

Electronics 2020, 9, 1013; doi:10.3390/electronics9061013 www.mdpi.com/journal/electronics

Article

An Energy-Efficient and Fast Scheme for Hybrid

Storage Class Memory in an AIoT Terminal System

Hao Sun 1,2, Lan Chen 1,*, Xiaoran Hao 1, Chenji Liu 1,2 and Mao Ni 1

1 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;

sunhao2@ime.ac.cn (H.S.); haoxiaoran@ime.ac.cn (X.H.); liuchenji@ime.ac.cn (C.L.);

nimao@ime.ac.cn (M.N.)
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of

Sciences, Beijing 100049, China

* Correspondence: chenlan@ime.ac.cn

Received: 20 May 2020; Accepted: 15 June 2020; Published: 17 June 2020

Abstract: Conventional main memory can no longer meet the requirements of low energy

consumption and massive data storage in an artificial intelligence Internet of Things (AIoT)

system. Moreover, the efficiency is decreased due to the swapping of data between the main

memory and storage. This paper presents a hybrid storage class memory system to reduce the

energy consumption and optimize IO performance. Phase change memory (PCM) brings the

advantages of low static power and a large capacity to a hybrid memory system. In order to avoid

the impact of poor write performance in PCM, a migration scheme implemented in the memory

controller is proposed. By counting the write times and row buffer miss times in PCM

simultaneously, the write-intensive data can be selected and migrated from PCM to dynamic

random-access memory (DRAM) efficiently, which improves the performance of hybrid storage

class memory. In addition, a fast mode with a tmpfs-based, in-memory file system is applied to

hybrid storage class memory to reduce the number of data movements between memory and

external storage. Experimental results show that the proposed system can reduce energy

consumption by 46.2% on average compared with the traditional DRAM-only system. The fast

mode increases the IO performance of the system by more than 30 times compared with the

common ext3 file system.

Keywords: hybrid memory; memory controller; migration policy; in-memory file system; artificial

intelligence; Internet of Things

1. Introduction

The emergence of the Internet of Thing (IoT) has given rise to many opportunities and

challenges. In the early days, many IoT devices could only collect and send data to the cloud for

analysis. However, the increasing computing capacity of today’s devices allows them to perform

complex computations on-site [1,2]. As the processing capabilities of IoT devices are gradually

increasing, the applications in IoT devices have become increasingly complicated. Recently,

complex artificial intelligence applications can also be processed in edge devices called artificial

intelligence Internet of Things (AIoT) devices and systems. IoT devices are usually self-powered,

using batteries or even energy harvesting [3], so they need to be on low power for long standby time.

AIoT devices are used to execute image and video applications with large memory footprints.

Unfortunately, the conventional DRAM-based main memory incurs problems, such as high energy

consumption and small density, which have to be addressed before large amounts of data can be

processed efficiently in DRAM-only memory [4].

Electronics 2020, 9, 1013 2 of 13

As DRAM suffers from limited scalability and high power leakage, the emergence of many new

non-volatile memories, such as PCM [5,6], spin-transfer torque magnetic random access memory

(STT-MRAM) [7], resistive random access memory (RRAM) [8], and 3D-Xpoint [9], provides new

solutions for a main memory architecture. These byte-addressable memories are non-volatile,

achieve low static energy consumption, and have a high density.

In particular, PCM is considered to be the most likely non-volatile memory to replace DRAM as

the main memory because of its special characteristics. PCM has small-sized cells and excellent

scalability within the complementary metal oxide semiconductor (CMOS) fabrication process, which

makes PCM have a higher density than DRAM [10]. Thus, it is possible to produce a PCM chip with

larger capacity. The most attractive advantage of PCM is that it does not need to be refreshed

because it is non-volatile, making the PCM have a low static energy consumption. On the other

hand, the refresh mechanism of traditional DRAM main memory has caused large energy

consumption. Therefore, some studies have attempted to use PCM to completely replace DRAM as

the main memory [11].

