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Abstract: Benefiting from the application of vehicle communication networks and new technologies,
such as connected vehicles, video monitoring, automated vehicles and vehicle–road collaboration,
traffic network data can be observed in real-time. Applied in the field of traffic control,
these technologies can provide high-quality input data and make a more comprehensive evaluation
of the effectiveness of traffic control. However, most of the control theories and strategies adopted by
adaptive control systems cannot effectively use these real-time, high-precision data. In order to adapt
to the development of the times, intersection control theory needs to be further developed. This paper
reviews the intersection control strategies from many perspectives, including intelligent data-driven
control, conventional timing control, induction control and model-based traffic control. There are three
main directions for intersection control based on the connected vehicle environment: (1) data-driven
reinforcement learning control; (2) adaptive performance optimization control; (3) research on traffic
control based on the environment of connected vehicles (CV); and (4) multiple intersection control
based on the CV environment. The review gives a clear view of the data-driven intelligent control
theory and its application for intelligent transportation systems.

Keywords: intelligent transportation; CV; V2X; intelligent computing; traffic signal control; adaptive
control; data-driven; reinforcement learning

1. Introduction

With socio-economic development and the acceleration of urbanization, the existing urban roads
cannot withstand the increasing traffic flow, which puts tremendous pressure on the urban traffic
management department. The intersections of urban roads display a high incidence of congestion,
which has a huge impact on traffic efficiency. Therefore, the primary issue for improving traffic
congestion should start from the control of intersections, to improve the efficiency of road traffic [1].

In the past few decades, traffic signal control has experienced many developments; from the
initial fixed-time control, to the actuated control, to the development of adaptive control with real-time
adjustment capability [2]. Initial fixed-time control is a signal control method that calculates the timing
of a flow signal based on historical flow data. Its signal timing does not adapt to changing traffic
needs [3]. The control method is more flexible, but these sensors are expensive to maintain [4], and the
actuated control must have a greater set of predefined static parameters to change these timings [5].
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The adaptive control method was produced when computer technology and communication
technology developed to a certain level. It is similar to actuated control. It detects traffic flow
information through a detector, and then transmits these data to the host computer in real-time through
the network. The host computer generates the best green light timing scheme in real-time and puts it
into practice. Its objective function is to minimize the indicators of vehicle release, delay and number of
stops per unit time. This control method is suitable for use when coordinating with area management
or trunk lines. The upper computer can coordinate multiple intersection signalers, so that its operation
scheme can be adaptively adjusted according to changes in traffic flow, thereby improving the overall
area or trunk line operating efficiency [6]. As the traffic congestion problem becomes more serious,
the role of the adaptive traffic control system (ATCS) has become increasingly prominent [4]. It is the
basic requirement of ATCS to be able to send signals the signal lights of intersections in real-time [7].

Common control signals are usually controlled by directly or indirectly obtaining the queue length
or vehicle delay of vehicles at intersections through traffic flow information. Accurately obtaining
traffic flow information of vehicles is the basis for controlling intersections. Traffic that commonly arose
in the past is detected with the flow sensing method by setting an induction loop and a video camera.
Inductive loops and video camera have the disadvantages of high installation and maintenance costs
and have shown huge limitations under current road conditions [4].

The internet of vehicles [8] realizes a full range of network links, such as car-to-cloud platforms,
cars-to-vehicles, cars-to-roads, and cars-to-people, through the new generation of information and
communication technologies, which include the internet, the inter-vehicle network and in-vehicle
mobile internet. Telematics is the use of sensor technology-perceived status information of the
vehicle, and by the help of modern wireless communication networks and intelligent information
processing technology, it can achieve intelligent control of intelligent traffic management, and intelligent
decision-making and vehicle traffic information services. The connected car is also based on the
internet of vehicles technology. The car–road collaboration system is based on advanced wireless
communication technologies. Through the sharing of information between cars and cars, and the
infrastructure of roads, the intelligence between cars and cars and roads is realized; a collaboration to
reduce traffic congestion and improve vehicle travel safety. The vehicle–road coordination system
mainly includes a roadside coordination control unit, an intelligent vehicle-mounted device, and a
wireless communication unit, and its core is mainly vehicle–vehicle communication and vehicle–road
communication [9]. A very reliable and low latency communication network is necessary for telematics
applications, and it also has the ability of real-time data processing and decision-making under the
constraints of application. Current communication and computing technologies do not have this
capability. However, the emergence of the fifth-generation cellular network (5G) will change this
situation, as its low latency, high reliability and high bandwidth will meet the needs [10].

Today, wireless communication technology is developing rapidly, providing important basic
technical support for building the Internet of Vehicles and providing important solutions for solving
traffic problems. Western countries, such as those in Europe, and the United States have built a
Vehicular Ad-hoc Network (VANE) using communication technologies, such as vehicle-to-vehicle
(V2V) and vehicle-to-road (V2I), in conjunction with GPS technology. VANE can realize the sharing
and interconnection of vehicle operation statuses, and it is gradually changing the traffic composition
environment. Among them, the vehicle network protocol mainly adopts the two protocol methods
of IEEE 802.llp and IEEE 1609 [11], which promote the rapid development of vehicle network
communication among countries. Among them, in particular, is the increase of the communications
band abroad to 5.9 GHz band network communication. To realize the development of the Internet
of Vehicles, the key lies in the standardization of communication networks [12]. Vehicle networking
standards, and a series of communications plans for the gradual release of vehicle networking and
application-specific implementations, laid the foundation to promote the standardization of car
networking and rapid its development [13]. The development of V2X in intelligent vehicles can be
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used as a powerful motion detector [14], to collect road conditions and detect dangerous obstacles to
reduce traffic accidents. [15].

The Intelligent transportation system (ITS) is a comprehensive, real-time, accurate and efficient
comprehensive transportation and management system. At present, relying on communication
technology, connected vehicles can also be used as sensors to collect high-precision status information,
making a great contribution to intersection control [16]. Extensive research on autonomous driving
has also provided wider dynamism for the deployment of ITS [17]. 5G can push car cloud efficiency
in a short time, with larger data dissemination in the next generation of mobile networks. It can
significantly increase the ITS performance. The use of this network can find out the ITS dynamic
behavior via the 5G solution [18]. The structure of the intelligent transportation system is shown in
Figure 1, where Part 1 is the collection of traffic information, and the vehicle status can be obtained
by accessing the network data of the CV or loop. Part 2 is sensing and predicting the traffic state,
such as predicting the real-time queue length. Part 3 is the traffic system control, which is composed of
various strategies and finally completes the signal timing. Part 4 is high-level traffic monitoring and
management, which has the highest authority and can obtain all the information. Part 2 and Part 3 are
called transport system models (TSM), which can realize sensing, prediction and control. This article
also reviews adaptive signal control at intersections from sensing, prediction and control.

