
electronics

Article

A Novel Approach for Biofilm Detection Based on a
Convolutional Neural Network

Giovanni Dimauro 1,* , Francesca Deperte 2, Rosalia Maglietta 3 , Mario Bove 1,
Fabio La Gioia 1, Vito Renò 3 , Lorenzo Simone 4 and Matteo Gelardi 5

1 Department of Computer Science, University of Bari, 70125 Bari, Italy; mariobove3@gmail.com (M.B.);
fabiolagioia1997@gmail.com (F.L.G.)

2 Department of Computer Science, University of Torino, 10124 Torino, Italy; francesca.deperte@edu.unito.it
3 National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced

Manufacturing, 70126 Bari, Italy; rosalia.maglietta@cnr.it (R.M.); vito.reno@cnr.it (V.R.)
4 Department of Computer Science, University of Pisa, 56127 Pisa, Italy; l.simone3@studenti.unipi.it
5 Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;

matteo.gelardi@unifg.it
* Correspondence: giovanni.dimauro@uniba.it

Received: 10 April 2020; Accepted: 23 May 2020; Published: 26 May 2020
����������
�������

Abstract: Rhinology studies anatomy, physiology and diseases affecting the nasal region: one of
the most modern techniques to diagnose these diseases is nasal cytology or rhinocytology, which
involves analyzing the cells contained in the nasal mucosa under a microscope and researching
of other elements such as bacteria, to suspect a pathology. During the microscopic observation,
bacteria can be detected in the form of biofilm, that is, a bacterial colony surrounded by an organic
extracellular matrix, with a protective function, made of polysaccharides. In the field of nasal cytology,
the presence of biofilm in microscopic samples denotes the presence of an infection. In this paper,
we describe the design and testing of interesting diagnostic support, for the automatic detection of
biofilm, based on a convolutional neural network (CNN). To demonstrate the reliability of the system,
alternative solutions based on isolation forest and deep random forest techniques were also tested.
Texture analysis is used, with Haralick feature extraction and dominant color. The CNN-based biofilm
detection system shows an accuracy of about 98%, an average accuracy of about 100% on the test set
and about 99% on the validation set. The CNN-based system designed in this study is confirmed as
the most reliable among the best automatic image recognition technologies, in the specific context of
this study. The developed system allows the specialist to obtain a rapid and accurate identification of
the biofilm in the slide images.

Keywords: convolutional neural network; biofilm detection; deep learning; rhinocitology

1. Introduction

1.1. Background

In recent years, artificial intelligence and in particular machine learning has played a fundamental
role in the medical field, providing important support to doctors, especially for assisted diagnosis by
means of computer aided diagnosis (CAD) systems.

CAD systems have recently become an integral part of clinical diagnosis processes and medical
images evaluation. Regardless of what happens with automatic diagnosis systems, CAD systems only
play a role of support, and their performances are not supposed to be comparable to the ones of the
specialized doctors and not even replace them, only playing a complementary role [1–3].
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Image recognition algorithms found successful usage in several diagnostic practices, mostly in
diagnostic imaging [4–9]. Deep learning models, such as convolutional neural network (CNN), are
used for blood cell classification [10–12], cytometry [13], and to diagnose brain [14–17], colon-rectal [18]
and lung [19] cancer.

Numerous studies in the field of computer vision applied to medical and biomedical fields have
demonstrated that additional CAD-based tools might support specialists in their tasks [20–25]. Modern
technologies allow improve acquisition, transmission and analysis of digital images. A growing benefit
is also provided by the possibility of sending clinical data, useful for the diagnosis of pathologies,
thanks to the spread of fast connections for electronic computers, and mobile phone networks that
allow the exchange of large amounts of data [26,27].

The increasing usage of such systems in clinical contests is due to the recent progress of digital
imaging techniques, including the generations of quantifiable metrics, which are useful to enhance
understanding of biological phenomena. Image processing and machine learning techniques are
employed to find information, objects or even features related to a particular image, supporting the
specialist during the clinical and diagnosis activities [28].

Visual interpretation of cellular features using microscopy also plays a fundamental role in
cytology and histopathology diagnosis activities [29]. The human visual system is able to qualitatively
detect and interpret visual patterns with great efficiency [30,31] and subjective evaluation is a reliable
and accurate evaluation methodology but requires a great amount of time and effort: a quantitative
approach trough an objective evaluation is welcome.

