with the prior dimension and location
prediction. As shown in Figure 2, bx, by, bw, bh are the x, y center coordinates of the width, and height
of our prediction. tx, ty, tw, and tk are the network outputs. Next, cx and cy are the top-left coordinates
of the grid, whereas pw and ph are anchors dimensions for the box [23,35].

bx = σ(tx) + cx (1)

by = σ
(
ty
)
+ cy (2)

bw = pwetw (3)

bh = pheth (4)
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The Tiny Yolo V3 model is a reduced version of the Yolo V3 model. Yolo V3 applies the architecture
of darknet 53 and then employs many 1 × 1 and 3 × 3 convolution kernels to extract features.
This model is lighter and faster than Yolo while also outperforming other light model’s accuracy. Tiny
Yolo V3 shrinkage the number of convolutional layers, usually it only has seven convolutional layers.
The features are derived by a small number of 1 × 1 and 3 × 3 convolutional layers. In addition, Tiny
Yolo V3 uses the pooling layer in place of Yolo V3’s convolutional layer with a step size of 2 to attain
dimensionality reduction. Nevertheless, its convolutional layer structure still uses the equal structure of
the loss function (Convolution2D + BatchNormalization + LeakyRelu) as Yolo V3. The model is trained
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and calculated the loss value, and the loss function used by Tiny Yolo V3 is the same as that of Yolo V3.
Hence, the loss function is essentially consist of the position of the prediction frame (x,y), the prediction
frame size (w,h), the class prediction (class), and the confidence prediction (confidence) [36]. Further,
Yolo V3 SPP and Tiny Yolo V3 SPP is implemented by incorporating three SPP modules in Yolo V3 and
Tiny Yolo V3 in front of three detection headers between the 5 and 6 convolutional layers [37]. Yolo V3
SPP and Tiny Yolo V3 SPP are designed to improve the detection accuracy of baseline models further.

2.3.2. Densenet

Densenet has over 40 layers and has a higher convergence speed [38]. Further, Densenet needs to
consider additional functionality channels, including single-level dimensions or cross-level dimensions,
to reduce the need for functional replication in the network model and enhance the retrieval of
features [39]. Moreover, Densenet has appealing benefits as follows: It assists feature reuse and
relieves the disappearing gradient problem. Consequently, it also has clear limitations. First, every
layer simply combines the feature maps extracted by concatenating the process from previous layers.
The operation was done without considering the interdependencies between different channels [40].
Further, the Densenet is principally composed of Dense Block, Transition Layer, and Growth Rate [41].
Dense Block [42]: every Densenet consists of N Dense Blocks. In any Dense Block, there exist m layers
where each layer is linked feed-forward to all consecutive layers. If xm is denoted as the output from
the mth layer then it is calculated using Equation (5):

xm = Hm([x1, x2, . . . , xm−1]) (5)

where Hm is the composite function that operated in this layer and a concatenation function between
the individual layers inside it will be processed. The concatenated features are treated through a
combination function that composed of BN, Relu, and Convolution (3 × 3).

A layer between each dense block to which the spatial dimension of the characteristic’s maps
known as the transition layer. It is consisting of (1 × 1) convolution layer and (2 × 2) average pooling.
Growth Rate: The output from each concatenation function in Equation (5) is a feature map f. The size
of the mth layers is f (m− 1) + f0, where f0 is the number of channels of the major input image.
To improve the efficiency of the parameter and to monitor the network growth, f is limited to the
growth rate G with a small integer value. This variable helps to monitor the amount of information
stored in each layer.