Figure 1. Architecture of Intelligent Transportation System.

With the advancement of communication technology, the data that can be applied to traffic
control is also constantly being enriched. However, the disadvantages of traditional adaptive control
strategies show up in large amounts of data processing, which require the development of adaptive
control algorithms and strategies suitable for our developing times. The traffic control methods
reviewed in this paper are suitable for urban intersections, where the signal lights and vehicles have
the capacity for network communication. What is more, it is useful to research advanced intersection
control methods to increase traffic efficiency in crowded urban traffic. This article analyzed technical
differences and features of three kinds of traffic control, namely model-based traffic control, intelligent
computing traffic control and data-driven traffic control, and discusses the key issues and technology
development trends of these adaptive control modeling methods in traffic data-rich environments.
Section 2 introduces signal sensing at intersections, Section 3 introduces traditional adaptive control
methods, Section 4 introduces the development trends of adaptive signal control methods in the CV
environment, and Section 5 summarizes them. An overview of related literature is shown in Figure 2.



Electronics 2020, 9, 885 4 of 24

Figure 2. Overview of the related literature.

2. Data Perception for Intersection

V2X technology makes the connected vehicle become a "mobile sensor", which can collect traffic
information [19]. The management of Internet in vehicles has become the focus of traffic management.
How to accurately obtain traffic information from a small number of connected vehicles’ data has
become the research focus of many researchers engaged in vehicle network data processing and
application research [20]. Zheng et al. used a small amount of connected cars’ GPS trajectory data in
the model to predict traffic volume at the intersection. The model considered the arrival of vehicles as
a Poisson distribution, to establish the maximum likelihood problem to solve the traffic prediction
value [21]. Wang et al. proposed a new topology framework based on connected vehicle data.
The topology framework has been used for road network modeling, given the traffic flow propagation
mode, and designing a regression neural network as an online predictor to learn traffic transmission
patterns in road networks [22]. Connected car data is widely used because it comes from various
sources and gives a variety of traffic information.

Regular vehicles (RV), connected vehicles (CV) and automated vehicles (AV) compose traffic flow,
which changes the urban road network traffic composition. In addition to private cars, there will
be busses in the traffic, which makes the traffic streams more complicated, as shown in Figure 3.
The information network of connected vehicles and automated vehicles affects driving behavior and
demand. The study of a multi-modal traffic flow control theory is imminent [23]. Adaptive flow control



Electronics 2020, 9, 885 5 of 24

is used to meet the needs of real-time traffic. The adaptive traffic control system with V2X conditions
is superior to the fixed loop detector under normal traffic conditions. It will provide more detailed
information, including vehicle location, speed, queue length, stopping time and other information,
which means it attracts more attention from scholars.

Figure 3. Future traffic flow composition.

A typical method to predict queue length is through CV data. In the study of Comert et al.,
the distribution of queue length is regarded as a probability distribution, predicted by the state of
the last CV, and finally determined by mathematical statistics [24]. In addition, Yu et al. applied the
collected data of states to predict the traffic speed of adjacent intersections [25].

In the real world, an increasing number of vehicles are equipped with vehicle–road communication
devices, which makes the information easier to perceive. This is why a large number of researchers
choose the vehicle communication equipment penetration rate as the optimization model. In [26],
a position and speed estimation algorithm, under the universal rate of different vehicle communication
devices, is proposed, which is used to optimize traffic signals in real-time. In the simulation,
the proposed estimation vehicle of location and speed (EVLS) algorithm can reduce the overall vehicle
delay by more than 16% when the in-vehicle communication equipment has the highest penetration
rate. It is easy to obtain the trajectory data of connected vehicles in the V2X environment. In Mirhrli’s
research, CV position and time data were used to build a trajectory reconstruction model. Then,
the queue length is evaluated, and the trajectory is optimized. However, when the penetration rate is
low, the prediction results will have a large error [27]. It can be seen that permeability has a great impact
on estimation accuracy, although the penetration rate of CV is a random variable that is essentially
unknown. Wong et al. proposed an unbiased estimation method called SSDPR. This method is simple,
analytical, and non-parametric. It can be used to estimate CV penetration rate. It uses CV and the
number of vehicles before CV to estimate the penetration. The results show that when the penetration
rate is only 0.1%, there is also a good estimation effect [28].

In addition, only relying on the information regarding CV to accurately predict queue length
is still somewhat difficult. Therefore, a large number of researchers use multi-source information
tools integration to obtain higher prediction accuracy. In the study of Lee et al., a real-time evaluation
method based on lane queuing length was proposed. The number of vehicles lined up in each lane is
determined by the detector information at isolated signalized intersections, so as to determine whether
there is a remaining queue at the beginning of each cycle, as well as the proportion of lane-to-lane
traffic in each lane. This method is estimated based on the queue length under a wide range of traffic
conditions, and has excellent robustness and accuracy [29].

However, traditional detector-based vehicle data has a limited range and time [30]. In the last
10 years, CV technology has made significant progress, and can now obtain much more accurate and
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more dimensional traffic flow information in real-time. Higher-dimensional and more accurate data
can describe traffic changes and states more accurately, and it can provide strong support for signal
management [31].

Today, it is not uncommon for transportation infrastructure and vehicles to have the ability
to network and provide useful information. The rapid development of the Internet of Things has
greatly improved the framework [32]. Many researchers have focused their research on the use of
the Internet of Things in ITS, as well as traffic information collection and dissemination, and traffic
flow management and monitoring [33]. Figure 4 shows an implementation of 4G/5G communication
technology in connecting intelligent cameras, loop and connected vehicles to the Internet of Things.
Intelligent cameras, connected vehicles and loops sense the state, and communicate these messages to
the 4G/5G communication technology. The features are processed through the cloud server, and finally
the information perception and prediction are performed through the algorithm of the Matlab platform.

Figure 4. Structure of test for networking infrastructure-based traffic information prediction.