Using mathematical models and metrics, biological entities and phenomena could be described in
less fuzzy terms enabling a quantitative, unbiased, reproducible and large scale analysis [32,33].

These techniques are now also profitably used in rhinology [34,35]. Rhinology is a branch of
otorhinolaryngology, which deals with the study of anatomy, physiology and pathology and therapy
of the nose and paranasal cavities.

One of the most common diagnostic techniques for identifying rhinological diseases is a nasal
cytology, that is the study of nasal cellularity [36]. Rhino-cytological analyzes include a minimally
invasive scraping procedure, which consists of scraping the mucous membrane of the nasal cavity.
This procedure is simple, quick and does not require any type of anesthesia. The biological matter
obtained, after preparation on a special slide, is then analyzed under a microscope; anomalies in the
cellular distribution or the presence of unexpected elements can make one suspect a pathology: it is,
therefore, an interesting diagnostic technique.

However, this diagnosis is very demanding because it consists of analyzing numerous images of
the slide, classifying the cells present in the preparation, with the aim of tracking down “abnormal”
cells that are indicative of particular conditions. Furthermore, this task is strongly influenced by the
competence and attention of specialists.

1.2. Biofilm

For a long time in the history of microbiology, microorganisms have been considered planktonic
organisms, i.e., suspended and independent cells. Van Leeuwenhoek observed microbial communities
by scraping the surface of teeth. It took many years of studies and advanced diagnoses to reach a
deeper knowledge of these bacterial associations, called biofilms (Figure 1). The term biofilm derives
from the Greek word “βίoς”, translated “that lives”, as it represents living bacterial colonies, and from
the English term “film”, because, when observed under the microscope, it recalls the appearance of a
film and also adheres to surfaces like it. The 15% of biofilms are made up of bacterial colonies, and the
remaining 85% is surrounded by an organic matrix produced by them whose skeleton is made up of
exopolysaccharides, that is extracellular polysaccharides, proteins and DNA. The amount of the latter
varies depending on the organism and on the age of the biofilm. Furthermore, biofilm intermittently
releases numerous colonies of bacteria which in turn are capable of determining the recurrence and
spread of the infection [37].
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Figure 1. (a) Nasal cytology: Bacterial biofilm. Characteristic is the cyan color of the biofilm. Numerous
bacteria within the exopolysaccharide matrix (B); and informs planktonic (P). (May Grunwald Giemsa
(MGG); 1000×magnification); (b) nasal cytology: mycotic biofilm. Numerous mycotic spores (S) within the
exopolysaccharide matrix. (MGG; 1000×magnification); (c) nasal cytology: biofilm. The exopolysaccharide
matrix of the biofilm represents a true barrier to neutrophils (N).

There are many reasons why bacteria tend to aggregate and produce biofilms, but they can be
summarized in the concept of self-preservation. In fact, the bacteria contained in a biofilm are protected
from antimicrobial agents such as antibiotics, disinfectants and detergents, since the offensive action of
the latter is largely slowed by the need to penetrate the dense extracellular matrix in order to reach the
infectious agents.

For this reason, only 10% of microorganisms are distributed in planktonic form, remaining
vulnerable to attacks by phagocytes (cells that incorporate and digest other microorganisms) and
antibiotics. According to the Centers for Disease Control and Prevention, approximately 65% of all
human bacterial infections involve biofilm [38]. Pediatric studies have also shown that bacterial biofilms
occupy about 95% of the nasopharynx of children with respiratory infections [39]. These studies were
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conducted by examining nasal mucosa samples from many patients with infectious rhinopathies, and
in most cases, biofilm was found.

With reference to the specific topic we deal with in this study, it must be said that the nasal mucosa
is an ideal environment for the formation of biofilm, since it is wrinkled, hydrophobic and contains an
abundance of nutrients.

Recent studies concerning nasal cytology have described for the first time some “morphological-
chromatic” aspects of the biofilm found in nasal mucosa [38]. Crucial was the detection of spots with
specific gradations of cyan color in the diagnosis of smears of the nasal mucosa, colored with the May
Grunwald Giemsa (MGG) method, containing biofilm. The cyan-biofilm association is confirmed by
the systematic finding of the presence of numerous bacteria in these spots [38].

However, it should be noted that these spots, while remaining in the cyan spectrum, may have
shades of variable color, due to the age of the biofilm: the more mature it is, the richer it is in the
polysaccharide component and, consequently, the more intense its color [38].