2.3.3. Resnet 50

Residual Networks (Resnet) [9] are deep convolutional networks where the basic idea is to skip
blocks of convolutional layers by using shortcut connections. Further, Resnet is characterized by a very
deep network and contains 34 layers to 152 layers [43,44]. This architecture can be seen in Figure 3
and developed by researchers at Microsoft won the ILSVRC 2015 classification task [45]. In the Resnet
model, a residual network structure is implemented. The deep CNN model not only avoids the issue
of model deterioration by using the residual network structure, but it also achieves better efficiency.
The Resnet used skip connections to make convergence more rapid. Even the much deeper layers of
Resnet can be trained more quickly than previous ones. This model also used the batch normalization
technique to avoid overfitting [46]. Both of these feature extractors are built with four residual blocks:
based on the original paper, the first three-layer (namely conv2_x, conv3_x, and conv4_x) extract Region
Proposal Networks (RPN) features, while the final layer of conv4_x is applied for predicting region
proposals. Moreover, box classifier features are gained by the last layer of the fourth residual block
(conv5_x) [47,48].
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2.4. Methods

In this section, we explain our proposed methodology to recognize Taiwan’s prohibitory signs
using spatial pyramid polling combine with Yolo V3. Figure 4 illustrates our Yolo V3 SPP architecture.
Algorithm 1 explains the Yolo V3 SPP recognition process as follows.

Algorithm 1 Yolo V3 SPP Recognition Process

1. Split the input image into (S × S) grids.
2. Create K bounding boxes in concert with the estimation of the anchor boxes for every grid.
3. Extract all object features from the image using the convolutional neural network.

4. Predict the b =
[
bx, by, bw, bh, bc

]T
and the class = [P1, P2, P3, P4]T.

5. Appeal the optimum confidence IoUtruth
pred of the K bounding boxes with the threshold IoUthres.

6. If IoUtruth
pred > IoUthres means that the bounding box includes the object. Otherwise, the bounding box does

not contain the object.
7. Select the category with the greatest predicted probability as the object category relating to.
8. Apply the non-maximum suppression (NMS) to conduct a maximum local search to overcome redundant
boxes and output.
9. Object detection result presentation.
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Taiwan’s prohibitory sign image class P1, P2, P3, and P4 were used as input of the object detection
process. The algorithm processes some phases as follows; (1) the detected targets are limited by
bounding boxes. (2) The objects in the class of the image are associated. The same target is given the
same mark in each image. (3) The same image will give the same target uniform label. (4) NMS is used
to perform a maximum local search to compress redundant boxes and output, then display the results
of object detection. In our work, Yolo V3, with a spatial model, uses down sampling in convolutional
layers to receive the important features in the max-pooling layers. It applies three different sizes of the
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max pool for each image by using [route]. Different layers −2, −4 and −1, −3, −5, −6 in conv5 were
uses in each [route].

Yolo V3 SPP model is performed in one phase for detecting and recognizing Taiwan’s prohibitory
sign. This work used the BBox label tool [49] to generate a bounding box for each sign (no entry,
no stopping, no parking, speed limit). Further, the labeling process is executed for all class labels
P1, P2, P3, and P4. Usually, one image can have more than one bounding box, and it means one
image can have more than one label. In the detection phase, a single class detector model was used,
and one class label belongs to one training model. Hence, our experiment uses four training models.
Additionally, object coordinates in the form (x1, y1, x2, y2) are the return values of the bounding box
labeling tool. These object coordinates are different from the Yolo input value. On the contrary, the Yolo
input value is the center point of the object and its width and height (x, y, w, h). Therefore, the system
must modify the bounding box coordinate into the Yolo input format. The modification process use
Equations (6)–(11) [50].

dw = 1/W (6)

x =
(x1 + x2)

2
× dw (7)

dh = 1/H (8)

y =
(y1 + y2)

2
× dh (9)

w = (x2 − x1) × dw (10)

h = (y2 − y1) × dh (11)

where H is the height of the image, dh is the absolute height of the image, W is the width of the image,
and dw is the absolute width of the image. Therefore, float values relative to the width and height of
the image (dw, dh); this value can be equal from 0.0 to 1.0.

3. Results

3.1. Dataset

Considering there is no pre-existing dataset for Taiwan’s prohibitory signs, the system had to
customize a database and collect the image by ourselves. The dataset split into 70% for training, 30%
for testing and the dataset contains pictures of multiple scenes. This experiment focused on Taiwan’s
prohibitory sign that consists of 235 no entry images, 250 no stopping images, 185 speed limit images,
and 230 no parking images. Moreover, Table 1 represents Taiwan’s prohibitory signs in detail.