Unfortunately, compared to DRAM, the PCM still has some disadvantages including longer

write latency, higher write energy and limited write endurance. The longer write latency of PCM

affects the performance of memory system. The higher write energy leads to the large energy

consumption of the memory system in the cases with intensive write operations. A PCM cell can

only sustain a limited number of write operations which is generally 108. The endurance of PCM is

worse than that of DRAM (1015), but is better than NAND Flash (105) [10]. Hence, the PCM could

also be used in hybrid flash-PCM architectures to counter some of the disadvantages of flash

memory [12].

Consequently, the hybrid memory systems have been proposed. This would allow large

amounts of energy to be saved as compared to full DRAM implementation. For instance, the

common DRAM-PCM hybrid memory system comprised of both DRAM and PCM in the physical

address space can be directly accessed by processors to achieve the low access latency and high

endurance of DRAM, while taking advantage of PCM’s large capacity and low static power.

In order to exploit the low energy and high speed of DRAM write, many previous works have

studied hybrid memory management in different ways. Some software-managed hybrid memory

systems exploit operating systems to manage pages between DRAM and non-volatile memories

[13–15]. A hardware–software mechanism for hybrid memory management migrates multiple pages

concurrently without significantly affecting the memory performance [16]. In addition, using an

extended on-chip cache policy is also a viable method to enhance the performance of hybrid memory

[17]. Some hardware-based management systems use a modified memory controller to manage the

pages in hybrid memory. Hardware-managed swap techniques generally induce a lower overhead

than software-managed ones [18]. However, both software and hardware methods are rarely

optimized for IoT devices. The diversity of IoT applications makes it difficult to present a general

method for all kinds of situations [1]. This paper focuses on the applications of image processing

with large memory footprints. A fast and energy efficient scheme is proposed to provide a novel

solution for applications of image processing in AIoT devices.

The remainder of this paper is organized as follows. Section 2 presents the architecture of

hybrid storage class memory (HSCM) and a migration scheme for applications of image processing.

Section 3 introduces a fast mode to improve the IO performance of the system. In Section 4, the

experimental results are described. Finally, Section 5 concludes this paper.

2. Hybrid Storage Class Memory

Most non-volatile memories incur high access latency, high dynamic energy consumption, and

limited write endurance. To address these weaknesses, a hybrid memory system comprised of both

DRAM and non-volatile memory has been proposed. We use DRAM and PCM to compose hybrid

storage class memory. Notably, the DRAM and PCM are in a unified address space managed by the

hybrid memory controller. The architecture of hybrid storage class memory is shown in Figure 1.

Electronics 2020, 9, 1013 3 of 13

DRAM NAND Flash

CPU

PCM

HSCM

Figure 1. Hybrid storage class memory architecture.

2.1. Row Buffer Architecture

For conventional DRAM-based main memory, the row buffer serves as a cache for the most

recently accessed row. In our study, both DRAM and PCM banks utilize the row buffer architecture

for better compatibility. Row buffer locality refers to the repeated reference to a row, while its

contents are in the row buffer. The open page strategy [19] can be applied to the memory system

with a row buffer architecture. Memory requests to data with a high row buffer locality are served

efficiently without having to frequently re-activate the memory cell array.

The open page strategy is implemented in HSCM. When the controller receives a request, if the

row buffer hits, the corresponding data is read or written directly from it; otherwise, the original row

is closed by a precharge. The data in the target row should be loaded into the row buffer. The row

buffer then reads the required data and waits for the next operation. Figure 2 shows the open page

strategy in the row buffer.

Row buffer

Cell

Row

Buffer

Miss

Write

Figure 2. Row buffer architecture with an open page strategy.

The biggest difference between PCM and DRAM is whether it is non-volatile. When the row

buffer miss happens, all the data in the DRAM row buffer must be written back to the original row

by the precharge, and the other row can then be loaded into the row buffer. By contrast, read

operations in PCM are non-destructive. The read operation can obtain a better performance by

reducing the number of precharges. Therefore, in the case of a row buffer miss, the memory

controller can check whether the content of the current row buffer has been revised. If it is changed,

the data need to be written back to the original row; otherwise, the data in the current row buffer can

be discarded. This can reduce the energy and latency of the PCM. However, with PCM, the energy

consumption and latency of the precharge are still much higher than with DRAM. According to the

analysis, the write with the row buffer miss in PCM is worse than in DRAM.