1.3. Related Works

The identification and classification of these bacterial colonies are typically carried out by a
specialist through observation, but automatic systems capable of replacing it are being studied in order
to make significant improvements in the classification.

The biofilm, as easily understood, is not only present in the nasal mucosa, but is easily traceable in
all humid environments. Water distribution systems are among the preferred environments for bacteria
to form biofilms [40]. This last study was carried out thanks to the development of an automatic
recognition system based on the Bayesian Naïve model. There are various types of bacterial colonies
as well as biofilms and in “deep learning approach to bacterial colony classification” [41]; a system
based on CNNs has been developed and made capable of extracting descriptors from the images
and subsequently classifying the various bacterial colonies via the support vector machine (SVM) or
random forest algorithms. Subsequently, in [42], a classification system of bacterial colonies formed on
sulfide minerals was developed, based entirely on deep neural networks.

Image recognition algorithms have also proved to be very useful in the search for pathogens
capable of removing biofilm, with new biological techniques for the removal of bacterial colonies [43].
Several essential oils extracted from Mediterranean plants were also analyzed for their activity against a
particular biofilm, pseudomonas aeruginosa, and, with the application of machine learning algorithms,
quantitative models of classification of the activity-composition relationships were developed and
allowed research to be directed towards those chemical components of essential oil most involved in
the inhibition of biofilm production. Algorithms such as random forest and SVM were applied.

In [44] a method is tested to measure the removal efficiency of biofilm from surfaces composed
of biomaterials. Biofilm formation on biomaterial surfaces is a major health concern and significant
research efforts are directed towards the production of biofilm resistant surfaces and the development
of biofilm removal techniques. The authors perform a digital scanning segmentation carried out under
a microscope on these materials, so as to be able to calculate their biofilm area and in order to study
their development under certain conditions and specific treatments. Random forest algorithms capable
of recognizing edges are used for segmentation.

One type of biofilm that most infects the human being is Salmonella. In [45] a machine learning
method is designed to understand how the particular type of Salmonella biofilm adapts and develops
in the intestine of the human being. The system is based on random forest and is able to recognize the
presence of this specific bacterial formation.

The works we have indicated above are not directly comparable with our one, as they are based on
images obtained using different coloring techniques and do not deal with the application of machine
learning techniques in the field of cells and in particular of the nasal mucosa cells.

Unfortunately, as far as we are aware, there are no other studies in the literature that deals with
this topic. In particular, no studies are available that use colored slides with the MGG technique which
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is the most used technique in rhinocytology. Other works refer to the identification of biofilms on
materials other than nasal mucus and adopt Gram staining techniques of the slides very different from
the MGG.

2. A New Diagnostic Support

The goal of this study is to provide interesting diagnostic support in the field of rhinocytology,
for the rapid and accurate detection of biofilm. The algorithms used here analyze the chromatic and
morphological characteristics of the biofilm. In particular, a system for the detection of biofilm based
on CNN has been developed, which represents one of the most performing and reliable solutions in
the recognition of elements in an image. CNN is divided into convolution and filtering operations on
images with the aim of training the system to recognize the biofilm identified by the cyan-colored spots.
At the same time, taking into consideration the color properties of the biofilm, a system was tested that
was able to directly analyze the texture, with the extraction of Haralick features and dominant color.
This system uses the isolation forest as a learning algorithm. From an approach more closely linked to
machine learning such as the isolation forest, we wanted to orient ourselves towards deep learning,
also designing and testing a solution based on deep random forest, with the aim of demonstrating
the margins for improvement obtainable, adopting deep solutions learning. Finally, the three systems
designed are compared, in order to show which of these technologies is the most effective in the
application context of automatic biofilm recognition.

2.1. Materials and Methods

The cytological technique includes the following steps: withdrawal (sampling), processing (which
includes fixation and staining) and observation under a microscope. Cytological sampling consists of
the collection of superficial cells of the nasal mucosa, which can be performed with the aid of a sterile
swab or with the use of a small curette (scraping) in disposable plastic material (nasal scraping®-EP
Medica, Lugo, Italy) e.g., nasal scraping. The sampling must be performed in the central portion of the
inferior turbinate, which contains the correct ratio between hair cells and muciparous.