Obviously, the reliability of V2X communication is the key factor in realizing signal perception in
the CV environment. Meng et al. proposed that the loss of vehicle information and location errors
would result in signal timing failure and a large amount of delay [34]. Robust optimization is a
common method for solving the uncertainty in traffic control [35]. Tong et al. proposed a stochastic
programming model to schedule adaptive signal control, to minimize the expected delay of vehicles,
greatly reduce the computing cost, and make better use of the updated traffic information [36]. Li et al.
established a predictable interference control, which was applied to the predictable interference control
of the V2V network to ensure the reliability of the predicted communication. Although this method
focuses on vehicle-to-vehicle communication, it can also be extended to V2I communication [37]. Filipe
et al. developed a robust deep reinforcement learning (DRL) algorithm by pre-training for emergencies,
such as communication interruption, and then transferring the learning parameters to the scene.
The results showed that this method provided the best choice compared with other methods [38].

However, the role of the algorithm is relatively limited. How to ensure robust V2X communication
is the fundamental issue in solving this problem. By combining the advantages of dedicated short-range
communication (DSRC) and cellular networks, the researchers are using cellular networks (4G/5G)
as backup data for the vehicle, breaking through the limitations of a single V2X’s communication
capability and making the communication more robust [39,40]. The emergence of 5G+DSRC V2X
communication technology makes it possible to achieve higher quality communication.
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Various traffic states, such as traffic flow, traffic congestion and queue length at intersections,
are collected, extracted and integrated through the interconnected transportation infrastructure and
vehicles. Various traffic conditions provide broad prospects for improving and promoting traffic
control. In this regard, emerging connected vehicles and wireless technologies are undoubtedly a
watershed, making transportation information exchange more convenient. With the development
of equipment technology, the performance and computing power of transportation infrastructure
controllers have changed substantially. In addition, the powerful computing capabilities of cloud and
edge computing also provide a new possibility for the improvement of traffic signal perception and
prediction. [41,42], and make it possible to build a smart city framework of intelligent internet of things
(IoT), cloud, edge and 5G, and provide more efficient and reasonable services [43].

3. Conventional Adaptive Control Methods of Intersections

There are many means of traffic control different from fixed-time control and actuated control.
Adaptive control regards a single-point intersection as an uncertain system, and uses real-time traffic
status updates as the value of input parameters. The value of the output parameter is calculated by
the control unit, so that the signal control system reaches an optimal state, which makes up for the
shortcomings of the first two control methods. At an intersection, the criterion for evaluating the pros
and cons of signal control are the consideration of whether the signal timing can achieve rapid and
accurate feedback, and whether a signal control scheme can be provided in a timely manner. Adaptive
control of urban traffic signals is an extremely complex and difficult control problem, from both a
theoretical and a practical perspective [1].

Consulting the previous literature, traditional adaptive signal control can be summarized into
three categories, as shown in Figure 5, which are model-based traffic control (MBC), intelligent
computing and data-driven control. These can also blend with each other to form a hybrid algorithm
to control traffic lights, making a huge contribution to traffic control in the past and present.

Figure 5. Overview of the conventional adaptive control methods.
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3.1. Introduction to Adaptive Signal Control System

The development of adaptive signal control can be roughly divided into the following six stages,
as shown in Table 1.

Table 1. Development history of adaptive traffic signal control.

Stages Technologies Time

6 Super system: Artificial intelligence technology (self-learning ability based on experience) now
5 Enhanced features of stage 4 (OPACV, RHODES) 1992
4 Distributed adaptive control system (OPAC, DP based method) 1983
3 Centralized control with online optimization scheme (SCOOT) 1981
2 Distributed control, knowledge selection (SCAT) online optimization 1979
1 Mixed control of basic fixed time control and inductive control 1969

There are many ways to classify urban traffic signal control methods and structures.
According to control strategies, urban traffic control methods are classified accordingly:

(1) Offline optimization method. The typical representative of this method is the TRANSYT system.
TRANSYT is a simulation/optimization model and serves as an informal international standard.
The timing scheme is based on the historical data of the transportation network, and mainly
uses computer modeling, optimization and simulation techniques. The objective function of
this method mainly uses the number of stops and delay times as indicators, and uses the blind
mountain climbing method to optimize the phase difference and green light time [44].

(2) Online plan selection method. This method is typically represented by the SCAT (Sydney
coordinated adaptive traffic) system. It uses offline optimization to optimize several timing
schemes corresponding to different traffic flows on the road network, and uses class saturation
and comprehensive traffic for optimization selection.

(3) Online scheme generation method. The typical representative of this method is the SCOOT (split,
cycle and offset optimization technique) system. It consists of a traffic prediction model and
timing parameter optimization. The traffic model is processed online, and directly calculates
a series of parameters and operating indicators based on real-time feedback concerning traffic
conditions on the road network.

According to control strategies, the structures of the urban traffic control systems are classified
accordingly:

(1) Centralized traffic signal control system. All signals in the control area are connected, and the
entire system is controlled centrally by the control center. The centralized control system has only
one control center, and each intersection is directly connected to the control center, forming a
star structure on the topology. In this structure, each intersection executes the control strategy
formulated by the control center, while at the same time, each intersection transmits its own
traffic information to the control center in real-time, and the control center adjusts the control
scheme based on the traffic information of each intersection [45,46]. The use of centralized control
makes greater requirements of the control center system. Errors in the central system will cause
the entire system to be paralyzed. Therefore, the robustness of the centralized system is poor.
The SCOOT system is a centralized traffic signal control system [47].

(2) Distributed traffic signal control system. The distributed control system is mainly composed of
three levels: the general control center, the sub-control center and the intersection. Among them,
the general control center is responsible for the overall scheduling of the system, the coordination
of the tasks of the sub-control centers and the handling of global affairs. It has the highest control
ability and priority. The sub-control center is responsible for the formulation of management
signal strategies and other functions at the intersections of the area or the main road, and the
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intersections are responsible for tasks such as collecting traffic information at their locations and
implementing control strategies [48]. The distributed control structure improves the reliability
of the system. The existing control system SCATS (Sydney coordinated adaptive traffic system)
belongs to the distributed control structure [49].

This paper studies the application of adaptive control methods for systematically tracking urban
road traffic signals from three perspectives, including model-based control (MBC) methods, intelligent
computing control methods and data-driven control methods. Under the discussion of the background
of the evolution of the traffic control system, the key issues and development trends of the three
adaptive control methods applied to intersection traffic control are discussed [23].

