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Abstract: One key advantage of compressive sensing is that only a small amount of the raw video
data is transmitted or saved. This is extremely important in bandwidth constrained applications.
Moreover, in some scenarios, the local processing device may not have enough processing power to
handle object detection and classification and hence the heavy duty processing tasks need to be done
at a remote location. Conventional compressive sensing schemes require the compressed data to be
reconstructed first before any subsequent processing can begin. This is not only time consuming but
also may lose important information in the process. In this paper, we present a real-time framework
for processing compressive measurements directly without any image reconstruction. A special
type of compressive measurement known as pixel-wise coded exposure (PCE) is adopted in our
framework. PCE condenses multiple frames into a single frame. Individual pixels can also have
different exposure times to allow high dynamic ranges. A deep learning tool known as You Only
Look Once (YOLO) has been used in our real-time system for object detection and classification.
Extensive experiments showed that the proposed real-time framework is feasible and can achieve
decent detection and classification performance.

Keywords: real-time; deep learning; detection; classification; wireless; compressive measurements

1. Introduction

Compressive measurements [1] are normally collected by multiplying the original vectorized image
with a Gaussian random matrix. Each measurement contains a scalar value and the measurement
is repeated M times where M is much fewer than N (the number of pixels). To detect a target
using compressive measurements, it is normally done by reconstructing the image scene and then
conventional detectors/trackers [2,3] are then applied.

One type of compressive measurement is pixel subsampling, which can be considered as a special
case of compressive sensing. Tracking and classification schemes have been proposed to directly utilize
the pixel subsampling measures. Good results have been obtained in [4–10] as compared to some
conventional algorithms.

Recently, a new compressive sensing device known as Pixel-wise Code Exposure (PCE) camera
was proposed [11]. Hardware prototype was developed and performance was proven. In [11], the
original frames were reconstructed using L1 [12] or L0 [13–15] sparsity based algorithms. One problem
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with the reconstruction based approach is that it is extremely time consuming to reconstruct the
original frames and hence, this may prohibit real-time applications. Moreover, information may be
lost in the reconstruction process [16]. For target detection and classification applications, it will be
ideal if one can carry out target detection and classification directly in the compressive measurement
domain. Although there are some target tracking papers [17] in the literature that appear to be using
compressive measurements, they are actually still using the original video frames for detection and
tracking. Other compressive measurement based algorithms [18–24] assume the targets are already
centered, which may not be practical because targets can be anywhere in the image and compressive
measurements using Gaussian random matrix lose the target location information.

There are several publications written by us that have shown that PCE also achieved good detection
and classification results for vehicles [25–28] in optical and infrared videos. However, real-time was
not discussed in those past papers [25–28]. In this paper, we propose a real-time and deep learning
based vehicle detection and classification approach in compressive measurement domain. That is, the
measurements are from an emulated coded aperture camera. First, a You Only Look Once (YOLO)
detector is used for target detection. Here, YOLO is also used to perform classification. The training of
YOLO is very simple, which requires image frames with known target locations. Second, a real-time
system has been set up to detect and classify vehicles in real-time. There are several devices in our
system. We used a laptop for video acquisition. The raw video frames are compressed via PCE and are
wirelessly transmitted through a cell phone to a remote computer equipped with a graphical processor
unit (GPU). The video frames are processed and objects are detected, classified, and annotated on the
images. The processed images are then transmitted wirelessly via a cell phone to a third device for
display. Our proposed approach was demonstrated using real-time experiments. The detection and
classification results are reasonable.

Our contributions are as follows:

• Although the proposed detection and classification scheme is not new and has been used by us
for some other problems, we are the first ones to apply the PCE measurements in real-time vehicle
detection and classification.

• Our proposed system can be useful for wide area search and rescue operations, fire damage
assessment, etc. For instance, a small drone can be used to collect compressive sensing videos
using PCE for searching a missing person in mountainous areas. Since the drone may not have
a powerful onboard processor to perform object detection, the PCE videos are then wirelessly
transmitted to a ground station for processing. The processed data are then wirelessly transmitted
to a search and rescue operator for display and decision making.