2.2. Memory Access Pattern in IoT Applications

Different applications have different memory access patterns. For the purpose of developing a

more targeted scheme, the memory access patterns of benchmarks for IoT applications [20,21] are

studied. The memory access pattern provides a reference for further research and helps to design a

more workable strategy. As can be seen in Figure 3, we have evaluated the space locality of

Electronics 2020, 9, 1013 4 of 13

benchmarks by counting the proportion of different intervals in the address space among all

memory accesses [22]. The memory access patterns are obtained through the gem5 simulator [23].

Figure 3. Spatial locality of IoT applications.

The interval refers to the address space between two consecutive accesses. Figure 3 depicts that

more than 15% of accesses are in an adjacent physical address space (where the interval is 1).

Considering that the capacity of a row is larger than a cache line, the larger intervals also have some

locality. For example, when the interval between two accesses is less than 64 (the cache line size is 64

bytes, and the row size is 64 bytes × 64 = 4 kB), it is considered that there is a high probability that

these accesses are in the same row. In this case, the row buffer hit will happen in the memory with

an open page strategy. On the other hand, when the interval is more than 64, a row buffer miss is

possible. Figure 3 shows that the IoT applications have spatial locality. In particular, the spatial

localities of cjpeg and security are better than the other applications.

The concentration of memory access is an important factor in a memory access pattern. The

intensive address access is conducive to the design of an appropriate algorithm. As can be seen in

Figure 4, some representative memory access patterns are illustrated. The x-axis denotes the cycle

(time) of writing in memory, and the y-axis denotes the address value (from low to high). In Figure

4a,b, patricia and qsort represent two kinds of write access patterns in IoT applications. cjpeg and

H.264dec represent the write access patterns in applications of image processing in Figure 4c,d,

respectively.

Figure 4. Concentration of write operations.

Electronics 2020, 9, 1013 5 of 13

As shown in Figure 4a,b, addresses accessed by write operations are scattered, although the

patricia in Figure 4a is distributed with some regularity. What can be clearly seen in Figure 4b is the

irregular access in qsort. This means that applications such as qsort are difficult to solve with a

simple algorithm due to their unique memory access patterns. In some cases, as shown in Figure

4c,d, in applications of image processing, because the IoT devices are usually used to monitor the

environment, the pictures and videos have a good similarity within a certain period of time.

Consequently, most write operations concentrate on a few addresses. If this part of write operation is

concentrated on the PCM, it will adversely affect the energy consumption and the performance of

the memory system. Moreover, the intensive write operations are not conducive to extending the

life of PCM. Therefore, a strategy that can transfer these intensive write operations to DRAM should

be proposed.

2.3. Row Buffer Locality and Write Aware Scheme

According to the analysis in Section 2.1 and 2.2, a novel memory controller design is proposed

to improve hybrid memory performance and energy efficiency. The memory controller combines

memory access characteristics with row buffer locality as the basis for row migration. A write-aware

and row buffer miss (WARM) counter is implemented to evaluate the characteristics of each row

and decide whether the row should be migrated. A remap table records the addresses of rows that

have been migrated. Due to the remap table, when the rows are accessed again, the correct data can

be obtained. The WARM counter module and remap table module are integrated in the memory

controller. The architecture of the modified memory controller is shown in Figure 5. The initial ratio

of DRAM and PCM is set to 1:3.

Hybrid

Memory

Controller

Input

Queue

Output

Queue

Datapath

PHY

DRAM

PCM

PCM

Remap

Table

WARM

Counter PCM

Figure 5. Memory controller architecture.

