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Abstract: Conventional main memory can no longer meet the requirements of low energy 

consumption and massive data storage in an artificial intelligence Internet of Things (AIoT) 

system. Moreover, the efficiency is decreased due to the swapping of data between the main 

memory and storage. This paper presents a hybrid storage class memory system to reduce the 

energy consumption and optimize IO performance. Phase change memory (PCM) brings the 

advantages of low static power and a large capacity to a hybrid memory system. In order to avoid 

the impact of poor write performance in PCM, a migration scheme implemented in the memory 

controller is proposed. By counting the write times and row buffer miss times in PCM 

simultaneously, the write-intensive data can be selected and migrated from PCM to dynamic 

random-access memory (DRAM) efficiently, which improves the performance of hybrid storage 

class memory. In addition, a fast mode with a tmpfs-based, in-memory file system is applied to 

hybrid storage class memory to reduce the number of data movements between memory and 

external storage. Experimental results show that the proposed system can reduce energy 

consumption by 46.2% on average compared with the traditional DRAM-only system. The fast 

mode increases the IO performance of the system by more than 30 times compared with the 

common ext3 file system. 

Keywords: hybrid memory; memory controller; migration policy; in-memory file system; artificial 

intelligence; Internet of Things 

 

1. Introduction 

The emergence of the Internet of Thing (IoT) has given rise to many opportunities and 

challenges. In the early days, many IoT devices could only collect and send data to the cloud for 

analysis. However, the increasing computing capacity of today’s devices allows them to perform 

complex computations on-site [1,2]. As the processing capabilities of IoT devices are gradually 

increasing, the applications in IoT devices have become increasingly complicated. Recently, 

complex artificial intelligence applications can also be processed in edge devices called artificial 

intelligence Internet of Things (AIoT) devices and systems. IoT devices are usually self-powered, 

using batteries or even energy harvesting [3], so they need to be on low power for long standby time. 

AIoT devices are used to execute image and video applications with large memory footprints. 

Unfortunately, the conventional DRAM-based main memory incurs problems, such as high energy 

consumption and small density, which have to be addressed before large amounts of data can be 

processed efficiently in DRAM-only memory [4]. 
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As DRAM suffers from limited scalability and high power leakage, the emergence of many new 

non-volatile memories, such as PCM [5,6], spin-transfer torque magnetic random access memory 

(STT-MRAM) [7], resistive random access memory (RRAM) [8], and 3D-Xpoint [9], provides new 

solutions for a main memory architecture. These byte-addressable memories are non-volatile, 

achieve low static energy consumption, and have a high density. 

In particular, PCM is considered to be the most likely non-volatile memory to replace DRAM as 

the main memory because of its special characteristics. PCM has small-sized cells and excellent 

scalability within the complementary metal oxide semiconductor (CMOS) fabrication process, which 

makes PCM have a higher density than DRAM [10]. Thus, it is possible to produce a PCM chip with 

larger capacity. The most attractive advantage of PCM is that it does not need to be refreshed 

because it is non-volatile, making the PCM have a low static energy consumption. On the other 

hand, the refresh mechanism of traditional DRAM main memory has caused large energy 

consumption. Therefore, some studies have attempted to use PCM to completely replace DRAM as 

the main memory [11]. 

Unfortunately, compared to DRAM, the PCM still has some disadvantages including longer 

write latency, higher write energy and limited write endurance. The longer write latency of PCM 

affects the performance of memory system. The higher write energy leads to the large energy 

consumption of the memory system in the cases with intensive write operations. A PCM cell can 

only sustain a limited number of write operations which is generally 108. The endurance of PCM is 

worse than that of DRAM (1015), but is better than NAND Flash (105) [10]. Hence, the PCM could 

also be used in hybrid flash-PCM architectures to counter some of the disadvantages of flash 

memory [12]. 

Consequently, the hybrid memory systems have been proposed. This would allow large 

amounts of energy to be saved as compared to full DRAM implementation. For instance, the 

common DRAM-PCM hybrid memory system comprised of both DRAM and PCM in the physical 

address space can be directly accessed by processors to achieve the low access latency and high 

endurance of DRAM, while taking advantage of PCM’s large capacity and low static power. 