Table 1. Taiwan’s Prohibitory Signs.

ID Class Name Sign

0 P1 No entry
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3.2. Training Result

The process of training obtained additional data from the original images with the application
of basic geometric transformation methods such as random transformations, rotations, scale shifts,
tears, horizontal flips, and vertical flips. These techniques are commonly used to train large neural
networks. Therefore, the experiment performs some operations during data augmentation using
several parameter settings as follows: rotation_range = 20, zoom_range = 0.10, width_shift_range = 0.2,
height_shift_range = 0.2, and shear_range = 0.15. Therefore, the system manually detected and
recognized the traffic sign used a bounding box labelling tool to give a coordinate location for the
object to be detected [51]. The results of the tools are four points of the position coordinate, along with
the class label. Next step, transform the label to Yolo format before training use the Yolo Annotation
tool [49]. The tool changes the values to a format that could be read by the Yolo V3 training algorithm.
Moreover, the training model environment is a Nvidia RTX1080Ti GPU accelerator 11 GB memory,
i7 central processing unit (CPU), and 16 GBDDR2 memory.

The Yolo loss function is as follows [52–54]:

loss =
s2∑

i−0

coordErr + iouErr + clsErr (12)

BC(a, â) = −[a log â + (1− a) log(1− â)] (13)

ST(w, h) = 2−w× h (14)

iouErr =
s2∑

i−0

B∑
j−0

Iobj
i j [BC(ci, ĉi)] + λnoobj

s2∑
i−0

B∑
j−0

{Inoobj
i j [BC(ci, ĉi)] (15)

clsErr =
s2∑

i−0

Iobj
i j

∑
cεclasses

BC(pi(c), p̂i(c)) (16)

coordErr =
s2∑

i−0

B∑
j−0
{Iobj

i j × ST
(
wi j, hi j

)
× [BC(xi, x̂i) + BC(yi, ŷi)]

+λcoord
s2∑

i−0

B∑
j−0
{Iobj

i j × ST
(
wi j, hi j

)
×[(wi, ŵi)

2 + BC(hi, ĥi)]}

(17)

where (x̂, ŷ, ŵ, ĥ, ĉ, p̂) are the central coordinates, width, height, confidence, and category probability
of the predicted bounding box, and those symbols without the cusp are real labels. B symbolizes that
any grid divines B bounding boxes Inoobj

ij represents that the object drops within the jth bounding box

of the ith grids. Inoobj
ij exhibits that there are no targets in the bounding box. Further, IouErr is the IoU

error. The grid that includes the object and the grid without an object has different weights. Therefore,
λnoobj = 0.5 is added to undermine the impact of a large number of grids without objects on the loss
value. The classification error is ClsErr. Cross-entropy is used to calculate losses and works only on the
grid with a target. Moreover, Yolo V3 employ the sigmoid function as the activation function for the class
prediction. The sigmoid function more effectively finishes the issue when the same target has two labels
than the softmax function [55]. Furthermore, the coordinate error is CoordErr. The cross-entropy loss is
used for the coordinates in the core point, and the variance loss is applied for the width and height. Our
experiment set the λcoord to 0.5, means that the errors of width and height in the calculation are less
effective. For a coordinate error, the calculation will be done when the grid predicts an object [53].