The rest of this paper is organized as follows. In Section 2, we describe some background materials,
including PCE camera, YOLO, and our real-time system. In Section 3, we summarize the detection and
classification results using real-time videos. Finally, we conclude our paper with some remarks for
future research.

2. Proposed System

2.1. PCE Imaging

In this paper, we employ a sensing scheme based on PCE or also known as Coded Aperture (CA)
video frames as described in [11]. Figure 1 illustrates the differences between a conventional video
sensing scheme and PCE, where random spatial pixel activation is combined with fixed temporal
exposure duration. First, conventional cameras capture frames at certain frame rates such as 30 frames
per second. In contrast, PCE camera captures a compressed frame called motion coded image over
a fixed period of time (Tv). For example, a user can compress 30 conventional frames into a single
motion coded frame. This will yield significant data compression ratio. Second, the PCE camera allows
a user to use different exposure times for different pixel locations. For low lighting regions, more
exposure times can be used and for strong light areas, short exposure can be exerted. This will allow
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high dynamic range. Moreover, power can also be saved via low sampling rate in the data acquisition
process. As shown in Figure 1, one conventional approach to using the motion coded images is to apply
sparse reconstruction to reconstruct the original frames and this process may be very time consuming.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 21 

 

acquisition process. As shown in Figure 1, one conventional approach to using the motion coded 
images is to apply sparse reconstruction to reconstruct the original frames and this process may be 
very time consuming. 

  

(a) (b) 

 
(c) 

Figure 1. (a) Conventional camera; (b) Pixel-wise Coded Exposure (PCE) compressed image/video 
sensor [11] with image reconstruction; (c) proposed direct object detection and classification scheme 
without image reconstruction. 

The coded aperture image M N×∈Y R  is obtained by 

1

( , ) ( , , ) ( , , )
T

t

m n m n t m n t
=

= •Y S X  (1) 

where M N T× ×∈X R  contains a video scene with an image size of M×N and the number of frames of 
T; M N T× ×∈S R  contains the sensing data cube, which contains the exposure times for pixel located at 
(m,n,t). The value of S (m,n,t) is 1 for frames t ∈ [tstart, tend] and 0 otherwise. [tstart, tend] denotes the start 
and end frame numbers for a particular pixel. It should be noted that coded exposure is in time 
domain and coded aperture is in spatial domain. Our proposed PCE imaging actually contains both 
coded exposure and coded aperture information. This can be seen from Equation (1) above. The 
elements of the full or a small portion of the sensing data cube in 3-dimensional spatio-temporal space 
can be activated based on system requirements. Hence, the S matrix contains both coded exposure 
and coded aperture information. We illustrate the PCE 50% Model in Figure 2 below. In this example, 
colored dots denote non-zero entries (50% activated pixels being exposed) whereas white part of the 
spatio-temporal cube are all zero (these pixels are staying dormant). The vertical axis is the time 
domain, the horizontal axes are the image coordinates, and the reader is reminded that each exposed 
pixel stays active for an equivalent duration of 4 continuous frames. The “4” is design parameter for 
controlling exposure times. The larger the exposure times, the more smear the coded image will be 
in videos with motion. 

Figure 1. (a) Conventional camera; (b) Pixel-wise Coded Exposure (PCE) compressed image/video
sensor [11] with image reconstruction; (c) proposed direct object detection and classification scheme
without image reconstruction.