Different access behaviors will have different effects on the system. For example, if a row is

written in the PCM, two cases are possible. The first case is that the next row accessed is the same

row. In this case, whether the operation is write or read, it will happen directly in the row buffer

under the open page strategy. The precharge will not occur during this period until the access to

another row arrives. The second case is that the next row accessed is different from the current one,

which indicates that a row buffer miss occurred. In this case, the current row will be precharged

immediately. Compared with the first case, the second is worse in PCM because of the higher

energy consumption and latency. However, in both cases, the write operation will eventually lead

to a precharge.

Previous work on hybrid memory systems observed that the latency of a row buffer hit is

similar in different memories, while the latency of a row buffer miss is generally much higher in

PCM [24]. When a row buffer miss occurs in PCM, if data in the row buffer are modified, this row

should be precharged. In this case, PCM consumes more energy because of the row buffer miss.

Based on the above observations and analysis, a row buffer locality and write aware scheme for

HSCM is proposed, integrating the row migration algorithm in the WARM counter in the hybrid

memory controller. The scheme uses a WARM counter to select the rows that need to be migrated.

The rows in the PCM where write operations frequently occur will cause more precharge

operations, resulting in a poor performance of energy consumption and latency. In addition, rows

Electronics 2020, 9, 1013 6 of 13

with poor row buffer locality will bring more data exchange in the row buffer, and the performance

of this exchange in PCM is also a major factor that reduces memory system performance. We need

to consider the impact of these two factors in the migration strategy. In other words, the rows with

more write requests and buffer misses should be migrated from PCM to DRAM. In addition, a

memory address mapping table is maintained to record the new addresses after the rows are

migrated. The migration between memory devices is managed by hardware, and is transparent to

the operating system.

Since the hardware and software resources in current IoT devices are limited, the algorithm

using a large amount of hardware or software resources is not suitable for our AIoT terminal

system. In [18], the rank-based page placement (RaPP) algorithm maintains multiple queues to find

out pages with intensive accesses. Moreover, it also needs to traverse the lifetime of each queue

frequently. Such a complex algorithm can accurately filter out hot pages in some server applications.

The additional energy consumption caused by the algorithm can be ignored for the total energy

consumption of the server. However, this consumption is unacceptable for IoT devices. Therefore,

we hope to use a simple structure to reduce the hardware overhead as much as possible.

As can be seen in Figure 6, if a row in PCM was written, it will be select into the WARM

counter. When a write operation accesses a row in the WARM counter again, the counter of the row

will increase by one until the counter meets a threshold. In order to further improve the

performance, the times of the row buffer miss are used as an additional parameter to help the

memory controller to complete the migration algorithm. When a row is frequently accessed by write

operations with row buffer misses, this row should be selected to be migrated. The migration

algorithm is designed to pick out such rows more accurately.

Figure 6. WARM counter.

3. Fast Mode for HSCM with In-Memory File System

PCM is expected to provide higher density than DRAM and can offer larger capacity. In the

traditional method, most data must eventually be stored in non-volatile storage, such as NAND

Flash, which is usually slow. The HSCM helps to extend space for memory, and it is large enough for

processing complicated applications, so the in-memory file system can be used to improve system

performance. Existing non-volatile memory file systems, such as PMFS [25], NOVA [26], and SCMFS

[27], are optimized for non-volatile memory. However, these non-volatile memory file systems use

clflush and mfence of x86 for ordering guarantees, which could not be implemented in an ARM

processor and other RISC processors for IoT devices. The persistence of the memory file system

takes up many resources, and these non-volatile memory file systems are not fit for hybrid memory

systems. For AIoT devices, improved performance is more valuable in some cases. Based on the

advantages of HSCM, we can obtain a higher performance at the system level.