As shown in Table 1, which depicts the classification of the former adaptive traffic control systems,
these continue to iterate, and key technologies continue to advance, but the current traffic control
system can no longer meet the needs of future traffic environment changes. With the development of
V2X, autonomous driving, CV, and vehicle–road collaboration, the resolution and accuracy of vehicle
flow data are constantly improving. This necessitates the emergence of new adaptive traffic control
systems to adapt to the developments of the times. The development of adaptive control theory is the
top priority.

3.2. Model-Based Traffic Control

The MBC methods follows the feedforward control theory, adopts adaptive control and optimal
control methods and technologies, establishes a multi-target timing model of network-level traffic
signals, and uses an online optimization module to calculate the optimal control scheme (period,
green signal ratio and phase difference), to ensure timely updates of the control parameters of the
intersection signal, so it can respond to changes in traffic demand at the intersection. According to
the different control objectives, the MBC method can be roughly divided into two types, namely the
comprehensive performance indicators method and the green wave band method [23].

Comprehensive performance indicators comprehensively consider delays, parking times, queuing
lengths and throughput in order to obtain the best comprehensive network efficiency [50]. Most of
the current adaptive traffic signal control methods use a centralized, coordinated control method
based on comprehensive performance indicators. The mainstream commercial traffic control systems,
such as SCOOT, U-TOPIA and MOTION, and the timing software such as TRANSYT and SYNCHR0,
have evolved and developed on the basis of MBC methods. The optimization and generation of the
benchmark coordination schemes of these systems are based on TRANSYT similar control logic, except
that the form of the specific timing model and the method of optimization are different [51].

The green wave band method reduces the delay of vehicles traveling in the coordinated direction
by increasing the green waves on the trunk corridor, which greatly improves the traffic efficiency
of the mainline. Common green band-based mainline coordination control methods include the
maximum green-band method MAXBAND and the variable-bandwidth multi-green-band method
MULTIBAND [52]. Actually, the green wave method does not directly take delays, stopping times or
queuing lengths as control targets. By maximizing the continuous passing time zone without stopping,
it effectively reduces the travel time of the vehicles in the coordinated direction and minimizes the
delays in the coordinated direction. However, the green wave method aims to find the maximum green
wave band when the mainline convoy is continuously running. The public cycle time is usually long,
which can easily cause problems, such as concentrated cycle control at non-critical intersections [53].

Obviously, it is very difficult to establish an accurate model, and the robustness of the MBC
method is difficult to guarantee [54].

3.3. Traffic Control Based on Intelligent Computing

Artificial intelligence technology has given computers the ability to simulate human reasoning
and learning processes, as well as learn autonomous optimization strategies, during the interaction
between traffic controllers and traffic environments. It has strong nonlinear approximation and
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learning capabilities. In the past 10 years, the use of multi-agent modeling technology—intelligent
computing-based traffic control methods without precise mathematical models—has attracted the
attention of many scholars. Among them, fuzzy logic, neural networks and group intelligence
algorithms dominate [55].

3.3.1. Fuzzy Logic

A fuzzy logic (FL) traffic manager or expert control signal can accumulate experience with if
else-expressed fuzzy rules, fuzzy inference and reasoning to achieve decision-making process, and is
a nonlinear and effective uncertainty tool [56]. An effective method for solving urban traffic problems
is to apply fuzzy control to urban traffic signal control. As early as 1977, Pappisno used fuzzy control in
traffic control, and established a fuzzy control rule base or expert system for various traffic conditions,
achieving great results [57]. Since then, in order to improve the level of fuzzy controllers in solving
actual traffic problems, multi-level fuzzy structure models, such as two-level fuzzy and three-level
fuzzy, have been proposed and developed, from a single point to the application of regional traffic
control. At the same time, combined with group intelligence, hybrid intelligent control methods,
such as neural networks, have been studied by many scholars to improve the learning ability of
fuzzy logic itself [58]. Research shows that the method of applying fuzzy control to traffic signal
control works well, but the structure and parameters of artificially set fuzzy controllers are affected
by individual subjectivity. The structure and parameters of the fuzzy controller are optimized online.
The current research focusses on fuzzy applied to urban traffic signal control [6].

3.3.2. Neural Network

Artificial neural network (ANN) is a self-learning system that has been shown, in theory, to have
a strong approximation ability and self-learning function in nonlinear mapping, widely used in
traffic pattern recognition systems, such as adaptive control and other fields [23]. Nakastuji uses the
fuzzy neural network in the forward dynamic programming algorithm. Fuzzy control is also used in
PRODYN real-time control system [59].

Srinivasan et al. adopted a multi-agent architecture to model the traffic signal control problem as
a distributed unsupervised response model. In this architecture, the signal light at each intersection
is an agent, which is approximated using a fuzzy neural network. Simulation results show that the
average vehicle delay is reduced by 78% [60]. In addition, Srinivasan et al. used each agent to handle
an intersection, which thus constitutes a single-layer distributed multi-agent traffic signal control
system. Through the cooperation between the agents, the delay is effectively reduced by 35.6% [61].

Traffic situations are very complicated, and traffic systems also have strong nonlinear characteristics,
and it is very difficult and time-consuming to collect state data, resulting in a slow convergence of the
system. In addition, the initial training worth setting is a great influence on the training speed and
effect of the neural network [23].

3.3.3. Group Intelligence

Group intelligence algorithms, such as genetic algorithms (GA), ant colony optimization (ACO)
and particle swarm optimization (PSO) simulate the social behavior of living things [62], as they use
the group search strategy and the information exchange between individuals in the group to carry
out global random searches and parallel optimizations. The search process does not depend on the
gradient information of the object, and has been widely used in traffic control [63].

Zhao considers the lane restructuring strategy (for example, reverse lane, one-way streets,
turn restrictions and cross-elimination) in enhancing the effectiveness of the transport network in terms
of capacity, and also contributed to the establishment of a mathematical model of the traffic balance
network. In this model, lane reorganization optimization and traffic control strategies are integrated in
a structure, and a GA genetic algorithm is used to obtain the optimal solution [64]. Li et al. proposed a
hybrid algorithm based on a simulated annealing algorithm (SA) and a GA to optimize arterial signal
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timing. This method is an effective solution, showing that the optimal green light time should be
proportional to the number of important lanes at each stage. Various signal optimization models can
use this algorithm. In addition, optimizing the phase sequence of supersaturated intersections is very
suitable for this algorithm. Compared with SA or GA algorithms, the SA-GA algorithm has more
advantages in solving quality and convergence speed [65].