The coded aperture image Y ∈ RM×N is obtained by

Y(m, n) =
T∑

t=1

S(m, n, t)·X(m, n, t) (1)

where X ∈ RM×N×T contains a video scene with an image size of M × N and the number of frames of T;
S ∈ RM×N×T contains the sensing data cube, which contains the exposure times for pixel located at
(m,n,t). The value of S (m,n,t) is 1 for frames t ∈ [tstart, tend] and 0 otherwise. [tstart, tend] denotes the start
and end frame numbers for a particular pixel. It should be noted that coded exposure is in time domain
and coded aperture is in spatial domain. Our proposed PCE imaging actually contains both coded
exposure and coded aperture information. This can be seen from Equation (1) above. The elements
of the full or a small portion of the sensing data cube in 3-dimensional spatio-temporal space can be
activated based on system requirements. Hence, the S matrix contains both coded exposure and coded
aperture information. We illustrate the PCE 50% Model in Figure 2 below. In this example, colored dots
denote non-zero entries (50% activated pixels being exposed) whereas white part of the spatio-temporal
cube are all zero (these pixels are staying dormant). The vertical axis is the time domain, the horizontal
axes are the image coordinates, and the reader is reminded that each exposed pixel stays active for
an equivalent duration of 4 continuous frames. The “4” is design parameter for controlling exposure
times. The larger the exposure times, the more smear the coded image will be in videos with motion.
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Figure 2. Example of part of sensing data cube S. Colored dots denote non-zero entries (activated
pixels) whereas white part of the cube is all zero (dormant pixels). Both coded aperture and coded
exposure are present in this example.

The video scene X ∈ RM×N×T can be reconstructed via sparsity methods (L1 or L0). Details can
be found in [11]. However, the reconstruction process is time consuming and hence not suitable for
real-time applications.

Instead of performing sparse reconstruction on PCE images, our scheme directly works on the
PCE images. Utilizing raw PCE measurements has several challenges. First, moving targets may be
smeared if the exposure times are long. Second, there are also missing pixels in the raw measurements
because not all pixels are activated during the data collection process. Third, there are much fewer
frames in the raw video because a number of original frames are compressed into a single coded frame.
This means that the training data will be limited.

In this paper, we have focused on simulating PCE measurements. We then proceed to demonstrate
that detection and classifying moving vehicles is feasible. We carried out multiple experiments with
two diverse sensing models: PCE/CA Full and PCE/CA 50%. Full means that there are no missing
pixels. We also denote this case as 0% missing case. The 50% case means 50% of the pixels in each
frame are also missing in the PCE measurements.

The PCE Full Model (PCE Full or CA Full) is quite similar to a conventional video sensor: every
pixel in the spatial scene is exposed for exactly the same duration of one second. This simple model
still produces a compression ratio of 30:1. The number “30” is a design parameter, which means that
30 frames are averaged to generate a single coded frame. Based on our sponsor’s requirements, in our
experiments, we have used 5 frames, which achieved 5 to 1 compression already. More details can also
be found in [25–29].

2.2. YOLO

YOLO tracker [30] is fast and has similar performance as Faster R-CNN [31]. We picked YOLO
because it is easy to install and is also compatible with our hardware, which seems to have a hard time
to install and run Faster R-CNN. The training of YOLO is quite simple. Images with ground truth
target locations are needed. YOLO also comes with a classification module.

The input image is resized to 448 × 448. Figure 3 shows the architecture of YOLO version 1. There
are 24 convolutional layers and 2 fully connected layers. The output is 7 × 7 × 30.
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Figure 3. 24 convolutional layers followed by 2 fully connected layers for You Only Look Once (YOLO)
version 1.

In contrast to typical detectors that look at multiple locations in an image and return the highest
scoring regions as detections, YOLO, as its namesake explains, looks at the entire image to make
determinations on detections, giving each scoring global context. This method makes the prediction
extremely fast, up to one thousand times faster than an R-CNN. It also works well with our current
hardware. It is easy to install, requiring only two steps and few prerequisites. This differs greatly from
many other detectors that require a very specific set of prerequisites to run a Caffe based system. YOLO
works without the need for a GPU but, if initialized in the configuration file, easily compiles with
the Compute Unified Device Architecture (CUDA), which is the NVIDIA toolkit, when constructing
the build. YOLO also has a built-in classification module. However, the classification accuracy using
YOLO is poor according to our past studies [25–29]. While the poor accuracy may be due to a lack of
training data, the created pipeline that feeds input data into YOLO and is therefore more effective at
providing results.