A fast mode for hybrid storage class memory is proposed. In IoT devices, since the proposed

HSCM provides a large enough memory space, the conventional two-level memory system (DRAM

and NAND Flash) can be replaced by one-level storage class memory (HSCM). Using an in-memory

file system can reduce the number of data movements, and it is possible to implement calculations in

Electronics 2020, 9, 1013 7 of 13

memory [28]. tmpfs is an in-memory file system that is based on page cache. Fundamentally, tmpfs

is not a file system focused on non-volatile memory. It was originally designed for DRAM-based

main memory to provide rapid temporary storage space. There is no mechanism like journaling for

persistency in tmpfs [29], but it is a better solution for non-volatile memory with better IO

performance. Due to the large space and low power hybrid memory for tmpfs, this in-memory file

system works well. Therefore, tmpfs is an optimal solution for the proposed design. We

implemented the tmpfs-based, in-memory file system in the proposed HSCM architecture. By

changing the way the file system managed, a large amount of intermediate data in applications of

image processing can be put into HSCM. This method avoids the persistence overhead of the

persistent file system. At the same time, it reduces the number of data exchange times between

HSCM and external slow storage. The in-memory file system for HSCM is shown in Figure 7.

File Dentry Inode
Address

space

Page cache

Block

layer

Journal

layer

NAND

Flash

HSCM

...

Figure 7. File system for HSCM.

An AIoT device is usually used as an edge device in the system. This also means that there are

not much data that need to be persistent in the device. In particular, applications of image processing

in IoT devices usually need to process pictures or videos on-site, and only a small amount of the

resulting data will be uploaded to the cloud. In this case, a large amount of data are processed in a

short time, but most of the processed data will be discarded after processing. Therefore, only

retaining a small NAND Flash as a persistent storage device can meet the requirements of IoT

devices.

4. Evaluation

4.1. Evaluation of Hybrid Storage Class Memory

We evaluated the performance and energy efficiency of HSCM using the gem5 [23] and

NVMain [30] simulators. The HSCM consists of a 1-GB DRAM and 3-GB PCM in a unified address

space. The WARM counter and remap table were implemented in the memory controller. The

memory controller migrates rows with more write operations and buffer misses from PCM to

DRAM. Table 1 shows the relevant parameters.

Table 1. System configuration.

Parameter Value

CPU

Frequency

ARM (1 core)

1 GHz

L1 cache
32 kB instruction cache

32 kB data cache

L2 cache 512 kB

Memory
1-GB DRAM

3-GB PCM

The parameters of DRAM and PCM can be seen in Table 2 [24,31].

Electronics 2020, 9, 1013 8 of 13

Table 2. DRAM and PCM parameters.

 DRAM PCM

Latency

tCL = 15 ns

tRCD = 15 ns

tCWD = 13 ns

tWR = 15 ns

tCL = 15 ns

tRCD = 48 ns

tCWD = 13 ns

tWR = 300 ns

Energy

Array read = 1.17 pJ/bit

Array write = 0.39 pJ/bit

Row buffer read = 0.93 pJ/bit

Row buffer write = 1.02 pJ/bit

Array read = 2.47 pJ/bit

Array write = 16.82 pJ/bit

Row buffer read = 0.93 pJ/bit

Row buffer write = 1.02 pJ/bit

We ran benchmarks for 10 million instructions from Mibench [20] and MediaBench [21] using

the simulators gem5 and NVMain. According to Section 2, the migration threshold can be set to one.

When a row in PCM is accessed by a write operation or when a row buffer miss occurs, it will be

migrated to DRAM. In general, the threshold and the weighing factors of a write and row buffer

miss can be set to any value depending on the memory access patterns of the applications. These can

be adjusted according to different applications to improve the algorithm. As the performance of

PCM improves, this factor will also be adjusted.

From previous tests described in Section 2.2, we found that some IoT applications have a low

memory footprint. The large capacity of HSCM could not be fully utilized. The applications of

image processing have a higher pressure on memory and are widely deployed in AIoT terminals.

To focus on a performance evaluation of image processing, we selected some applications from

Mibench and MediaBench, including image processing (cjpeg and djpeg), video processing

(h264dec, h264enc, mpeg2dec, and mpeg2enc) and signal processing (FFT). The results of

normalized energy consumption are illustrated in Figure 8.

FFT MPEG2 JPEG H.264 Average
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

al
iz

ed
 E

n
er

g
y
(D

R
A

M
=

1
)

Benchmarks

 DRAM RaPP WARM

Figure 8. Normalized energy.