With regard to complex multi-objective optimization control, traditional group intelligence
algorithms may face issues such as local optimization [66]. In practical applications, simulated
annealing, golden section local search optimization operators, or a combination of multiple algorithms,
are often used to propose a group intelligence algorithm with a mixed structure, to increase the
local optimization capabilities of traditional group algorithms such as GA [62]. However, due to the
limitations of optimization efficiency, the hybrid group intelligence algorithm is only suitable for offline
optimal adaptive control.

3.4. Data-Driven Traffic Control

Data-driven control (DDC) involves the controlled object using the direct input/output (I/O)
amount of the measurement data to design a control theory and method, without the mathematical
model of the environment, also known as the Model-Free Control. Iterative learning control (ILC) is an
important application of DDC, and the idea of (ILC) has been widely used in reinforcement learning
(RL) and adaptive dynamic programming (ADP) algorithms. It has been successfully applied to single
point, main line and regional traffic signal control [67].

3.4.1. Reinforcement Learning

Reinforcement learning (RL), as a machine learning algorithm, adopts the method of learning
while acquiring examples and updating the model, and guides the next action with the current model.
It then updates the model according to the feedback after the next action is performed, and iterates
continuously until the model converges. The combination of the strong adaptability of RL and the
highly time-variable traffic flow is of great significance for the realization of urban intelligent signal
management [68].

RL is portrayed in Figure 6; it first extracts an environment from the task to be completed,
from which it then abstracts the state, action, and reward for performing the action. In signal control,
the intelligent signal light is an agent, which obtains the state from the intersection to perform the
signal timing action. At this point, it changes from one state to another. If the agent’s signal timing
effectively reduces traffic congestion, it will be rewarded, otherwise, it will not be rewarded.
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Sohei et al. combined a deep neural network with continuous reinforcement learning to build an
adaptive signal control model, controlling signal timing by collecting high-precision sensor information
and making the feedback signal self-learn to minimize delay [69].

Liang et al. used the collected traffic data to divide the entire intersection into multiple grids,
thereby categorizing complex traffic scenarios into multiple states. By defining the position and speed
of the vehicle at the intersection as the state, the phase corresponding to the green light duration as the
action, and the cumulative waiting time of adjacent cycles as the reward signal, the signal optimization
problem is expressed as a Markov decision process. The convolutional neural network is used to
solve the model, and multiple optimization elements, such as a game network, a target network,
a double Q learning network and priority experience playback, are integrated to improve the control
performance [70].

Erwin et al. expressed the traffic flow optimization problem as a Markov decision problem,
using a Q-learning algorithm to learn the speed distribution law of high-speed sections, and determined
the maximum allowable speed to alleviate the traffic congestion problem at the entrance and exit of
ramps [71].

3.4.2. Adaptive Dynamic Programming

ADP is a near-optimal method emerging in the field of optimal control. It flourishes in RL,
ANN, FL, etc., and can provide many solutions and specific technical methods for solving nonlinear
system optimization problems. ADP is a cross-domain generated by the integration of artificial neural
networks, optimal control and RL. It can also be considered as an extension of continuous learning in
discrete fields, and it is defined as a modern version of reinforcement learning. ADP is widely used in
various complex control fields [72].

Dynamic programming algorithms are computationally intractable [3]. Compared with dynamic
programming, adaptive dynamic programming uses a combination of offline and online training
methods, which ensures that the system parameters can quickly and accurately change with the real
state and can make the system robust [73].

In order to enable the signal controller to respond in real-time, Cai et al. proposed a control
algorithm based on adaptive dynamic programming (ADP). The algorithm uses dynamic programming
and reinforcement learning computing power to approximate, which improves the computing
efficiency. In addition, simulation results show that the algorithm can dynamically allocate green time,
automatically adjust control parameters and quickly respond to signal timing. Compared with the
fixed timing method, this algorithm reduces a large number of vehicle delays. [74].

Cai et al. proposed an adaptive signal control method. This control method uses adaptive dynamic
programming to give the traffic controller the ability to constantly understand its own performance.
In this way, the vehicle can predict the remaining travel time when approaching the stop line of the
intersection. This method has achieved gratifying results in solving problems in dynamic control and
optimal control performance [75].

4. Development Trends of Adaptive Signal Control for Intersections in Future Traffic Environments

Current adaptive control methods, such as MBC, intelligent computing methods and data-driven
methods, can only be applied to small-scale and linear control systems. In the current era of the
Internet of Everything, there must be new control methods to break through this limitation. The current
vehicle–intersection control network, based on documentation of the last 10 years, can be divided
into the following categories: intersection data-driven RL control, with performance optimization
based on adaptive control of the intersection and automated vehicles; and network-linked automotive
environment intersection control, based on the main road and network control of the connected vehicle
and autonomous vehicle environment [68,76]. Table 2 summarizes the analysis of the main technical
characteristics of the traditional adaptive control methods, and the current adaptive signal control
research’s hotspot direction.
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Table 2. Main technical features of multiple adaptive control methods.

Control Method Algorithm Traffic Data Collection Input Output Objective Function Control
Type

MBC CPI/
GWB Loop travel time/density/

queue length C-S-O
Minimizing the queue length/the

average waiting time/the total
travel time/the delay

F

Intelligent computing
Fuzzy logic/Neural

network/Group
Intelligence

Loop/
V2X

travel
time/density/queue

length

Phase/
C-S-O

Minimizing the queue length/the
average waiting time/the total

travel time/the delay
B

Data-driven control RL/ADP Loop/
V2X/intelligent cameras

travel
time/density/queue

length

Phase/
C-S-O

Minimizing the queue length/the
average waiting time/the total

travel time/the delay/
B

Data-driven RL
control DQN Loop/V2/Intelligent

cameras/CV

travel
time/density/queue

length

Phase/
C-S-O

Minimizing the queue length/the
average waiting time/the total

travel time/the delay/stop times
B

Adaptive
performance
optimization

JTA/
Peripheral control Loop/V2X

travel
time/density/queue

length

Phase/
C-S-O

Minimizing the queue length/the
average waiting time/the total

travel time/the delay/stop
times/bus delay

B

Environment of CV EVLS/GTR Loop/V2/Intelligent
cameras/CV

travel
time/density/queue

length/vehicle
trajectory

Phase/
C-S-O

Minimizing the queue length/the
average waiting time/the total
travel time/the delay/Reducing

fuel consumption/pollutant
emission/bus delay

B

Multiple intersection
control QCOMBO Loop/V2X/CV/Intelligent

cameras

travel
time/density/queue

length vehicle
trajectory

Phase/
C-S-O

Minimizing the queue length/the
average waiting time/the total

travel time/the delay/Reducing the
stop number and delay/Reducing

fuel consumption/pollutant
emission

B

Note: C, Cyclic; S, Spilt; O, offset; F, feedforward; B, feedback. Vehicle trajectory contains speed, acceleration and headway.
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4.1. Data-Driven RL Control