One key advantage of YOLO is its speed as it can predict multiple bounding boxes per grid cell
of size 7 × 7. For the optimization process during training, YOLO uses sum-squared error between
the predictions and the ground truth to calculate loss. The loss function comprises the classification
loss, the localization loss (errors between the predicted boundary box and the ground truth), and the
confidence loss. More details can be found in [30].

YOLO has its own starter model, Darknet-53, that can be used as a base to further train a given
dataset. It contains, as the name would suggest, 53 convolutional layers. It is constructed in a way to
optimize speed while also competing with larger convolutional networks.

In the training of YOLO, we trained the models based on missing rates. There may be other deep
learning based detectors such as the Single Shot Detector (SSD) [32] in the literature. We tried to use
SSD. After some investigations, we observed that it is very difficult to custom trained it. In any event,
our key objective is to demonstrate vehicle detection and confirmation using PCE measurements. Any
relevant detectors can be used.

2.3. Real-Time System

As shown in Figure 4, the key idea of the proposed system is to use a compressive sensing camera
to capture certain scenes. The compressive measurements are wirelessly transmitted to a remote PC for
processing. The PC has fast processors such as GPU to carry out the object detection and classification.
The processed frames are then wirelessly transmitted to another laptop for display. This scenario is
realistic in a sense that there are some applications that can be formalized in the same manner. One
application scenario is for border monitoring. A border patrol agent can launch a drone with an
onboard camera. Due to limited processing power on the drone, the object detection and classification
cannot be done onboard. Instead, the videos are transmitted back to the agent who has a powerful PC,
which then processes the videos. The results can be sent back to the control center or the agent for
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display. Another application is for situation assessment. A soldier at the frontline can sent a small
drone with an onboard camera to monitor enemy’s activities. The compressive measurements are sent
back to the control center from processing. The processed frames are then sent back to the soldier for
display. A third application scenario was also mentioned in Section 1 for search and rescue operations.
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2.3.1. Tools Needed

The following tools are needed for real-time processing:

• Ubuntu 16.04 LTS
• Python 2.x
• OpenCV 3.x
• Hamachi
• Haguichi
• TeamViewer

For the operating system, each machine will need to be running on Ubuntu 16.04 LTS and have the
following packages installed: Python 2.x, OpenCV 3.x, Hamachi, and Haguichi. This Linux distribution
was chosen because it is compatible with the YOLO object detector/classifier. To be consistent, we
decided to install the same distribution to each machine.

To run the scripts necessary for the demo, Python and OpenCV are required. The scripts are
written in Python and utilizes OpenCV to manipulate the images. Finally, to enable communication
between the machines, Hamachi and Haguichi need to be installed on each machine. Hamachi is a free
software that allows computers to view other computers connected to the same server, as if they were
on the same network. Haguichi is simply a GUI for Hamachi, built for Linux operating systems.

It is highly recommended that TeamViewer is installed on each machine to allow one person to
execute the scripts needed. Having one person control each machine eliminates confusion and the
need for coordination.

2.3.2. Setup for Each Machine

a. For All Machines

All machines must have an internet connection and be running Haguichi and TeamViewer. In the
Haguichi menu, the user should be able to see the status of the other machines connected to the server
and they should all be connected.
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b. Data Acquisition Machine

This machine needs to be connected to the sensor used for data acquisition via USB. In this case,
the sensor used is a Logitech camera.

c. Processing Machine

In the script used for processing, the outgoing IP address need to be changed depending on which
machine is the desired receiving machine. In most cases, the IP address will typically stay the same
if the same machines are used. Assuming that this machine has YOLO installed and they are fully
functional, no further setup is required.

d. Display Machine

This machine does not require any further setup.

2.3.3. General Process of System

The system starts at the data acquisition machine. This machine captures data, via webcam, and
condenses N frames into one. As of now, five frames are condensed into one. After the frame has been
condensed, sub-sampling is applied to remove x% of pixels. The user is able to specify the percentage
before executing the program. Typically, this percentage is 0 or 50%. After the processing is complete,
the condensed and subsampled frame is sent to the processing machine via network socket. For test
cases where there is more than 0% pixels missing, the image will be resized to half its original size to
reduce transmission time.