For this study, 24 preparations were made for slides at the Rhinology Clinic of the Department of
Otolaryngology of the University of Foggia. After sampling, the cellular material was distributed on a
microscopic slide, fixed by drying in the air and colored according to the MGG method, in which three
dyes are used: red-orange eosin, methylene blue, blue and blue II of gray-blue color. Using this method,
all cellular components of the nasal mucosa, immune cells, bacteria, fungal spores and fungal hyphae
are stained. This coloring technique takes about 30 min. The standard clinical protocol regulates the
compilation of the rhinocytogram by observing, for each slide, 50 fields under an optical microscope
with magnification that generally ranges from 400× to 1000× to estimate the cell distribution present,
identify abnormal cell elements or biofilms, important for diagnosis.

2.2. Acquisition and Scanning of Slides

All the slides have been observed using the Proway optical XSZPW208 T optical microscope with
100× lens and 1000×magnifying factor. The DCE-PW300 3MP digital camera has been used to obtain
digital image-fields. The images were saved on JPEG files with a size of 3264 × 1840 pixels. The digital
acquisition of nasal smears can be affected by uneven illumination due to the irregular thickness of the
nasal smears, but since the procedure was performed manually, most of them are perfectly in focus.

2.3. Dataset

The dataset is composed of 24 images corresponding to the digital scans of the slides prepared as
explained in Section 2.1. It was necessary to apply a pre-processing phase on the set, trying, through
data mining techniques, such as image segmentation and image augmentation, to obtain a larger
dataset, so as to be large enough to train the proposed models. In particular, the image segmentation
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method adopted is the tile-to-tile [46] which consists of segmenting a digital image into regions of
uniform size, called tiles.

From each image of the dataset, 32 tiles of 384 × 384 pixels size are produced. Thus from the
twenty-four initial images, a total of 768 tiles are produced. By applying this technique, we obtain
a larger dataset with a greater degree of detail, in order to optimize the analysis of the images.
The 768 tiles obtained are portions of the original images, and not all of them contain biofilm spots.
A total of 542 tiles contained only a grey background image and then have been discarded. Only
226 tiles containing significant images were selected, to which labeling is applied, obtaining 112 tiles
containing biofilm labeled “biofilm”, and 114 tiles not containing biofilm, labeled “other”.

Another fundamental requirement for correct training is the balancing of the dataset, i.e., the
population of the positive class (number of ‘biofilm’ tiles) compared to the population of the false class
(number of ‘other’ tiles). Based on the data obtained after the image segmentation phase, the dataset is
well balanced as the two populations are almost equal.

The image augmentation technique allows you to expand the amount of data available, making a
series of random changes on images such as random rotation, random translation or elastic distortion.
By applying the image augmentation technique to the original 226 tiles, we obtained a total of 4520 tiles,
of which 2240 are labeled “biofilm” and 2280 are labeled “other”.

2.4. Designing a Working System

With the aim of designing a system that would support the specialist during the observation
phase of the slides, we have defined two possible scenarios.

The first one takes advantage of the evolution of the smartphone technology and is based on
the development of RhinoSmart [47], a multimedia system able to acquire an image from the digital
microscope and to extract the cellular elements. During the preliminary technical trials, the images
of the smears have been acquired with a Samsung Galaxy S6 Edge smartphone with a 16-megapixel
digital rear camera, with a photo resolution of 5312 × 2988 pixels and an aperture of F/1.9. A specific
smartphone adapter was also used as in Figure 2.
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Figure 2. Microscopic image acquisition with a smartphone and special holder.

The main advantage of this framework is the possibility of sharing images obtained from the
observed fields immediately, as they can be sent directly to a working server system that automatically
processes them (https://rhinocyt.di.uniba.it/#/login). Then the algorithms presented in this paper can
be directly implemented as a smartphone application or on the remote server.

The second scenario allows the design of a fully-automated system, as it is becoming more
important to increase the efficiency of lab operations by digitizing slide specimens, a practice known
as whole slide imaging (WSI), which has many obvious productivity benefits. While fully motorized
virtual slide scanners can streamline the WSI process, not every researcher has the budget to own
one. As an alternative, you can combine a microscope with a motorized stage and a digital camera to
perform cost-effective whole slide imaging.