Figure 5 explains the reliability of the training process using Yolo V3 (a) and Yolo V3 SPP (b).
The training loss value for each model is 0.0141 and 0.0125, respectively. Our work uses max_batches = 8000
iterations, policy = steps, scale = 0.1, 0.1 and steps = 6400, 7200. At the beginning of the training process,
the system is beginning with zero or no information and a high learning rate. Therefore, as the neural
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network is presented with growing amounts of data, the weights must change less aggressively. Thus,
the learning rate needs to be decreased over time. Further, in the configuration file, this decrease in
learning rate is accomplished by first specifying that our learning rate decreasing policy is stepwise.
For instance, the learning rate starts from 0.001 and remains constant for 6400 iterations. It then multiplies
by scales to obtain the new learning rate. If the scale = 0.1, 0.1 and the current iteration number is 1000
(0.001) then current_learning_rate = learning_rate × scales [0] × scales [1] = 0.001 × 0.1 × 0.1 = 0.00001.
From Figure 5, we can conclude that Yolo V3 SPP is more stable than Yolo V3 during the training process.Electronics 2020, 9, 889 10 of 24 
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Figure 6a describes the dependability of the training process using Densenet. The training process
remains stable after 4500 epochs and finishes at 40,000 iterations. During training, Densenet uses
max_batches = 45,000, mask_scale = 1, and the training loss value reach 0.0031. In the Figure 6b,
Densenet SPP uses max_batches = 45,000, mask_scale = 1, and the iteration remain constant at
9800 epochs with the loss value at 0.0078.
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Figure 7a shows the persistence of the training process using Resnet 50. The training stage remains
stable after 4500 epochs. Resnet 50 uses max_batches = 45,000, mask_scale = 1, and the training loss
value reach 0.0040. Further, Resnet 50 SPP uses max_batches = 45,000, mask_scale = 1, and the iteration
remain constant at 28,000 epochs with the loss value at 0.0045 in the Figure 7b.
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Training loss value, mAP, and AP performance for all classes using Tiny Yolo V3 could be seen in
Figure 8. Figure 8a shows the reliability of the training process using Tiny Yolo V3. Tiny Yolo V3 uses
max_batches = 500,200, and the training loss value reach 0.0185 at 84,300 iterations. Therefore, Tiny
Yolo V3 SPP uses max_batches = 500,200, and the iteration stops at 72,700, with the loss value 0.0144 in
Figure 8b. The training process is unstable, and it takes a long time to train this model. The complete
results of training mAP and AP performance of all models and classes are shown in Table 2.
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Table 2. Training loss value, mAP, and AP performance for class P1, P2, P3, and P4.

Model Loss Value Name AP (%) TP FP Precision Recall F1-Score IoU (%) mAP@0.50 (%)

Yolo V3 0.0141

P1 97.5 77 0

0.99 0.99 0.99 88.20 98.73
P2 98.8 83 0
P3 99.9 62 1
P4 98.7 76 2

Yolo V3 SPP 0.0125

P1 97.5 78 0

0.99 0.99 0.99 90.09 98.88
P2 98.8 83 0
P3 99.9 62 1
P4 98.9 79 3

Densenet 0.0031

P1 97.4 78 2

0.98 0.99 0.99 88.19 98.33
P2 100 83 0
P3 100 62 2
P4 99.9 76 2

Densenet
SPP

0.0078

P1 98.8 78 1

0.98 0.99 0.99 88.55 98.53
P2 100 82 1
P3 100 62 1
P4 99.4 75 2

Resnet 50 0.004

P1 96.2 75 4

0.93 0.96 0.94 73.11 97.09
P2 98.2 80 3
P3 97.2 59 7
P4 96 74 9

Resnet 50
SPP

0.0045

P1 97.4 78 1

0.97 0.98 0.98 79.33 97.7
P2 100 83 0
P3 96.6 61 2
P4 96.8 73 5

Tiny Yolo
V3

0.0144

P1 79.6 49 1

0.93 0.7 0.8 75.29 82.69
P2 86.0 59 2
P3 88.7 52 11
P4 76.4 51 2

Tiny Yolo
V3 SPP

0.0185

P1 84.2 59 2

0.98 0.79 0.88 79.23 84.79
P2 90.0 71 0
P3 95.4 56 2
P4 69.6 52 1

Table 2 represents the training loss value, mAP, AP, precision, recall, F1, IoU performance, and
calculation time for class P1, P2, P3, and P4. The samples are split into three types: true positive (TP)
samples, referring to the number of samples that are properly specified, false positive (FP) samples,
referring to the number of samples that have not been identified, true negative (TN) referring to the
number of samples that have not been recognized.

Precision (P) and recall (R) [56] are represented by [57,58] in Equations (18) and (19).

P =
TP

TP + FP
(18)

R =
TP

TP + FN
(19)

Another evaluation index, F1 [59–61] is shown as follows.