The processing machine receives this data and decodes it for processing. After extensive
investigations, it was determined that using only YOLO, for both detection and classification, is
sufficient. This method gives us the fastest real-time results. After all processing, the processed frame
is sent to the display machine.

This machine receives the processed data in the same way that the processing machine receives
data from the processing machine. The only difference is that the data has not been resized from its
original size. Once the data is received, the output is displayed on screen for the user to view the
detection and classification results.

It is important to mention that when we send data via network sockets, this method encodes data
into a bit stream to send to the receiving machine. The receiving machine will decode this bit stream to
obtain the original data.

Below are diagrams to illustrate the flow of this system. The graphical flowchart shown in Figure 5
is a high-level overview of the path the data takes. A camera captures the scene. The video frames are
condensed using the PCE principle and wirelessly transmitted to a remote processor with fast GPUs.
The processed results are sent to the display device wirelessly. The second flowchart shown in Figure 6
is a more detailed look at the system.
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3. Experimental Results

There are several sets of trials spanning several months, various weather conditions, and multiple
locations. Various obstacles were present in those trials other than the desired classes such as,
pedestrians and other vehicles. All of these factors, whether purposely or through circumstance, were
used to develop robust models to work in various different scenarios. This real-time project is unique
in that when collecting data to be used for training, we are also in the moment running the collected
video through YOLO to generate detection data for testing.

3.1. Performance Metrics

The detection method used when in real-time originally just generated images and videos with
bounding boxes and the classification labels above the bounding box. Unfortunately, that did not
lend well towards our current method of performance metric generation. As a result, ground truth
bounding boxes were manually generated using a program called Yolo mark. Afterwards, a script,
used in various other projects, was run to generate bounding boxes and performance metrics. These
bounding boxes are generated the same way they would be in real time. The five different performance
metrics to quantify the information are: Center Location Error (CLE), Distance Precision at 10 pixels
(DP@10), Estimates in Ground Truth (EinGT), mean Area Precision (mAP), and number of frames with
detection. These metrics are detailed below:

• Center Location Error (CLE): It is the error between the center of the bounding box and the
ground-truth bounding box. Smaller means better. CLE is calculated by measuring the distance
between the ground truth center location (Cx,gt, Cy,gt) and the detected center location (Cx,est, Cy,est).
Mathematically, CLE is given by

CLE =

√(
Cx,est −Cx,gt

)2
+

(
Cy,est −Cy,gt

)2
(2)

• Distance Precision (DP): It is the percentage of frames where the centroids of detected bounding
boxes are within 10 pixels of the centroid of ground-truth bounding boxes. Close to 1 or 100%
indicates good results.

• Estimates in Ground Truth (EinGT): It is the percentage of the frames where the centroids of the
detected bounding boxes are inside the ground-truth bounding boxes. It depends on the size of
the bounding box and is simply a less strict version of the DP metric. Close to 1 or 100% indicates
good results.

• Mean Area Precision (mAP): mAP calculates the amount of area overlap for the estimated and
ground truth bounding boxes compared to the total area of the two bounding boxes and returns
the result as a value between 0 and 1, with 1 being the perfect overlap. The mAP being used can
be computed as

mAP =
Area o f Intersection

Area o f Union
(3)



Electronics 2020, 9, 1014 9 of 21

As shown in Equation (3), mAP is calculated by taking the area of intersection of the ground truth
bounding box and the estimated bounding box, then dividing that area by the union of those
two areas.

• Number of frames with detection: This is the total number of frames that have detection.

We used confusion matrices for evaluating vehicle classification performance.