The most immediate example is based on a system-on-chip (SoC) system commercially available,
for example a Raspberry Pi or Nvidia Jetson. SoC systems have a relatively low cost and can be

https://rhinocyt.di.uniba.it/#/login
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effectively customized implementing specific functionalities. In particular, to run a neural network
model on an embedded system, the Raspberry Pi represents the best option currently available in
terms of cost and offers reasonable performance for the execution of deep learning models, for example
through the installation of OpenCV, TensorFlow, and Keras. A block diagram is shown in Figure 3.
In this scenario, two main blocks are considered: an image acquisition one, that basically represents
the motorized microscope, and an image processing one, based on the system on chip. The sample is
the input, whilst the output is represented by the neural network output. The motorized microscope is
schematized by four blocks:

• Microscope manager: a logical block that can be tuned to perform a complete scan. It is logically
responsible for the acquisition, as it sets up the parameters for the motorized stage, starts the
acquisition and notifies the frames availability to the system on chip at the end.

• The Microscope.
• Motorized stage: this block is responsible for the physical movement of the sample. The movement

signal is sent by the microscope manager step by step. At the end of each step it sends a trigger
signal to the digital camera to enable the frame capture.

• Digital camera: a sensor opportunely coupled with the other blocks that captures a frame
upon request.
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Figure 3. Block diagram of the second scenario described, which comprises a motorized microscope
for the “image acquisition” and a system on chip board to perform “image processing”.

Finally, the system on chip is the hardware specifically devoted to host the neural network model.
It receives the stack of images at the end of the acquisitions, processes them separately, and computes
the output.

3. System Description

3.1. The Convolutional Neural Network

The tiles obtained from the processing on the dataset are converted into grayscale with 256 shades
and scaled down to 50 × 50 pixels, firstly because the information contained in the obtained tiles
was sufficient to obtain excellent results, but also because the use large color images would entail
the need to set a large number of hyperparameters, making training considerably more complex.
The implementation choices of our CNN experimentation are inspired by the organization at the levels
of the LeNet-5 network [48]. It presents convolution levels alternated with pooling levels, followed by
a series of fully-connected levels.

In detail, the network levels are as follows:



Electronics 2020, 9, 881 8 of 18

- Input level: where each neuron corresponds to a single pixel of the tile given as input; this level
corresponds to a 50 × 50 two-dimensional matrix of neurons;

- Five convolutional levels: arranged in sequence, each followed by a pooling level. They are
initially organized in increasing order of depth: precisely there are 32, 64, 128 filters applied,
in order to increase the number of features maps. Then there are convolutional levels arranged
with a decreasing number of filters (128, 64, 32) to simplify the number of resulting features maps.
For each convolutional level, 5 × 5 filters with unitary stride and self-balanced zero-padding
are applied, and after obtaining the new features map, the ReLU activation function is applied.
As far as the pooling levels are concerned, they serve to simplify the features maps and decrease
the number of computing resources needed. Again, they are made up of 5 × 5 filters with five
stride and max pooling is applied. After the last level, the flatten is applied, i.e., a function that
transforms the various features maps from 3D into 1D to allow connection with the next level;

- Fully-connected level: consisting of 1024 neurons. It is fully connected to the last convolutional
level, that is, each neuron of the features map is connected with all 1024 neurons of this level.
For each neuron, the ReLU activation function is applied to the input. To prevent overfitting, a
dropout with a probability of 0.8 is applied during training. At each time, each neuron has an 80%
probability of being included in the training phase and a 20% probability of not being considered,
so as not to specialize too much on the input data;

- Output level: consisting of two neurons, representing the biofilm and other labels. It is fully
connected to the previous level and a Softmax activation function is applied; this function allows
us to obtain a probability distribution on the two labels, therefore the most probable one is
considered the correct output.

The development of the system, therefore, consists of three main phases:

1. Definition of the dataset, as described in Section 2.2; as explained later, validation was implemented
through the k-fold cross validation technique. The tiles are converted to grayscale and resized for
the reasons mentioned above;

2. The training phase, in which the convolution of the images via the network is carried out, updating
the weights of the latter step by step. The update of the weights, through back propagation, takes
place in 70 epochs. The choice of the number of epochs derives from a careful analysis of the accuracy,
validation and loss function graphs in relation to the number of epochs. The graphs relating to
the different trends during the training show a substantial slowdown in convergence over the
twenty-fifth epoch (step 1000). While, in correspondence with the seventieth epoch (corresponding
to step 2750), the value relating to accuracy, validation and loss function converge, see Figure 4.
Moreover, it should be clarified that the CNN has been trained using back propagation and value of
learning rate has been set equal to 0.001;

3. The classification phase, in which the images are provided as input to the network with the
updated weights which will return a probability distribution of the class to which they belong,
through the Softmax activation function.