F1 =
2× Precision×Recall

Precision + Recall
(20)

The integral over the precision p(o) is the average mean average precision (mAP) and shown in
Equation (21).

mAP =

∫ 1

0
p(0)do (21)

where p(o) is the precision of the object detection. IoU computes the overlap ratio between the boundary
box of the prediction (pred) and ground-truth (gt) [1].

IoU =
Areapred ∩ Areagt

Areapred ∪ Areagt
(22)
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Based on Table 2, Yolo V3 SPP obtains the maximum mAP, around 98.88% with IoU 90.09%
followed by Yolo V3 at 98.73% with IoU 88.20%, Densenet SPP at 98.53% with IoU 88.55%, Densenet
98.33% with IoU 88.19%, Resnet 50 SPP at 97.7% with IoU 79.33%, Resnet 50 at 97.09% with IoU 73.11%,
Tiny Yolo V3 SPP at 84.79% with IoU 79.23%, and Tiny Yolo V3 at 82.69% with IoU 75.29%. The trend is
SPP can increase the mAP and IoU on each model in the experiment. SPP can be combined with any
model and will strengthen that model. For instance, the worst model in the experiment was Tiny Yolo
V3 with mAP 82.69% and IoU 75.29%. In addition, SPP can improve the performance of Tiny Yolo V3,
so for Tiny Yolo V3 SPP, the mAP becomes 84.79% (rise 2.1%) and IoU 79.23 (rise 3.94%).

4. Discussion

In this stage, we use twenty Taiwan’s prohibitory sign images for testing with different sizes
and conditions. The accuracy and time measurements of the experiments are presented in Table 3.
In general, Yolo V3 SPP exhibits better accuracy than other models. The highest average accuracy is
Yolo V3 SPP at 99% followed by Yolo V3 at 92%, Densenet SPP at 87%, Densenet at 82%, Resnet 50
SPP at 70%, Resnet 50 at 50%, Tiny Yolo V3 SPP at 50%, and Tiny Yolo V3 at 40%. The trend is that
the accuracy of the combination model with SPP increases with the detection time, which is means
that the combination model with SPP involves more time to detect the sign. For instance, for Yolo
V3 SPP, the average time of detection is 17.6 milliseconds, while Yolo V3 requires 16.7 millisecond.
The longest detection time is Densenet SPP; this model requires around 40 milliseconds. Following
this, Densenet needs 38.3 milliseconds to detect the sign. On the other hand, the fastest model in the
experiment is Tiny Yolo V3. Therefore, Tiny Yolo V3 needs 5.4 milliseconds, and Tiny Yolo V3 SPP
requires 8 milliseconds to recognize the sign. Further, the SPP affects the performance of accuracy
and detection time. In the experiment result, the images are tested one by one to show that SPP can
improve the detection and recognition performance of traffic signs compared to those not using SPP.
For example, there are 5 images that cannot be detected using Resnet 50 models, but Resnet 50 SPP can
detect all traffic signs in the images properly as shown in Table 3.

Table 3. Testing accuracy using Taiwan’s prohibitory sign images of various sizes.

Image
Yolo V3 Yolo V3

SPP Densenet Densenet
SPP Resnet 50 Resnet 50

SPP
Tiny Yolo

V3
Tiny Yolo
V3 SPP

acc ms acc ms acc ms acc ms acc ms acc ms acc ms acc ms

1 0.97 15 0.97 14.4 0.73 48 0.81 24 0.84 16.9 0.49 20.7 0.35 6.4 0.44 12.9
2 0.9 20 0.98 21.3 0.92 27.5 0.89 51.9 0.68 15.6 0.6 22.5 - 4.9 - 3.2
3 0.83 19 0.99 15.2 0.94 41.3 0.92 21.1 0.79 15.3 0.86 24.3 - 2.8 - 5.3
4 0.95 21 0.99 26.1 0.8 49 0.76 48.8 - 16.7 0.61 24.1 1 4.7 0.99 3.5
5 0.89 18 0.99 14.8 0.85 45.9 0.83 21 0.91 9.2 0.91 11.8 - 2.7 0.37 3.9
6 0.98 18 0.99 14.4 0.87 30.9 0.86 41.1 - 15.7 0.51 10.6 - 3.2 - 6.3
7 0.96 20 1 23.2 0.85 46.4 0.88 47.9 - 16.6 0.81 23 1 2.8 0.79 21.3
8 1 16 1 16.8 0.9 30.2 0.96 45.9 0.6 15.8 0.9 17.6 0.99 3.1 0.9 13.9
9 0.88 21 0.99 15.1 0.76 40.6 0.74 29.2 - 15.5 0.64 20.3 - 14.3 - 3.3