3.2. Videos

We have the following specific training datasets: two in the morning, one around noon time,
and two in the afternoon with mixed sunny and cloudy days. There are two scenarios: the Johns
Hopkins University (JHU) balcony where a camera was located in the balcony of a building in the
Johns Hopkins University (JHU) campus in Montgomery County, Rockville, MD, USA and JHU fire
escape which is located in another building in the JHU campus. In each video, there are two moving
cars (Toyota Camry and Ford Focus). Each video has a length of 1 to 2 minutes. The numbers of frames
in the videos range from 1800 to 3600. Hence, we have 10 videos with about 25,000 frames for training.
We manually label the target locations (bounding boxes) in all videos.

There are nine testing different videos used to generate these performance metrics. One is at the
JHU balcony. Three were in another, the JHU fire escape (IMG428, IMG429, and IMG430). There are
five different live trials that were used for data collection and training of the JHU balcony location
where the cars took a figure-8 path (Figure 7) around two circles in front of a parking garage and the
entrance to JHU campus. The other location used for training and testing was from a fire escape above
the office’s parking lot, where the cars take an oval trip around the lot, and had four live trials. To give
a general idea of the path that was taken in for JHU balcony a snapshot will be shown below with
a line overlaying the path taken where available. For the fire escape set, it would require multiple
images being stitched together to get the whole path so a path overlay will not be included. However,
the path is a simple oval. Two cars: Ford Focus and Toyota Camry were used in the experiments.
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3.3. Detection Results

Observationally, it was noticed that the 75 percent missing pixel tests performed very poorly
for both locations due to too much data loss, while 50 percent performed just well enough to gather
metrics and 0 percent operated well enough for metrics. The same deep learning YOLO model is used
for both locations because it was trained for both locations.

3.3.1. JHU Balcony Scenario

To train the YOLO, multiple videos were collected with a coded aperture webcam at different
dates. Two vehicles (Ford Focus and Toyota Camry) were used in our experiments. The vehicle
locations in each frame are manually located and saved. The cropped images are then fed into the
YOLO for training.
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JHU balcony scenario was captured with a coded aperture webcam in frames and then compiled
into a video so it could be tested with the script we have used for various other projects. The script runs
detection tests and generates the aforementioned performance metrics. Table 1 shows the performance
metrics generated for one test video of the JHU balcony.

Table 1. Performance metrics for 0 and 50 percent missing pixels. JHU Balcony scenario.

% Missing CLE DP@10 EinGT mAP % Detection

0 32.08 0.65 0.66 0.45 70.56
50 23.11 0.73 0.80 0.54 16.48

The metrics show that there is an improvement from the 0% missing case to the 50% missing
case. However, there is significantly less detection in the 50% missing case. While the values may
be better, the results are based on a much smaller sample which could mean an element of luck is
occurring. Upon looking at all tables of performance metrics though it is clear that it is not luck but
simply a decreased sample size has fewer bad detections. A decrease in bad detections is convenient
for performance metrics but there is a definite value to having many vehicle detections with slightly
lower performance as opposed to few vehicle detections with decent to good performance.

Figures 8 and 9 show snapshots of detection results for the JHU balcony scenario (0% missing and
50% missing). The vehicle is Ford Focus. For bot 0% and 50% cases, the green bounding boxes are
correctly put around the vehicle.
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3.3.2. JHU Fire Escape Scenario

The training of YOLO is similar to the previous case. This scenario is more difficult because the
camera was held by one of us and was not mounted on a tripod. Moreover, the camera needed to move
in order to follow the vehicles. Consequently, the PCE measurements are blurry and fuzzy caused by
the camera motions.

To get a more rounded sense of the performance of the model, the performance metrics tables
from each video from the fire escape are provided below in Tables 2–4. Again, the same pattern
emerges, with the 0 missing cases having decent performance in most categories and a large number
of detections and the 50 missing cases having good performance but a small number of detections.
The water is a little muddier for this set; however, because in Table 4 the 50 missing case has worse
performance for DP@10 than the 0 missing case. Not to mention most metrics except for CLE are very
close to each other between the two missing pixel cases, having almost negligible differences.

Table 2. Performance metrics for 0 and 50 percent missing pixels. JHU fire escape scenario:
Video IMG428.