In order to avoid the problem of overfitting in the training phase, the k-fold cross validation
technique was used, with the parameter k set at 10 as also suggested in [49], in fact it has been shown
empirically that it provides estimates the error rate of the test and that they do not suffer from excessive
distortion or very high variance. At the end of this process, 10 CNN with different weights are
generated and then tested.

3.2. Forest

At the same time as the development of the CNN described above, two alternative technologies
based on the use of decision trees were implemented: isolation forest and deep random forest. Below
we present the basic assumptions and related implementation details of isolation forest and deep
random forest.
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3.2.1. Texture Analysis

The concept of texture is highly variable in relation to the context in which it is being used. There is
a vast amount of definitions to describe this concept. In the recognition of the biofilm, the texture is
considered as the geometric arrangement of the luminance levels (grayscale) of the pixels of the image.
The context of this study falls within the problem of texture classification, i.e., the automatic cataloging
of images based on the class of texture they belong to. The only class present is the class with the
“biofilm” label, since everything that does not belong to it does not need to be classified and will take
the “other” label.
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The extraction of information from images, or more generally from an entity, implies the use of a
mathematical model, capable of describing this entity. The gray levels co-occurrence matrix (GLCM)
model was used to describe the textures relating to the work carried out. This choice derives from the
analysis of a study on the digital analysis of biofilm images in humid environments and in food [50].
The goal of this mathematical model is the processing of digital images in grayscale.

Once the GLCM has been generated, it is possible to extract from its statistical descriptors deriving
from the properties of the textures. These descriptors were studied by Haralick. In total Haralick drew
up a list of 14 descriptors, but in this treatment, only the first 13 are considered since the calculation of
the fourteenth one (i.e., the maximum correlation coefficient, which corresponds to the square root
of the second largest eigenvalue of the GLCM) is affected by computational instability [51]. For a
complete description of these metrics, the reader is referred to the original paper [52].

3.2.2. Color Analysis

The second analysis performed to extract information from images is aimed at obtaining color
data. In this experimentation, this procedure takes place using the color components of two different
color models Hue Saturation Value (HSV) and CIE 1976 L*, a*, b* (LAB). The choice of HSV and
LAB color models is suggested by their characteristic of linearly representing the pigmentation by
means of the chromatic components, excluding brightness. Obviously we do not foresee a competition
between the two models, but finally, we will choose the one that can allow us to obtain a better result.
The analysis consists of the extraction from an image of the dominant color, that is the color among
the most frequent pixels. In this perspective, it should be noted that, in a real image, adjacent pixels
rarely show the same hue, since the color of each pixel represents the average of the colors present in
a portion of the real image. To this end, as stated in the papers [53–55], the search for the dominant
color is carried out by means of the K-Means, dedicated to grouping and classifying homogeneous
elements [56]. In our specific case, we find the dominant color with K-Means by grouping the pixels in
a number of clusters equal to the number of main colors present in the image, with all the shades of a
specific color. The centroids of each cluster identify the main color. Finally, the cluster containing the
most elements is chosen as the dominant color.

3.2.3. Scaling and PCA

The linearization of the data is necessary for the classification to take place in the most reliable
way possible. This choice derives from the fact that Haralick features and the dominant color have a
high variability of domains. For this purpose, a standardization technique is applied. This technique is
applied both to the features extracted from the images contained in the dataset and to the features
extracted from the images to be classified. The scaling technique applied consists of standardizing
feature domains. The robust scaler [57] was chosen, as the data to be processed have outliers. It also
works correctly in the presence of outliers, as it processes only the data contained in the interquartile
range, that is the range of values that contains the “central” half of the observed values. It narrows the
range from features to a range of 0 to 1.

In our work, the principal components analysis (PCA) was used for data simplification. However,
the use of PCA does not always bring benefits to data processing. This is because, the PCA transformation
generates correlations between the variables that are often incorrect, neglecting others that may have an
important role for classification purposes. To this end, in this study the systems working on the features,
isolation forest and deep random forest, have been tested with and without PCA transformation.