As can be seen in Figure 8, DRAM represents the case where a 4-GB DRAM-only main memory

is implemented in the system. RaPP represents a hybrid main memory consisting of a 1-GB DRAM

and 3-GB PCM with a hardware-based method [18]. WARM shows the energy of our proposed

method. To compare the energy consumption and performance between the advanced

hardware-based scheme, RaPP, and the proposed scheme, WARM, both were implemented in a

memory controller with the same hybrid main memory structure in the system. The results indicate

that the energy of the HSCM architecture is lower than that of DRAM. In the composition of energy

consumption, the dynamic energy (such as read and write energy) is only part of it. The refresh

mechanism of DRAM induces energy consumption even when no activity occurs in the memory,

and this refresh mechanism is not needed in PCM because it is non-volatile. Although the PCM’s

write energy is higher than DRAM, the static energy consumption is much lower than DRAM. By

Electronics 2020, 9, 1013 9 of 13

applying our WARM scheme, the rows with frequent write operations and row buffer misses are

migrated from PCM to DRAM. This effectively reduces the precharge operation in PCM, thereby

further reducing the energy consumption of the memory system. For energy-constrained IoT

devices, the reduction of energy consumption is of great significance. However, the HSCM also

causes a decrease in the latency of the memory system. The results of normalized performance are

shown in Figure 9.

FFT MPEG2 JPEG H.264 Average
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

(D
R

A
M

=
1

)

Benchmarks

 DRAM RaPP WARM

Figure 9. Normalized performance.

As can be seen in Figure 9, the decline in system performance is unavoidable because of the

high write latency in PCM. We can only reduce the performance loss as much as possible through

algorithms. Compared to a DRAM-only situation, the RaPP scheme consumes up to 43.8% less

energy (on average, 40.1%), with a performance overhead of less than 15.1%. Our proposed scheme

consumes up to 49.7% less energy (on average, 46.2%) with a performance overhead of less than

12.5%. This is because the WARM scheme considers the influence of the row buffer miss.

Furthermore, the WARM scheme removes the redundant queue upgrade process and selects the

rows that need to be migrated quickly. In order to prevent redundant migration, complex upgrade

and downgrade strategies are implemented in RaPP, which are not designed to solve the problems

for IoT applications. The memory access patterns in IoT applications are different. Thus, the

proposed scheme is more effective than RaPP.

To consider energy consumption and performance comprehensively, we use the energy delay

product parameter to evaluate the effect of different strategies. As can be seen in Figure 10, the

energy delay product of RaPP and WARM is reduced by 31.9% and 39.5%, compared with DRAM,

respectively. From the perspective of energy delay product, the WARM scheme has more

advantages. This shows that the HSCM system has practical value. It is worth noting that the IoT

devices are usually in a standby state. The above test is mainly for the complex tasks with a large

memory footprint. If it stays on standby for a long time, since the PCM does not need to be

refreshed, this will make the energy consumption advantage of the memory system more

pronounced. Moreover, for applications with less memory pressure, the advantages of the HSCM

with the proposed scheme are more significant.

Electronics 2020, 9, 1013 10 of 13

FFT MPEG2 JPEG H.264 Average
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n

er
g

y
 D

el
ay

 P
ro

d
u

ct
(D

R
A

M
=

1
)

Benchmarks

 DRAM RaPP WARM

Figure 10. Energy delay product.

As mentioned above, we set the initial ratio of DRAM and PCM as 1:3. This is a common

configuration for hybrid memory. We tested the impact of different ratios on energy consumption

and performance. When the proportion of DRAM increases, the energy consumption obviously

increases. At the same time, the performance will be improved because the latency of DRAM is

lower than that of PCM. In contrast, when the proportion of PCM increases, the energy

consumption decreases because less DRAM needs to be refreshed. However, the above effects were

relatively minor in our test. The initial ratio of DRAM and PCM is a more suitable ratio and is more

like the actual size of a commercial product.