IMG428

% Missing CLE DP@10 EinGT mAP % Detection

0 42.16 0.56 0.94 0.59 84.31
50 15.86 0.62 1.00 0.70 25.49

Table 3. Performance metrics for 0 and 50 percent missing pixels. JHU fire escape scenario:
Video IMG429.

IMG429

% Missing CLE DP@10 EinGT mAP % Detection

0 71.36 0.64 0.95 0.63 80.39
50 8.55 0.78 1.00 0.72 33.33
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Table 4. Performance metrics for 0 and 50 percent missing pixels. JHU fire escape scenario:
Video IMG430.

IMG430

% Missing CLE DP@10 EinGT mAP % Detection

0 113.46 0.68 0.91 0.62 76.47
50 8.97 0.64 1.00 0.76 21.57

This information shows that the 0 missing pixel cases simply generate false positives, especially
because of the large number of other stationary vehicles that skew the metrics. The CLE value is most
skewed because it is based off pixel distance from the center location of the ground truth; something
that could be greatly skewed by a few bad detections. The other values are less skewed because they
are simply percentages that would not be greatly affected by a few bad detections. The 50 missing case
would then not have many false vehicle detections because the data from the stationary cars are too
obscured to warrant false detections and only the strongest and most clear instances of a class of car
triggers a detection. This leads to quite accurate performance metrics. The metric that would most
benefit from this style of detection would be CLE as no inaccurate detections would lead to significantly
more accurate results. The other metrics meanwhile would only notice a slight increase in accuracy.

For visual inspection of the 0% and 50% missing cases, we only show the snapshots for one of
the videos (IMG428) in Figures 10 and 11. There are some missed and false detections due to blurry
images. The other two results (IMG429 and IMG430) can be found in the Appendix A.
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3.4. Classification Results

The following sets of tables (Tables 5 and 6) are a snapshot of the classification capabilities of
the YOLO deep learning model that was trained. Overall the model does a good job of detecting an
object correctly. Instances where a bounding box did not surround a class object were not counted
when looking at the set of trials taken from the fire escape. This is because it would be an erroneous
measure of the classifiers accuracy. This was not as feasible with the balcony trials, as there were a
much larger number of frames. There are instances in that trial set where the number of classifications
can equal to a larger number than the total frames of a given video. This simply means that there
were multiple detections per frame and on occasion there could be multiple detections of the same
classification on the same object. Those instances were not filtered out. The most blatant instance of
this will be noticed for the JHU balcony 0 missing pixel trial. That video has 220 frames and yet it
has 594 detections averaging to 2.7 detections per frame. A large number of those are simply repeat
detections that were unfiltered from the process.
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Table 5. Confusion matrices for the JHU balcony experiment with YOLO classification.

(a) 0% missing pixels.
GT: Ford GT: Toyota

Classified: Ford 325 268
Classified: Toyota 0 0

(b) 50% missing.
GT: Ford GT: Toyota

Classified: Ford 25 37
Classified: Toyota 0 0

Table 6. Confusion matrices for the IMG428 video with YOLO classification.

(a) 0% missing pixels.
GT: Ford GT: Toyota

Classified: Ford 31 4
Classified: Toyota 4 18

(b) 50% missing.
GT: Ford GT: Toyota

Classified: Ford 11 0
Classified: Toyota 1 0

As far as the JHU Balcony trial is concerned, the model is less accurate than the other data set. This
makes sense because, unlike the fire escape scenario, the balcony had too many frames to go through to
individually confirm which bounding boxes surrounded the actual vehicle to remove the non-vehicle
bounding boxes from the results. Knowing this, the model preforms decently well, correctly identifying
a Ford Focus 54.7 percent of the time for 0% missing case. It has decreased performance for 50 missing
pixels, as expected. For 50 percent missing pixels, the accurate classification percentage is 40.3 percent.