Ultimately, four different configurations were obtained, depending on the type of color model
used and the application of the PCA transformation: 1. HSV with PCA transformation 2. HSV without
PCA transformation 3. LAB with PCA transformation 4. LAB without PCA transformation.
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3.2.4. Isolation Forest

The isolation forest classifier is based on the detection and isolation of “anomalies” in the dataset.
The isolation forest is made up of decision trees, which first randomly select a feature and then create a
random partition value between the minimum and maximum values of the selected feature. In general,
vectors of anomalous features are less frequent than regular ones and differ from them by the deviated
value of some features. For this reason, this random partitioning allows identifying anomalies closer
to the tree root with fewer partitions needed. At the end of the search in the decision tree, a number
identified as the isolation number is generated for each feature vector. If this score is close to 1, there is
an anomaly, if the score is much smaller than 0.5 it indicates a normal observation, while if it is close
to 0.5 the whole sample does not seem to have clearly distinct anomalies. To avoid problems due to
the randomness of the choice of values during isolation, the procedure is carried out several times
on multiple decision trees, generating a forest. Insulation value is calculated for each tree and, after
visiting all of them, an average of these values is calculated.

In the study presented here, the isolation forest searches for anomalies in the features extracted
from the tiles to be classified, and if there are, the tiles are classified with the “other” label, since normal
observation is identified by the classified tiles with the label “biofilm”.

The system we designed has been tested according to the four configurations described above.
During the training phase, cross validation was used, using 80% of the tiles to train the system and
20% for the test.

3.2.5. Deep Random Forest

In this experimentation, the gcForest multi-grained cascade forest algorithm is used [58]. This
consists of an ensemble method of decision trees. The ensemble learning estimates different learning
methods deriving from machine learning and statistics to then combine them together and obtain a
final model (ensemble model) with greater predictive power than the individual starting models (base
learners). This algorithm generates a set of organized forests with a waterfall structure. The number of
levels in cascade is automatically determined, in an adaptive way, based on the data available and in
such a way that the complexity of the model can be set automatically, allowing gcForest to work in an
excellent way.

The system we designed has been tested according to the four configurations described above.
For each configuration, training time of approximately 35 min was required. During the training phase,
cross validation was used, using 80% of the tiles to train the system and 20% for the test. Figure 5
shows the results obtained considering each configuration. The results are related to the accuracy
of the system and the precision, recall and f1-score of the predictions of each class on the test set.
In addition, the receiver operating characteristic (ROC) curve and the relative area under curve (AUC)
are calculated by plotting the true positive rate against the false positive rate.

From a preliminary analysis, based on accuracy, it can be seen that the system trained with
the LAB model without applying the PCA transformation, is the least performing. The other three
configurations, however, are equivalent. A second more careful analysis leads to the evaluation of
the f1-score metric as it is calculated by balancing precision and recall. Specifically, it was decided to
evaluate this metric in relation to the biofilm class, as the prediction errors of a tile containing biofilm,
or a false negative (FN), are more serious than the prediction errors of tiles not containing biofilm,
a false positive (FP). As a matter of fact, practical medical support should be fast and precise but,
above all, ensure the probability of no-alarm equal to zero. Then it is more serious not to recognize the
biofilm in a patient suffering from a pathology. The system with the highest f1-score in the biofilm
class, during the training phase, turns out to be the system trained with the LAB color model and
using the PCA transformation. This outcome is confirmed by the ROC curves, as this configuration
generated a higher AUC value than the others.
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4. Experimental Results

The same test process among classifiers was carried out, with 100 different tiles, 50 containing
biofilm and 50 containing other material. The test phase produced the confusion matrices reported in
Appendix A, where the predictions are indicated on the lines (O = other, B = biofilm), while on the
columns the actual truth value.

Considering the following definitions:

• TP corresponds to the number of tiles correctly classified as biofilm;
• TN corresponds to the number of tiles correctly classified as other;
• FP corresponds to the number of other tiles labeled as biofilm;
• FN corresponds to the number of biofim tiles labeled as other;

Accuracy, sensitivity and miss rate metrics have been calculated.
Analyzing the results relating to the isolation forest reported in Table 1, it can be noted that the

maximum accuracy is obtained using the HSV color model and performing the PCA transformation.
This configuration, however, shows the highest miss rate value, ergo, the configuration that produces
the greatest amount of FN, influencing the quality of the analysis. For this reason, it is preferable
to establish the best configuration based on the value of the miss rate. In this sense, as can be seen
from Table 1, the best configuration is the one with the HSV color model and without using the PCA
transformation, which has detected only one false negative

Table 1. Isolation forest.