In order to exploit the low energy and high speed of DRAM write, many previous works have 

studied hybrid memory management in different ways. Some software-managed hybrid memory 

systems exploit operating systems to manage pages between DRAM and non-volatile memories 

[13–15]. A hardware–software mechanism for hybrid memory management migrates multiple pages 

concurrently without significantly affecting the memory performance [16]. In addition, using an 

extended on-chip cache policy is also a viable method to enhance the performance of hybrid memory 

[17]. Some hardware-based management systems use a modified memory controller to manage the 

pages in hybrid memory. Hardware-managed swap techniques generally induce a lower overhead 

than software-managed ones [18]. However, both software and hardware methods are rarely 

optimized for IoT devices. The diversity of IoT applications makes it difficult to present a general 

method for all kinds of situations [1]. This paper focuses on the applications of image processing 

with large memory footprints. A fast and energy efficient scheme is proposed to provide a novel 

solution for applications of image processing in AIoT devices. 

The remainder of this paper is organized as follows. Section 2 presents the architecture of 

hybrid storage class memory (HSCM) and a migration scheme for applications of image processing. 

Section 3 introduces a fast mode to improve the IO performance of the system. In Section 4, the 

experimental results are described. Finally, Section 5 concludes this paper. 

2. Hybrid Storage Class Memory 

Most non-volatile memories incur high access latency, high dynamic energy consumption, and 

limited write endurance. To address these weaknesses, a hybrid memory system comprised of both 

DRAM and non-volatile memory has been proposed. We use DRAM and PCM to compose hybrid 

storage class memory. Notably, the DRAM and PCM are in a unified address space managed by the 

hybrid memory controller. The architecture of hybrid storage class memory is shown in Figure 1.  
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Figure 1. Hybrid storage class memory architecture. 

2.1. Row Buffer Architecture 

For conventional DRAM-based main memory, the row buffer serves as a cache for the most 

recently accessed row. In our study, both DRAM and PCM banks utilize the row buffer architecture 

for better compatibility. Row buffer locality refers to the repeated reference to a row, while its 

contents are in the row buffer. The open page strategy [19] can be applied to the memory system 

with a row buffer architecture. Memory requests to data with a high row buffer locality are served 

efficiently without having to frequently re-activate the memory cell array. 

The open page strategy is implemented in HSCM. When the controller receives a request, if the 

row buffer hits, the corresponding data is read or written directly from it; otherwise, the original row 

is closed by a precharge. The data in the target row should be loaded into the row buffer. The row 

buffer then reads the required data and waits for the next operation. Figure 2 shows the open page 

strategy in the row buffer. 

Row buffer

Cell

Row 

Buffer

Miss

Write

 

Figure 2. Row buffer architecture with an open page strategy. 

The biggest difference between PCM and DRAM is whether it is non-volatile. When the row 

buffer miss happens, all the data in the DRAM row buffer must be written back to the original row 

by the precharge, and the other row can then be loaded into the row buffer. By contrast, read 

operations in PCM are non-destructive. The read operation can obtain a better performance by 

reducing the number of precharges. Therefore, in the case of a row buffer miss, the memory 

controller can check whether the content of the current row buffer has been revised. If it is changed, 

the data need to be written back to the original row; otherwise, the data in the current row buffer can 

be discarded. This can reduce the energy and latency of the PCM. However, with PCM, the energy 

consumption and latency of the precharge are still much higher than with DRAM. According to the 

analysis, the write with the row buffer miss in PCM is worse than in DRAM. 

2.2. Memory Access Pattern in IoT Applications 

Different applications have different memory access patterns. For the purpose of developing a 

more targeted scheme, the memory access patterns of benchmarks for IoT applications [20,21] are 

studied. The memory access pattern provides a reference for further research and helps to design a 

more workable strategy. As can be seen in Figure 3, we have evaluated the space locality of 
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benchmarks by counting the proportion of different intervals in the address space among all 

memory accesses [22]. The memory access patterns are obtained through the gem5 simulator [23]. 