After analyzing the information from the IMG428 trial, it is clear from the above confusion
matrices that the YOLO classifier does a pretty decent job of classification. From the data provided,
a hypothesis can be generated for the data. It is possible the darker color of the Ford Focus is more
clearly detected in higher missing pixel instances as it stands out more clearly from the tarmac it is
driving on than the Camry. This pattern continues in the other 50 missing trials. If interested, the other
confusion matrices were included in the Appendix A after the tiled images. It also shows that of the
50 frames that are tested the Ford is almost twice as likely to be detected as the Toyota for the 0 missing
pixels case. The trend is much more exaggerated for the 50% missing case.

4. Conclusions

Conventional compressive tracking approaches either require tedious image reconstruction
or unrealistically assume targets are centered in the images. In this work, we present a real-time
framework for vehicle detection and classification directly using compressive measurements collected
via pixel-wise code aperture cameras. The PCE camera utilizes a compressive sensing scheme that
condenses multiple frames into a code aperture frames and saves power and bandwidth by individually
controlling the exposure times of pixels. One key advantage of our proposed approach is that no
time-consuming image reconstruction is needed and no assumption of targets in the center of images
is required. Hence, real-time target detection and classification has been achieved. Moreover, our
approach can handle several practical application scenarios in which the image collection is done using
one device with no processing capability, the data processing is done at a second location with fast
processors, and the processed results are wirelessly sent over to a device at a third location for real-time
visualization. Such scenarios do happen in border monitoring, fire damage assessment, etc. In our
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experiments, the videos and processed results were all transmitted via a cell phone. The detection and
classification is done via YOLO. Real videos were used in our evaluations. In general, the detection is
reasonable for 0% and 50% missing cases. However, the classification still needs more improvement.

Currently, we are experimenting with light weight versions of YOLO for detection and classification
so that speed can be further improved. We will also explore other detectors such as SSD, which
was declared by the authors of SSD [31] to have better performance than YOLO. A third direction is
to implement a dynamic scheme to adjust the exposure of each pixel based on the intensity in the
image scene.
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Appendix A. Additional Results for the Fire Escape Scenario

Here, we include classification results and snapshots of videos for two additional real-time
experiments in the Fire Escape scenario. In both cases, the classification accuracy is reasonable for the
0% PCE case.

Experiment for IMG429 video:

Table A1. Confusion matrix for the IMG429 video: 0% missing pixels trial with YOLO classification.

GT: Ford GT: Toyota

Classified: Ford 30 4
Classified: Toyota 3 15

Table A2. Confusion matrix for the IMG429 video: 50% missing pixels trial with YOLO classification.

GT: Ford GT: Toyota

Classified: Ford 13 0
Classified: Toyota 0 5



Electronics 2020, 9, 1014 16 of 21

Electronics 2020, 9, x FOR PEER REVIEW 16 of 21 

 

 
Figure A1. IMG429 with 0 percent missing, tiled image results. Bounding box detections outlined in 
green. 

Figure A1. IMG429 with 0 percent missing, tiled image results. Bounding box detections outlined
in green.



Electronics 2020, 9, 1014 17 of 21

Electronics 2020, 9, x FOR PEER REVIEW 17 of 21 

 

 
Figure A2. IMG429 50 percent missing tiled image results. Bounding box detections outlined in green. 

Experiment for IMG430 video: 

Table A3. Confusion matrix for the IMG430: 0% missing pixels trial with YOLO classification. 

 GT: Ford GT: Toyota 
Classified: Ford 26 2 

Classified: Toyota 2 17 

Table A4. Confusion matrix for the IMG430: 50% missing pixels trial with YOLO classification. 

 GT: Ford GT: Toyota 
Classified: Ford 9 1 

Classified: Toyota 0 2 

Figure A2. IMG429 50 percent missing tiled image results. Bounding box detections outlined in green.

Experiment for IMG430 video:

Table A3. Confusion matrix for the IMG430: 0% missing pixels trial with YOLO classification.

GT: Ford GT: Toyota

Classified: Ford 26 2
Classified: Toyota 2 17

Table A4. Confusion matrix for the IMG430: 50% missing pixels trial with YOLO classification.

GT: Ford GT: Toyota

Classified: Ford 9 1
Classified: Toyota 0 2
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