The rapid development of new technologies, such as video information, vehicle detection, CV,
and autonomous driving, makes the information collected from traffic data more abundant. RL is
a model-free learning algorithm, which is very suitable for regional traffic control. The use of RL
for traffic signal control has become very widespread, and has been used for single-point, arterial
and regional signal control [77]. There will be no doubt that transportation systems become more
intelligent with machine learning, big data, and excellent computing resources. The cost and difficulty
of data storage and analysis will become lower because of the collection of multi-source transportation
data [78].

Although traditional reinforcement learning shows better performance in simple models, such as
piecewise constant table and linear regression, its scalability and optimality do not seem to be good
in reality. In recent years, combining deep neural networks (DNN) with reinforcement learning
has become an effective way to improve the performance of reinforcement learning in complex
problems [79]. Today’s data is very rich. First of all, it is feasible to use DNN to extract useful feature
information from the original traffic information, transform the problem into a reinforcement learning
problem, and then use reinforcement learning to learn the optimal traffic signal strategy [80]. Figure 7
shows the structure of a common deep neural network, which consists of three convolutional layers
and two fully connected layers. The first two convolutional layers are used to extract low-level features,
and the last convolutional layers are used to extract high-level features. Finally, through two fully
connected layers, the classification of vehicles and date processing can be achieved. Because DNN can
extract information useful for signal control from massive state data, combined with reinforcement
learning, it can adapt to current developments more effectively than simple reinforcement learning.
This section focuses on deep reinforcement learning (DRL).

Figure 7. Structure of deep neuron network.

Gao et al. designed a deep reinforcement learning algorithm in order to extract more effective
information for traffic signal control from rich traffic conditions. This algorithm can autonomously learn
the optimal strategy suitable for the intersection environment. In order to make the algorithm more
stable, the structure of the joint target network of experience playback is designed. Through simulation,
and compared with the common control algorithm for the current intersection, this algorithm can
significantly lower the delay: 86% lower than fixed timing, 47% lower than the longest queue length
algorithm [80]. Li et al. established a deep neural network (DNN) to implement the signal timing
strategy. Relying on the powerful processing ability of DNN, it provides more accurate input for the
calculation of the Q function of reinforcement learning. They modeled the problem as an implicit use
of control actions and system state changes to find the optimal control strategy. Comparison with other
methods shows that this method works well in the timing of intersections. In addition, because of
the excellent ability of DRL, they also proposed the development trend of the next generation of ITS,
which is the joining of DRL and ITS [81].
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Considering the wide application of data-driven strategies in ITS, Zhang et al. proposed a
novel data-driven, distributed adaptive collaborative control (MA-DD-DACC) method based on a
multi-agent. The algorithm uses a distributed strategy, combined with online parameter learning.
The data input of this algorithm is simple. By extracting the I/O flow queuing length data and
network topology, the signal timing of the intersection can be realized. Through the verification of the
stability of Lyapunov, this method can guarantee the consistency and ultimate boundedness of the
distributed consensus coordination error of the queuing strength [82]. Chu et al. took advantage of the
deep learning capabilities of deep reinforcement learning. Considering the limitations of centralized
strategies in large adaptive traffic signal control (ATSCs), a multi-agent RL (MARL) algorithm was
designed, which combines an A2C and fully scalable centralized MARL algorithm. This algorithm
assigns global control to the local RL agent, which can effectively solve the scalability problem, but is
limited by the previous communication quality of the agent. The simulation of the real road network in
Monaco shows that the algorithm has better robustness and sampling efficiency than other algorithms
(independent A2C and Q learning) [79]. After collecting enough data, deep learning can predict
customer demand and driver supply with high accuracy. Data-driven DRL control shows great
potential [78].

Many applications of machine learning are effective, but the limitations of existing and developing
machine learning methods for the ITS’s needs mean that existing machine learning is not able to drive
the ITS to its full potential.

4.2. Research on Traffic Control Based on Adaptive Performance Optimization

Emerging CV can obtain traffic information, such as vehicle position, speed, and acceleration.
Some scholars have focused on how to effectively use data from connected cars to optimize the timing
of signal lights and to optimize the adaptive performance of signal lights. Premier et al. first proposed
the application of connected vehicle technology to traffic signal control, obtaining data from connected
vehicles, including vehicle identification number, location, speed, time, and other traffic information.
Considering the limitation of the communication range, the optimization interval is 5 s, and the
prediction interval is 20 s. Finally, it is solved by dynamic programming and full enumeration [83].
In order to achieve a better optimization effect, Yao et al. designed an adaptive signal control method
for intersections based on rolling layer optimization, which improved the solution efficiency and
optimization level, and its algorithm optimization interval was only 1 s [84].

In the study of Diakaki et al., the concept was proposed of using the common automatic
control theory to enrich the content of traffic city control. The proposed method is verified in
a large-scale urban traffic road network, and the results show that it can effectively respond to
coordinated signals. In particular, this method can also be applied to the regulation of saturated
traffic flow [85]. Kosmatopoulos et al. studied the adaptive optimization (AO) scheme based on the
principle of random approximation, and found that the algorithms of this scheme, such as random
directions Kiefer–Wolfowitz (RDKW) and simultaneous perturbation stochastic approximation (SPSA)
algorithm, have the defects of transient instability, and proposed as a solution an improved algorithm.
The results show that the algorithm can greatly improve the optimization performance, and can achieve
convergence under most conditions, ensuring good transient performance [86].