 

Figure 3. Spatial locality of IoT applications. 

The interval refers to the address space between two consecutive accesses. Figure 3 depicts that 

more than 15% of accesses are in an adjacent physical address space (where the interval is 1). 

Considering that the capacity of a row is larger than a cache line, the larger intervals also have some 

locality. For example, when the interval between two accesses is less than 64 (the cache line size is 64 

bytes, and the row size is 64 bytes × 64 = 4 kB), it is considered that there is a high probability that 

these accesses are in the same row. In this case, the row buffer hit will happen in the memory with 

an open page strategy. On the other hand, when the interval is more than 64, a row buffer miss is 

possible. Figure 3 shows that the IoT applications have spatial locality. In particular, the spatial 

localities of cjpeg and security are better than the other applications. 

The concentration of memory access is an important factor in a memory access pattern. The 

intensive address access is conducive to the design of an appropriate algorithm. As can be seen in 

Figure 4, some representative memory access patterns are illustrated. The x-axis denotes the cycle 

(time) of writing in memory, and the y-axis denotes the address value (from low to high). In Figure 

4a,b, patricia and qsort represent two kinds of write access patterns in IoT applications. cjpeg and 

H.264dec represent the write access patterns in applications of image processing in Figure 4c,d, 

respectively. 

 

Figure 4. Concentration of write operations. 
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As shown in Figure 4a,b, addresses accessed by write operations are scattered, although the 

patricia in Figure 4a is distributed with some regularity. What can be clearly seen in Figure 4b is the 

irregular access in qsort. This means that applications such as qsort are difficult to solve with a 

simple algorithm due to their unique memory access patterns. In some cases, as shown in Figure 

4c,d, in applications of image processing, because the IoT devices are usually used to monitor the 

environment, the pictures and videos have a good similarity within a certain period of time. 

Consequently, most write operations concentrate on a few addresses. If this part of write operation is 

concentrated on the PCM, it will adversely affect the energy consumption and the performance of 

the memory system. Moreover, the intensive write operations are not conducive to extending the 

life of PCM. Therefore, a strategy that can transfer these intensive write operations to DRAM should 

be proposed. 

2.3. Row Buffer Locality and Write Aware Scheme 

According to the analysis in Section 2.1 and 2.2, a novel memory controller design is proposed 

to improve hybrid memory performance and energy efficiency. The memory controller combines 

memory access characteristics with row buffer locality as the basis for row migration. A write-aware 

and row buffer miss (WARM) counter is implemented to evaluate the characteristics of each row 

and decide whether the row should be migrated. A remap table records the addresses of rows that 

have been migrated. Due to the remap table, when the rows are accessed again, the correct data can 

be obtained. The WARM counter module and remap table module are integrated in the memory 

controller. The architecture of the modified memory controller is shown in Figure 5. The initial ratio 

of DRAM and PCM is set to 1:3. 
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Figure 5. Memory controller architecture. 

Different access behaviors will have different effects on the system. For example, if a row is 

written in the PCM, two cases are possible. The first case is that the next row accessed is the same 

row. In this case, whether the operation is write or read, it will happen directly in the row buffer 

under the open page strategy. The precharge will not occur during this period until the access to 

another row arrives. The second case is that the next row accessed is different from the current one, 

which indicates that a row buffer miss occurred. In this case, the current row will be precharged 

immediately. Compared with the first case, the second is worse in PCM because of the higher 

energy consumption and latency. However, in both cases, the write operation will eventually lead 

to a precharge. 

Previous work on hybrid memory systems observed that the latency of a row buffer hit is 

similar in different memories, while the latency of a row buffer miss is generally much higher in 

PCM [24]. When a row buffer miss occurs in PCM, if data in the row buffer are modified, this row 

should be precharged. In this case, PCM consumes more energy because of the row buffer miss. 