HSV LAB

with PCA without PCA with PCA without PCA

Accuracy 0.91 0.84 0.88 0.79
Sensitivity 0.82 0.98 0.88 0.96
Miss Rate 0.18 0.02 0.12 0.04
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As it can be observed instead from Table 2, for the system based on deep random forest,
undoubtedly the configuration that turns out to be more performing is that which uses the HSV color
space regardless of the transformation of the PCA data, as it produces the lowest miss rate (with only
one false negative), with very high accuracy. This result seems in contrast with that made through the
cross validation during the training phase. This can be interpreted as a possible risk of overfitting in
the LAB model with PCA, since in the training phase it reported excellent results, while in the test
phase it was the model with higher miss rate, maybe due to an excessive adaptation of the system to
training data, as well as a threat of overfitting.

Table 2. Deep Random Forest.

HSV LAB

with PCA without PCA with PCA without PCA

Accuracy 0.97 0.97 0.96 0.94
Sensitivity 0.98 0.98 0.94 0.98
Miss Rate 0.02 0.02 0.06 0.02

Ultimately, analyzing Table 2 and comparing it with the ROC curves of the deep random forest
configurations, it can be said that the best configuration for this system is the one that uses the HSV
color model and PCA transformation, as it reported an AUC equal to 0.84 in the training phase and in
the test it generated only one FN and accuracy equal to 97%.

From Table 3, relating to the CNN-based system, we can read the accuracy equal to 0.98 (due to
the presence of two FPs), while the rest of the predictions are all correct.

Table 3. Convolutional neural network (CNN).

Accuracy 0.98
Sensitivity 1.00
Miss Rate 0.00

As for the two techniques, CNN and deep random forest, it can be said that CNN has achieved
slightly higher accuracy than isolation forest. On the other hand, CNNs need a large dataset to be
trained correctly, as well as higher computing power. Furthermore, it must be considered that the
presence of errors in the classification can be compensated by the fact that the size of the biofilm spots,
acquired at 1000×, usually turns out to be greater than the size of a single tile. For this reason, the same
spot not detected in a tile could be detected in one of the adjacent tiles.

5. Conclusion and Future Work

The system presented herein has proved satisfactory and could be useful in cases where many
patients need to be evaluated. One of the most important aspects of nasal cytology is the possibility that
it offers the specialist an opportunity to make a correct differential diagnosis by means of a low-cost
analysis without having to send their patient to a laboratory for further testing. The important help this
system provides to the specialist is to give him the possibility to photograph an appropriate number of
microscopic fields that he considers useful and automatically detect the biofilm presence.

We have seen how it is possible to detect the presence of biofilm spots in rhino-cytological scans
through different algorithms: isolation forest, deep random forest and CNN. The CNN network
involves greater attention, from an implementation point of view to the other techniques as regards its
training phase and any overfitting problems in which it could fall. Despite this, he correctly classified
all the images, unlike the other technologies; this system can, therefore, represent excellent support for
rhino-cytological analyzes in order to recognize the biofilm, with more than reliable results in terms of
accuracy and error rate.
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The design choices concerning CNN have given the model strength and reliability, without
however reduce its characteristics such as simplicity and flexibility. The main obstacle was the lack of
data: with this awareness, it was nevertheless possible to train performing classifiers, which satisfied
the primary requirements for integration, while also offering good precision scores.

Research is in progress to make the system capable of working with images of varying sizes,
as it currently works on images of predefined sizes. The integration of this system with a medical
rhinocytology system, used to assist the diagnosis of nasal diseases from cytological information, is
currently underway.
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Appendix A

Isolation forest confusion matrices
HSV with PCA

True False

Biofilm 41 0
Other 50 9

HSV without PCA

True False

Biofilm 49 15
Other 35 1

LAB with PCA

True False

Biofilm 44 6
Other 44 6

LAB without PCA

True False

Biofilm 48 19
Other 31 2
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Deep Random Forest confusion matrix

HSV with PCA

True False

Biofilm 49 2
Other 48 1

HSV without PCA

True False

Biofilm 49 2
Other 48 1

LAB with PCA

True False

Biofilm 47 2
Other 48 3

LAB without PCA

True False

Biofilm 49 5
Other 45 1

CNN confusion matrix

True False

Biofilm 50 2
Other 48 0
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