For large-scale traffic control systems, because there is no systematic method to establish the
design parameters automatically, huge costs are involved in deploying and maintaining the traffic
system. Kouvelas and others have developed an adaptive fine-tuning algorithm, which can help
managers determine the design parameters of traffic control systems, including splits and cycles.
The algorithm is tested in the actual road network, and good results are obtained [87]. Regarding the
problem of coordinated signal control, the optimization of the optimal joint motion of coordinated
intersections has always been a very challenging problem. In response to this scenario, Zhu et al.
proposed a reinforcement learning algorithm based on cross-tree learning. The simulation results
show that this algorithm can interact with the random environment through the coordination of
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agents, and accurately infer the best joints. The action effectively reduces vehicle delay. [88]. In this
work, Kouvelas developed an adaptive optimization scheme for peripheral control of heterogeneous
transmission networks, and discarded boundary control restrictions. In a micro-simulation of a large
city network with more than 1500 roads, the multi-boundary control scheme to be derived was tested.
The results show that the proposed control scheme achieves better congestion allocation [89].

4.3. Research on Traffic Control Based on the Environment of CV

Mixed traffic flow consists of RV, CV and AV, and this changes the composition of urban road
network traffic.

Connected vehicles and automated vehicles (CAVs) technology greatly change the composition of
traffic flow, and also provide technical support for extracting richer traffic state data. For the signal
control problem in this case, the common processing method is to embody the state variables into
indicators that can be directly observed, such as queuing length and travel time. If one sets some
more constraints, assuming that the vehicle’s arrival distribution is a probability distribution such as a
Poisson distribution, then the vehicle should also follow the queuing model, LWR model, or following
model. Finally, the signal timing is completed by controlling the phase and phase sequence of the
signal [23].

At present, the CV environment is still being gradually deployed and is in the preliminary stage.
Intersection control for this scenario is still a frontier field. Relying on this technology, the new adaptive
control will address the needs for accuracy and real-time traffic control more than the previous methods.
However, there are still some problems. The existing research is mainly based on the optimization
method, which has a simplified model, but the reality is relatively complicated. The penetration
rate of CV is a key parameter that determines the effectiveness of the control algorithm. Existing
research mainly focuses on CV, and the estimation of the status of RV in the CV environment is
limited. In addition, the existing methods generally only consider single-modal traffic and have limited
consideration of mixed traffic. Moreover, due to the limitation of communication quality, data loss has
a great impact on performance, which has broad effects.

Feng et al. [39] used the high-precision data provided by CV to control the intersection signals.
By proposing a vehicle position and speed (EVLS) algorithm, the minimum vehicle total delay and
the minimum queue length were taken as the objective function. In the specific operation, the road is
divided into different parts for analysis, including queuing area, deceleration area and free driving area.
Simulation results show that this algorithm can reduce the total delay by 16.33% under the condition
of high penetration rate. However, this scenario is mainly established when the CV penetration rate
is high and the current traffic flow environment is not considered, and the solution of its objective
function does not modify it [26].

Relying on CV technology, Lee et al. considered the composition of complex traffic flows in the
current development scenario, showing it is impossible for CV penetration to reach a relatively high
transition stage in a short period of time. A cumulative travel time response (CTR) algorithm was
developed. The basis of this algorithm is Kalman filter technology, which can randomly estimate the
traffic state, and then design an experimental simulation to verify this algorithm. The results show that
30% penetration rate is the minimum requirement to ensure that CTR can be implemented, and has a
high control effect, which is of great significance in reducing traffic congestion. In addition, when the
penetration rate reaches 100%, the total delay can be reduced by up to 34% [90].

Guler et al. designed an algorithm to optimize traffic control at intersections. The algorithm uses
CV vehicle data, taking into account the length of the vehicle exit sequence and signal flexibility at the
intersection to optimize the control effect. The results show that the penetration rate between 0% and
60% can significantly lower the delay. When the penetration rate exceeds 60%, the effect of reducing the
delay gradually decreases, and is not as effective as in 10% to 60%. However, interconnected vehicles
can play a significant role in reducing traffic congestion during signal timing [91].
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Pandit and others rely on the vehicle self-organizing network (VANET) to control signals at
intersections. VANET can collect and process a series of vehicle statuses in the network, such as
position and speed. They model the problem as the job scheduling of the processor, and deal with the
idea of vehicle platoon. Relying on these methods and techniques, the oldest job first (OJF) algorithm is
proposed, which uses the data collected by VANET as input to determine the arrival row and thereby
control the phase. This algorithm can adjust the signal control online in real-time. Compared with the
traditional method, the effect of reducing delay is obvious. It is worth noting that this algorithm can
only have ideal control effects in scenarios with high penetration rates [92].

It can be seen that, because CV can provide a lot of effective help for signal adaptive control,
there is also a key problem. When the penetration rate is low, because the collected data samples cannot
reflect the true state of traffic sufficiently, a large error will occur. At this time, its control performance
is not even comparable to traditional control methods. Therefore, CV penetration is a key factor [93].

Considering the situation of low penetration rate, Li et al. proposed a new DP algorithm.
This algorithm models the problem as a mixed integer nonlinear programming problem, and minimizes
fuel consumption and travel time as optimization goals. Using this algorithm to approximate the
phase sequence decision value of each stage can give the obtained control strategy a fixed cycle length
input. The results show that this algorithm not only performs better than the fixed timing and drive
control in reducing delays, but also performs better in low permeability environments [94].

4.4. Multiple Intersection Control Based on CV Environment

Most of the studies on intersection control methods based on CAV focus on a single intersection,
and there are few works on the optimization and coordination of corridor-level signals. This shows that
corridor-level multiple intersections control methods based on CAV face lots of challenges. On the one
hand, how to cooperate the multiple intersections effectively by utilizing the information from CAV is
very complicated due to arising large-scale computing. On the other hand, the difficulty for control
design of single intersection and corridor still remains. These issues require further specialized research.

The adaptive control system allocates transit time according to real-time traffic demand. Its control
strategies are mainly divided into two categories [47]: (1) vehicles only undertake the task of traffic
data collection, and a centralized control strategy is centrally processed by the central controller; and (2)
the utilization-distributed control strategy, with in-vehicle computing capabilities processing part
of the data. In a time-varying and random complex traffic scenario, dynamic traffic performance
can be realized by adopting adaptive signal control systems. However, the centralized signal
control system has disadvantages, such as poor stability, and high calculation and communication
costs. The distributed signal control strategy can overcome the shortcomings of centralized signal
control systems, but the performance of the overall network cannot be characterized only by the
optimization of local intersections. Therefore, on the basis of exchanging information about associated
intersections, it is still necessary to design and calculate a precise coordination mechanism between
intersections, and adopt a joint timing strategy to ameliorate the overall traffic efficiency. The autonomy,
collaboration and interactivity of agent technology meet the inherent needs of the adaptive control of
distributed traffic signals. Because the agent (intersection signal controller) can sense the surrounding
environment and respond timely to traffic state changes, without the direct intervention of people or
other factors, the agent can actively make plans based on goals and environmental requirements to
achieve traffic control automation. At the same time, through the mutual cooperation of the distributed
intersection agents, the construction of a multi-agent control strategy can optimize the global road
network’s performance.