Based on the above observations and analysis, a row buffer locality and write aware scheme for 

HSCM is proposed, integrating the row migration algorithm in the WARM counter in the hybrid 

memory controller. The scheme uses a WARM counter to select the rows that need to be migrated. 

The rows in the PCM where write operations frequently occur will cause more precharge 

operations, resulting in a poor performance of energy consumption and latency. In addition, rows 
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with poor row buffer locality will bring more data exchange in the row buffer, and the performance 

of this exchange in PCM is also a major factor that reduces memory system performance. We need 

to consider the impact of these two factors in the migration strategy. In other words, the rows with 

more write requests and buffer misses should be migrated from PCM to DRAM. In addition, a 

memory address mapping table is maintained to record the new addresses after the rows are 

migrated. The migration between memory devices is managed by hardware, and is transparent to 

the operating system. 

Since the hardware and software resources in current IoT devices are limited, the algorithm 

using a large amount of hardware or software resources is not suitable for our AIoT terminal 

system. In [18], the rank-based page placement (RaPP) algorithm maintains multiple queues to find 

out pages with intensive accesses. Moreover, it also needs to traverse the lifetime of each queue 

frequently. Such a complex algorithm can accurately filter out hot pages in some server applications. 

The additional energy consumption caused by the algorithm can be ignored for the total energy 

consumption of the server. However, this consumption is unacceptable for IoT devices. Therefore, 

we hope to use a simple structure to reduce the hardware overhead as much as possible. 

As can be seen in Figure 6, if a row in PCM was written, it will be select into the WARM 

counter. When a write operation accesses a row in the WARM counter again, the counter of the row 

will increase by one until the counter meets a threshold. In order to further improve the 

performance, the times of the row buffer miss are used as an additional parameter to help the 

memory controller to complete the migration algorithm. When a row is frequently accessed by write 

operations with row buffer misses, this row should be selected to be migrated. The migration 

algorithm is designed to pick out such rows more accurately. 

 

Figure 6. WARM counter. 

3. Fast Mode for HSCM with In-Memory File System 

PCM is expected to provide higher density than DRAM and can offer larger capacity. In the 

traditional method, most data must eventually be stored in non-volatile storage, such as NAND 

Flash, which is usually slow. The HSCM helps to extend space for memory, and it is large enough for 

processing complicated applications, so the in-memory file system can be used to improve system 

performance. Existing non-volatile memory file systems, such as PMFS [25], NOVA [26], and SCMFS 

[27], are optimized for non-volatile memory. However, these non-volatile memory file systems use 

clflush and mfence of x86 for ordering guarantees, which could not be implemented in an ARM 

processor and other RISC processors for IoT devices. The persistence of the memory file system 

takes up many resources, and these non-volatile memory file systems are not fit for hybrid memory 

systems. For AIoT devices, improved performance is more valuable in some cases. Based on the 

advantages of HSCM, we can obtain a higher performance at the system level. 

A fast mode for hybrid storage class memory is proposed. In IoT devices, since the proposed 

HSCM provides a large enough memory space, the conventional two-level memory system (DRAM 

and NAND Flash) can be replaced by one-level storage class memory (HSCM). Using an in-memory 

file system can reduce the number of data movements, and it is possible to implement calculations in 



Electronics 2020, 9, 1013 7 of 13 

 

memory [28]. tmpfs is an in-memory file system that is based on page cache. Fundamentally, tmpfs 

is not a file system focused on non-volatile memory. It was originally designed for DRAM-based 

main memory to provide rapid temporary storage space. There is no mechanism like journaling for 

persistency in tmpfs [29], but it is a better solution for non-volatile memory with better IO 

performance. Due to the large space and low power hybrid memory for tmpfs, this in-memory file 

system works well. Therefore, tmpfs is an optimal solution for the proposed design. We 

implemented the tmpfs-based, in-memory file system in the proposed HSCM architecture. By 

changing the way the file system managed, a large amount of intermediate data in applications of 

image processing can be put into HSCM. This method avoids the persistence overhead of the 

persistent file system. At the same time, it reduces the number of data exchange times between 

HSCM and external slow storage. The in-memory file system for HSCM is shown in Figure 7. 
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Flash
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Figure 7. File system for HSCM. 