Additionally, the WARM scheme has a lower hardware cost than RaPP. Compared with the

RAPP strategy, the proposed scheme has a simpler hardware structure. The total additional storage

implemented in the memory controller in our design is 20 kB, including 16 kB for the remap table

and 4 kB for the WARM counter, which is enough to implement the current algorithm. As shown in

Figure 4, a few rows need to be migrated in the applications of image processing. Consequently,

there is no need for the memory controller to maintain a large table to record the message for each

row. In addition, because of the limited storage resource in the memory controller, when the remap

table is full, it will be reset. This has a negligible impact on the applications of image processing.

4.2. Performance of the Fast Mode

Even though the WARM scheme reduces energy consumption, it leads to performance

degradation because of the high latency in PCM. In comparison with the high performance of

DRAM, the HSCM still has certain deficiencies. In order to make full use of the large capacity of

HSCM, some processes, which should be handled in storage such as NAND Flash, can be placed in

HSCM instead. This fast mode speeds up certain applications in AIoT devices.

By using the proposed fast mode with a tmpfs-based file system, the performance of the IoT

system can be improved. For instance, in video processing devices, the analog video signals

produced by the video camera are converted into digital signals. They are then converted into video

files by the H.264 encoder and stored in the NAND Flash because DRAM space is limited and much

more expensive. In the fast mode, the HSCM provides enough space for video processing.

Furthermore, the video files can be processed and stored in HSCM temporarily. Some valuable files

are delivered to other programs for further processing. Nowadays, IoT devices are able to perform

complex computations and a variety of tasks on-site. These processed video files or results can be

directly uploaded to the cloud from HSCM. Compared with the conventional DRAM and NAND

Flash architecture, the HSCM with fast mode saves energy in video processing and reduces the IO

times. In addition, the traditional mode and the fast mode can coexist. Different modes can adapt to

different requirements. The difference between the two modes is illustrated in Figure 11.

Electronics 2020, 9, 1013 11 of 13

Figure 11. Video applications in IoT devices.

To verify the performance of the tmpfs-based, in-memory file system, we used the ALTERA

HAN Pilot Platform with an ARM Cotex-A9 processor for the test. Since there is no commercial

PCM product, we still use the DRAM memory in our test. The 1-GB DRAM on the platform was

used to simulate hybrid storage class memory. In fact, the performance of the HSCM architecture is

close to DRAM as shown in Section 4.1. We used the results measured by DRAM, and corrected the

results according to the performance ratio of PCM and DRAM. To make the results more convincing,

we used poor PCM read and write performance parameters and the DRAM parameters at the

system level from reference [32]. Therefore, the IOPS value of the fast mode finally displayed is

worse than the actual measured value by using the DRAM. In the test, we used the FIO benchmark

to test the performance of sequential read, sequential write, random read, and random write,

respectively.

We evaluated the IOPS (input/output operations per second) in different IO size between the

conventional file system based on block device and the in-memory file system based on HSCM. In

particular, considering the loss of PCM’s read and write performance at the system level, we revised

the results based on the parameters provided in [32]. The following table lists the IOPS ratio of the

HSCM with tmpfs and the conventional architecture (DRAM and NAND Flash) with ext3. The

results of the ratio in different IO sizes are shown in Table 3.

Table 3. The IOPS of proposed file system.

IO Size 1 kB 2 kB 4 kB 8 kB 16 kB Average

Ratio 38.74 54.62 19.31 14.64 23.02 30.07

As can be seen in the Table 3, the HSCM architecture with the tmpfs-based, in-memory file

system is a proper method to improve system IO performance. The proposed method has more than

30 times the IOPS than the conventional architecture on average. We used the PCM delay

parameters in the system level to revise the ratio value of IOPS. Since the conventional file systems

are equipped with reliability techniques such as journaling, when the redundant block layer and

journal layer are removed, files can be maintained in the page cache in HSCM.