The centralized strategy connects all the signal machines in the control area, and the control
center centrally controls the entire system, which is simple to implement and highly efficient. Tan et
al. proposed a new DRL algorithm to solve large-scale traffic signal control issues, via cooperation
between a centralized global agent and multiple regional agents. Through the analysis of the results
obtained by the regional agents, and the cross-region coordination through the centralized global agent,
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the encoder can find a good performance control strategy for signal control problems in large discrete
motion spaces [95].

Zhang et al. proposed the QCOMBO algorithm, which is a new type of centralized independent
learning and coupling, implemented by a new consistency adjuster. A three-part composite objective
is optimized, that has a separate part based on the independent deep Q-network (DQN) loss function,
a global part for learning the overall action-value function, and a minimization of the difference
between the weight of a single Q value and the global Q value shaping items. This algorithm
guarantees the cooperation between agents by maximizing the global reward. At the same time,
it also guarantees the agent’s ability to use the agent’s unique observations and rewards to optimize
individual performance [96].

Global knowledge is available for centralized fusion, which makes it capable of simple
implementation and high overall performance. The cost is a high communication requirement
and the need for heavy calculation for data processing in the fusion center. Benefitting from the
collaboration among the neighboring agents, distributed processing that can better achieve data
consistency have received much attention [97,98]. Distributed control may help solve large-scale
network problems based on CAV by dividing network control problems into several simple problems
at each intersection [99].

Goodall et al. proposed a microscopic simulation prediction algorithm, where new initiatives
of vehicle location, direction, and speed from the connected vehicle are utilized. A rolling iteration
mechanism is used in the control algorithm, where the phase separation is selected to optimize the
objective function in the next 15 seconds. Deceleration, stop, and a combination of delays, are utilized
to construct the objective function. This algorithm is relatively simple, with detection or signal to the
communication signal, and a complete response cart wherein immediate needs of the vehicle are not
needed. However, the algorithm has been greatly improved in the case of low and medium traffic,
and its performance is decreased in saturated and supersaturated situations [100].

Islam proposed a distributed coordination method to optimize the signal timing for connected
urban street networks, where vehicles and intersections can exchange information. The novelty of
this work lies in solving the signal timing optimization problem via a decentralized approach instead
of a centralized architecture. Since this distribution greatly reduces the complexity of the problem,
the proposed method is real-time and scalable. In addition, distributed mathematical programs
continuously coordinate with each other to avoid finding locally optimal solutions and moving towards
global optimality [101].

Li considers the multi-level optimization problem of hierarchical control technology and proposes
a CV-based coordinated traffic signal optimization framework for traffic signals. The problem is
decomposed into two levels: using DP to optimize phase duration at intersecting levels and corridor
levels, which optimizes all intersecting offsets. In order to solve the two models, they developed a
prediction-based solution technique, and achieved good results [102].

The aforementioned papers researches a single traffic situation modality. Xiang et al. proposed a
novel method of controlling an adaptive multi-agent based on the traffic signal controller integrated in
the network communication environment. The method has the following features: it lacks a traffic
model suitable for parallel processing, regional coordination and common learning. This method has
been evaluated on a 23 km traffic road network in the urban area of Xiaogan, China, with 22 intersections.
Compared with the data from the traditional fixed time method and driving method, the results reveal
that the average driving time per vehicle, the average delay time per vehicle, and the average queue
length, are significantly reduced [103]. Zamanipour et al. designed a multi-mode intelligent traffic
signal control method to ensure the application of optimal signal dispatching while minimizing the
negative impact on RV [104]. Unfortunately, the current theory of coordinated control of multi-modal
vehicle traffic flow has not yet been formed, which will be the future development trend.



Electronics 2020, 9, 885 19 of 24

5. Discussion

In recent years, communication technology has continued to iteratively improve. New technologies,
such as vehicle–road coordination, vehicle-to-vehicle communication (V2V), vehicle-to-vehicle
communication (V2I), V2X and autonomous driving are also beginning to emerge and continue
to develop. The modes of traffic flow are constantly changing. RV, CV and AV are the main trends in
current urban traffic composition. For the traffic control system, traffic status data has been greatly
enriched and developed, which can lay the foundation for the realization of real-time, efficient and
accurate traffic control. A new generation of adaptive control system relies on this scenario to achieve
excellent uncertainty response capabilities and intelligent decision-making levels. The basis of the
intelligent transportation system is the adaptive control method, so there must be a new control
algorithm strategy that adapts to the development of the times, and integrates it, to achieve the goal of
reducing traffic congestion and improving the efficiency of urban road traffic.

According to the current development of connected vehicles and the existing intersection control
technology, this paper proposes that the current intersection signal control prospects are mainly in
three categories: (1) data-driven reinforcement learning control; (2) adaptive performance optimization
based on traffic control research; (3) traffic control research-based CAVs; and (4) multiple control based
on CV environment. These four directions are based on the CV environment. With the advent of the
era of 5G and the Internet of Everything, greater vitality will surely emerge.

Therefore, in today’s era of 5G and the Internet of Everything, data is greatly enriched, and the
adaptive control method based on the CV environment also needs to be constantly developed with
the progress of technology. The main trends can be assumed as follows: (1) Combining various new
adaptive control methods in Section 4, develop a new generation of traffic control system with higher
computing power, achieve higher responsiveness, accuracy and robustness, and carry out overall
control of urban traffic. (2) The guarantee of network security for 5G, V2X and the Internet of Things
involves the protection of private vehicles and their personal privacy, as well as the protection against
signal collection attacks by lawbreakers. Some of the literature has shown that signal attacks can cause
a large number of vehicle delays. (3) The current control method is mainly aimed at a single traffic
mode. In the future, there will be a mixed traffic flow of CV, AV and RV, and self-driving vehicles
will have different levels. Therefore, how to take into account the traffic control of multi-mode traffic
flow is a problem that must be solved in the future. (4) Balance multiple control objectives, such as
vehicle delay, fuel consumption, and safety of motor vehicles and non-motor vehicles, to achieve the
optimal overall control performance. This involves how to design, integrate and constrain different
control objectives.
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