An AIoT device is usually used as an edge device in the system. This also means that there are 

not much data that need to be persistent in the device. In particular, applications of image processing 

in IoT devices usually need to process pictures or videos on-site, and only a small amount of the 

resulting data will be uploaded to the cloud. In this case, a large amount of data are processed in a 

short time, but most of the processed data will be discarded after processing. Therefore, only 

retaining a small NAND Flash as a persistent storage device can meet the requirements of IoT 

devices. 

4. Evaluation 

4.1. Evaluation of Hybrid Storage Class Memory 

We evaluated the performance and energy efficiency of HSCM using the gem5 [23] and 

NVMain [30] simulators. The HSCM consists of a 1-GB DRAM and 3-GB PCM in a unified address 

space. The WARM counter and remap table were implemented in the memory controller. The 

memory controller migrates rows with more write operations and buffer misses from PCM to 

DRAM. Table 1 shows the relevant parameters. 

Table 1. System configuration. 

Parameter Value 

CPU 

Frequency 

ARM (1 core) 

1 GHz 

L1 cache 
32 kB instruction cache 

32 kB data cache 

L2 cache 512 kB 

Memory 
1-GB DRAM 

3-GB PCM 

The parameters of DRAM and PCM can be seen in Table 2 [24,31]. 
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Table 2. DRAM and PCM parameters. 

 DRAM PCM 

Latency 

tCL = 15 ns 

tRCD = 15 ns 

tCWD = 13 ns 

tWR = 15 ns 

tCL = 15 ns 

tRCD = 48 ns 

tCWD = 13 ns 

tWR = 300 ns 

Energy 

Array read = 1.17 pJ/bit 

Array write = 0.39 pJ/bit 

Row buffer read = 0.93 pJ/bit 

Row buffer write = 1.02 pJ/bit 

Array read = 2.47 pJ/bit 

Array write = 16.82 pJ/bit 

Row buffer read = 0.93 pJ/bit 

Row buffer write = 1.02 pJ/bit 

We ran benchmarks for 10 million instructions from Mibench [20] and MediaBench [21] using 

the simulators gem5 and NVMain. According to Section 2, the migration threshold can be set to one. 

When a row in PCM is accessed by a write operation or when a row buffer miss occurs, it will be 

migrated to DRAM. In general, the threshold and the weighing factors of a write and row buffer 

miss can be set to any value depending on the memory access patterns of the applications. These can 

be adjusted according to different applications to improve the algorithm. As the performance of 

PCM improves, this factor will also be adjusted. 

From previous tests described in Section 2.2, we found that some IoT applications have a low 

memory footprint. The large capacity of HSCM could not be fully utilized. The applications of 

image processing have a higher pressure on memory and are widely deployed in AIoT terminals. 

To focus on a performance evaluation of image processing, we selected some applications from 

Mibench and MediaBench, including image processing (cjpeg and djpeg), video processing 

(h264dec, h264enc, mpeg2dec, and mpeg2enc) and signal processing (FFT). The results of 

normalized energy consumption are illustrated in Figure 8. 
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Figure 8. Normalized energy. 

As can be seen in Figure 8, DRAM represents the case where a 4-GB DRAM-only main memory 

is implemented in the system. RaPP represents a hybrid main memory consisting of a 1-GB DRAM 

and 3-GB PCM with a hardware-based method [18]. WARM shows the energy of our proposed 

method. To compare the energy consumption and performance between the advanced 

hardware-based scheme, RaPP, and the proposed scheme, WARM, both were implemented in a 

memory controller with the same hybrid main memory structure in the system. The results indicate 

that the energy of the HSCM architecture is lower than that of DRAM. In the composition of energy 

consumption, the dynamic energy (such as read and write energy) is only part of it. The refresh 

mechanism of DRAM induces energy consumption even when no activity occurs in the memory, 

and this refresh mechanism is not needed in PCM because it is non-volatile. Although the PCM’s 

write energy is higher than DRAM, the static energy consumption is much lower than DRAM. By 
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applying our WARM scheme, the rows with frequent write operations and row buffer misses are 

migrated from PCM to DRAM. This effectively reduces the precharge operation in PCM, thereby 

further reducing the energy consumption of the memory system. For energy-constrained IoT 

devices, the reduction of energy consumption is of great significance. However, the HSCM also 

causes a decrease in the latency of the memory system. The results of normalized performance are 

shown in Figure 9. 
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Figure 9. Normalized performance. 