10 0.9 15 0.98 32.6 0.63 28.5 0.82 53.2 - 19.8 0.51 24.1 - 2.7 0.94 3.3
11 0.96 22 0.99 14.5 0.82 28.6 0.96 34.9 0.39 16.1 0.43 16.8 0.54 10.3 - 8.5
12 0.79 15 0.99 15 0.74 27.2 0.95 42.9 0.55 9.4 0.68 10.2 0.98 4.4 0.87 3.5
13 1 14 1 16.6 0.92 45.8 0.95 49.1 0.93 13.9 0.94 10 - 3.5 - 3.3
14 1 15 1 17.2 0.92 37.3 0.95 36.5 0.85 21.9 0.92 25.6 - 3.8 - 7.1
15 0.92 15 0.97 14.7 0.8 45.6 0.95 27.4 0.76 15.5 0.61 11.8 0.99 19.8 0.87 19.2
16 0.87 15 0.99 14.9 0.79 47 0.5 46.8 0.29 10.9 0.31 20 - 3.9 - 8.4
17 0.98 13 1 14.6 0.74 42.2 0.91 59.1 0.92 9 0.69 18.8 - 2.8 - 19.9
18 0.95 15 1 14.8 0.89 42.1 0.9 23.9 0.9 21.1 0.87 22.5 0.99 2.7 1 3.9
19 0.87 15 0.99 21.2 0.72 24.8 0.82 43.1 0.28 9.9 0.78 25.8 0.94 3.4 1 5.8
20 0.88 15 0.99 15.2 0.86 38 0.94 52.2 0.68 20.6 0.9 24.7 0.98 5.6 0.98 3.4

Average 0.92 17 0.99 17.6 0.82 38.3 0.87 40 0.52 15.3 0.7 19.3 0.4 5.4 0.5 8
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Convolution subsampling and max-pooling have dissimilar benefits. Hence, Convolution
subsampling can be better reversed, probably in the subsequent upsampling layers. Different layers
−2, −4 and −1, −3, −5, −6 in conv5 were uses in each [route]. However, Max pooling acts somewhat to
remove some high-frequency noise from the image by selecting only max values from the adjacent
regions. By combining both, SPP seems to affect the advantages of both, improving the backbone
network of YoloV3, Resnet 50, Densenet, and Tiny Yolo V3.

Figure 9a describes the Class P4 recognition result using Yolo V3. Image P4-5.jpg was predicted
in 14.7 milliseconds with 88% accuracy. The bounding box coordinate position as follows: left_x: 91,
top_y: 202, width: 239, and height: 321. Using the same image, Yolo V3 SPP in Figure 9b reaches
the highest accuracy 99% and needs 15.2 milliseconds for detecting time. The coordinate position is
left_x: 75, top_y: 231, width: 277, and height: 283. Next, detection results using Densenet and Densenet
SPP explain in Figure 9c,d. They use default mask_scale value 1.00 and got 86% and 94% accuracy,
respectively. Figure 9e,g show the unique detection using Resnet 50 and Tiny Yolo V3. They draw two
bounding boxes in one detection stage with the correct label (class P4). Resnet 50 predict the Class P4
sign with 34% accuracy (left_x: -51, top_y: 222, width: 549, and height: 295) and 68% accuracy (left_x:
68, top_y: 108, width: 270, and height: 536). Then, Tiny Yolo V3 requires 5.4 millisecond to detect the
signs and obtains 98% accuracy (left_x: 35, top_y: 47, width: 342, and height: 645) and 97% accuracy
(left_x: 60, top_y: 264, width: 251, and height: 212). From the test result in Figure 9, we can conclude
that all models can detect the class P4 well with different bounding box coordinate.
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(h) Tiny Yolo V3 SPP.

Figure 10 indicates the comparison of BFLOPS, workspace size, and layers for each model in the
experiments. Yolo V3 generates total BFLOPS 65.312, allocate additional workspace size 52.43 MB,
and loads 107 layers from weights file. Similar to this, Yolo V3 SPP loads 114 layers and requires
workspace size 52.43 with a total BFLOPS of 65.69. Next, Densenet and Densenet SPP load 306 layers
and 312 layers, provide a large workspace size 104.86 MB with a total BFLOPS 31.869 and 33.535,
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respectively. Furthermore, Resnet 50 and Resnet 50 SPP filled 69 layers and 75 layers, divide additional
workspace size 26.33 MB with a total BFLOPS 26.439 and 28.661, successively. Moreover, Tiny Yolo V3
and Tiny Yolo V3 SPP load fewer layers compare to others. They only load 24 layers and 30 layers,
requires 52.43 MB workspace size with a total BFLOPS 5.452 and 5.766. In addition, Tiny Yolo V3 loads
the fewest layers (24 layers) and BFLOPS (5.452). Densenet SPP contains the most layers (312 layers)
and requires a large workspace size (104.86). The highest total BFLOPS achieved by Yolo V3 SPP
(65.69). SPP can improve the total BFLOFS 0.378 from 65.312 to 65.69, thus making Yolo V3 SPP more
robust, stable, and accurate.Electronics 2020, 9, 889 19 of 24 
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Figure 10. Billion floating-point operations (BFLOPS), workspace sizes, and layers comparison.

Figure 11 shows the detection effectiveness of different algorithms. It can be seen that the
localization accuracy of Yolo V3 SPP (Figure 11b) was higher than the others. Yolo V3 SPP can detect
all two signs in the image. In Figure 11a or Figure 11c–f, all algorithms failed to detect all class P1
signs in the image, detecting only a single sign. However, for the last two images in Figure 11g,h,
all algorithms exhibited false detection and missed detection.
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V3 SPP.
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5. Conclusions

This paper presents an experimental comparative analysis of eight models of traffic signs based
on deep neural networks. We investigate the principal aspects of certain detectors, such as precision
accuracy, detection time, workspace size, and the number of floating-point operations within CNN.
In addition, this paper refers to the spatial pyramid pooling (SPP) and modifies the backbone network
of Yolo V3, Resnet 50, Densenet, and Tiny Yolo V3. We employ SPP to raise the local region at
diverse scales in the equivalent convolutional layer for learning multi-scale object features more details.
The mAP comparison of all models shows that Yolo V3 SPP outperforms other models in the experiment.
Yolo V3 SPP exhibits the highest total BFLOPS (65.69), and mAP (98.88%). SPP can improve the total
BFLOFS 0.378 from 65.312 to 65.69, thus making Yolo V3 SPP more robust for detecting the sign.
The experimental results disclose that SPP can rectify the effectiveness of detecting and recognizing
Taiwan’s prohibitory signs. SPP improves the performance and backbone network of YoloV3, Resnet
50, Densenet, and Tiny Yolo V3. Although SPP requires longer time, this model is better for detecting
multiple images. As shown in Figure 11b, Yolo V3 SPP can detect all signs in the image while others
not. Nevertheless, Tiny Yolo V3 and Tiny Yolo V3 SPP load fewer layers (24 layers) compare to others.
Densenet SPP contains the most layers (312 layers) and requires a large workspace size (104.86 MB).
Related to the detection time, the fastest models in the experiment are Tiny Yolo V3, and the longest
models are Densenet SPP.

In future research work, we will enhance our dataset to all of Taiwan’s traffic signs and add
experimental data in multiple scenarios and different weathers conditions for training and testing.
We will expand the dataset through generative adversarial networks (GAN) [62–64] to obtain better
performance and results.
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