As can be seen in Figure 9, the decline in system performance is unavoidable because of the 

high write latency in PCM. We can only reduce the performance loss as much as possible through 

algorithms. Compared to a DRAM-only situation, the RaPP scheme consumes up to 43.8% less 

energy (on average, 40.1%), with a performance overhead of less than 15.1%. Our proposed scheme 

consumes up to 49.7% less energy (on average, 46.2%) with a performance overhead of less than 

12.5%. This is because the WARM scheme considers the influence of the row buffer miss. 

Furthermore, the WARM scheme removes the redundant queue upgrade process and selects the 

rows that need to be migrated quickly. In order to prevent redundant migration, complex upgrade 

and downgrade strategies are implemented in RaPP, which are not designed to solve the problems 

for IoT applications. The memory access patterns in IoT applications are different. Thus, the 

proposed scheme is more effective than RaPP. 

To consider energy consumption and performance comprehensively, we use the energy delay 

product parameter to evaluate the effect of different strategies. As can be seen in Figure 10, the 

energy delay product of RaPP and WARM is reduced by 31.9% and 39.5%, compared with DRAM, 

respectively. From the perspective of energy delay product, the WARM scheme has more 

advantages. This shows that the HSCM system has practical value. It is worth noting that the IoT 

devices are usually in a standby state. The above test is mainly for the complex tasks with a large 

memory footprint. If it stays on standby for a long time, since the PCM does not need to be 

refreshed, this will make the energy consumption advantage of the memory system more 

pronounced. Moreover, for applications with less memory pressure, the advantages of the HSCM 

with the proposed scheme are more significant. 
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Figure 10. Energy delay product. 

As mentioned above, we set the initial ratio of DRAM and PCM as 1:3. This is a common 

configuration for hybrid memory. We tested the impact of different ratios on energy consumption 

and performance. When the proportion of DRAM increases, the energy consumption obviously 

increases. At the same time, the performance will be improved because the latency of DRAM is 

lower than that of PCM. In contrast, when the proportion of PCM increases, the energy 

consumption decreases because less DRAM needs to be refreshed. However, the above effects were 

relatively minor in our test. The initial ratio of DRAM and PCM is a more suitable ratio and is more 

like the actual size of a commercial product. 

Additionally, the WARM scheme has a lower hardware cost than RaPP. Compared with the 

RAPP strategy, the proposed scheme has a simpler hardware structure. The total additional storage 

implemented in the memory controller in our design is 20 kB, including 16 kB for the remap table 

and 4 kB for the WARM counter, which is enough to implement the current algorithm. As shown in 

Figure 4, a few rows need to be migrated in the applications of image processing. Consequently, 

there is no need for the memory controller to maintain a large table to record the message for each 

row. In addition, because of the limited storage resource in the memory controller, when the remap 

table is full, it will be reset. This has a negligible impact on the applications of image processing. 

4.2. Performance of the Fast Mode 

Even though the WARM scheme reduces energy consumption, it leads to performance 

degradation because of the high latency in PCM. In comparison with the high performance of 

DRAM, the HSCM still has certain deficiencies. In order to make full use of the large capacity of 

HSCM, some processes, which should be handled in storage such as NAND Flash, can be placed in 

HSCM instead. This fast mode speeds up certain applications in AIoT devices. 

By using the proposed fast mode with a tmpfs-based file system, the performance of the IoT 

system can be improved. For instance, in video processing devices, the analog video signals 

produced by the video camera are converted into digital signals. They are then converted into video 

files by the H.264 encoder and stored in the NAND Flash because DRAM space is limited and much 

more expensive. In the fast mode, the HSCM provides enough space for video processing. 

Furthermore, the video files can be processed and stored in HSCM temporarily. Some valuable files 

are delivered to other programs for further processing. Nowadays, IoT devices are able to perform 

complex computations and a variety of tasks on-site. These processed video files or results can be 

directly uploaded to the cloud from HSCM. Compared with the conventional DRAM and NAND 

Flash architecture, the HSCM with fast mode saves energy in video processing and reduces the IO 

times. In addition, the traditional mode and the fast mode can coexist. Different modes can adapt to 

different requirements. The difference between the two modes is illustrated in Figure 11. 



Electronics 2020, 9, 1013 11 of 13 

 

 

Figure 11. Video applications in IoT devices. 

To verify the performance of the tmpfs-based, in-memory file system, we used the ALTERA 

HAN Pilot Platform with an ARM Cotex-A9 processor for the test. Since there is no commercial 

PCM product, we still use the DRAM memory in our test. The 1-GB DRAM on the platform was 

used to simulate hybrid storage class memory. In fact, the performance of the HSCM architecture is 

close to DRAM as shown in Section 4.1. We used the results measured by DRAM, and corrected the 

results according to the performance ratio of PCM and DRAM. To make the results more convincing, 

we used poor PCM read and write performance parameters and the DRAM parameters at the 

system level from reference [32]. Therefore, the IOPS value of the fast mode finally displayed is 

worse than the actual measured value by using the DRAM. In the test, we used the FIO benchmark 

to test the performance of sequential read, sequential write, random read, and random write, 

respectively. 

We evaluated the IOPS (input/output operations per second) in different IO size between the 

conventional file system based on block device and the in-memory file system based on HSCM. In 

particular, considering the loss of PCM’s read and write performance at the system level, we revised 

the results based on the parameters provided in [32]. The following table lists the IOPS ratio of the 

HSCM with tmpfs and the conventional architecture (DRAM and NAND Flash) with ext3. The 

results of the ratio in different IO sizes are shown in Table 3. 

Table 3. The IOPS of proposed file system. 

IO Size 1 kB 2 kB 4 kB 8 kB 16 kB Average 

Ratio 38.74 54.62 19.31 14.64 23.02 30.07 

As can be seen in the Table 3, the HSCM architecture with the tmpfs-based, in-memory file 

system is a proper method to improve system IO performance. The proposed method has more than 

30 times the IOPS than the conventional architecture on average. We used the PCM delay 

parameters in the system level to revise the ratio value of IOPS. Since the conventional file systems 

are equipped with reliability techniques such as journaling, when the redundant block layer and 

journal layer are removed, files can be maintained in the page cache in HSCM. 

In conclusion, HSCM provides a larger memory space that can improve the processing ability 

of IoT devices. By completing most of the image processing in HSCM, the swaps of data between the 

main memory (HSCM) and the slow storage (NAND Flash) are effectively reduced. As the capacity 

of HSCM becomes larger, the capacity of NAND Flash can become smaller. In fact, HSCM partially 

replaces NAND Flash. In this paper, the fast mode cannot exist without the conventional file 

system. The NAND Flash still exists and plays an important role. We will continue to study the 

persistence of HSCM. The NAND Flash will be completely replaced by HSCM without significantly 

affecting the performance of the system. 

5. Conclusion 

In this paper, we propose an HSCM architecture managed by the row buffer locality and the 

write aware scheme. A fast mode with the tmpfs-based, in-memory file system was implemented to 

improve the IO performance of the system. The proposed architecture can reduce the energy 



Electronics 2020, 9, 1013 12 of 13 

 

consumption of an IoT device by up to 49.7% and increase the IO performance by more than 30 

times for certain applications on average. The proposed hybrid storage class memory system can 

meet the requirements of low power and high performance for AIoT devices. A non-volatile 

memory device gives rise to many challenges and more opportunities. With the development of 

non-volatile storage technologies such as PCM, hybrid storage class memory will become a trend in 

the future. 
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