In conclusion, HSCM provides a larger memory space that can improve the processing ability

of IoT devices. By completing most of the image processing in HSCM, the swaps of data between the

main memory (HSCM) and the slow storage (NAND Flash) are effectively reduced. As the capacity

of HSCM becomes larger, the capacity of NAND Flash can become smaller. In fact, HSCM partially

replaces NAND Flash. In this paper, the fast mode cannot exist without the conventional file

system. The NAND Flash still exists and plays an important role. We will continue to study the

persistence of HSCM. The NAND Flash will be completely replaced by HSCM without significantly

affecting the performance of the system.

5. Conclusion

In this paper, we propose an HSCM architecture managed by the row buffer locality and the

write aware scheme. A fast mode with the tmpfs-based, in-memory file system was implemented to

improve the IO performance of the system. The proposed architecture can reduce the energy

Electronics 2020, 9, 1013 12 of 13

consumption of an IoT device by up to 49.7% and increase the IO performance by more than 30

times for certain applications on average. The proposed hybrid storage class memory system can

meet the requirements of low power and high performance for AIoT devices. A non-volatile

memory device gives rise to many challenges and more opportunities. With the development of

non-volatile storage technologies such as PCM, hybrid storage class memory will become a trend in

the future.

Author Contributions: Conceptualization, H.S. and L.C.; methodology, H.S.; validation, H.S., C.L. and M.N.;

formal analysis, H.S. and X.H.; investigation, H.S.; resources, L.C.; data curation, H.S.; writing—original draft

preparation, H.S.; writing—review and editing, X.H and L.C.; visualization, H.S.; supervision, L.C.; project

administration, L.C.; funding acquisition, L.C. All authors have read and agreed to the published version of the

manuscript.

Funding: This research was funded by the National Key R&D Program of China under Grant 2019YFB2102400.

Acknowledgments: The authors would like to thank anonymous reviewers for their special effort.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Samie, F.; Bauer, L.; Henkel, J. IoT technologies for embedded computing: a survey. In Proceedings of the

Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System

Synthesis - CODES ’16, Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10.

2. Hassan, N.; Gillani, S.; Ahmed, E.; Yaqoob, I.; Imran, M. The Role of Edge Computing in Internet of

Things. IEEE Commun. Mag. 2018, 56, 110–115.

3. Song, W.; Zhou, Y.; Zhao, M.; Ju, L.; Xue, C.J.; Jia, Z. EMC: Energy-Aware Morphable Cache Design for

Non-Volatile Processors. IEEE Trans. Comput. 2019, 68, 498–509.

4. Yun, J.-T.; Yoon, S.-K.; Kim, J.-G.; Burgstaller, B.; Kim, S.-D. Regression Prefetcher with Preprocessing for

DRAM-PCM Hybrid Main Memory. IEEE Comput. Arch. Lett. 2018, 17, 163–166.

5. Wong, H.-S.P.; Raoux, S.; Kim, S.; Liang, J.; Reifenberg, J.P.; Rajendran, B.; Asheghi, M.; Goodson, K.E.

Phase Change Memory. Proc. IEEE 2010, 98, 2201–2227.

6. Kim, N.S.; Song, C.; Cho, W.Y.; Huang, J.; Jung, M. LL-PCM: Low-Latency Phase Change Memory

Architecture. In Proceedings of the 56th Annual Design Automation Conference 2019, Las Vegas, NV,

USA, 2–6 June 2019; pp. 1–6.

7. Apalkov, D.; Ong, A.; Driskill-Smith, A.; Krounbi, M.; Khvalkovskiy, A.; Watts, S.; Nikitin, V.; Tang, X.;

Lottis, D.; Moon, K.; et al. Spin-transfer torque magnetic random access memory (STT-MRAM). J. Emerg.

Technol. Comput. Syst. 2013, 9, 1–35.

8. Akinaga, H.; Shima, H. Resistive Random Access Memory (ReRAM) Based on Metal Oxides. Proc. IEEE

2010, 98, 2237–2251.

9. Foong, A.; Hady, F. Storage As Fast As Rest of the System. In Proceedings of the 2016 IEEE 8th

International Memory Workshop (IMW), Paris, France, 15–18 May 2016; pp. 1–4.

10. Boukhobza, J.; Rubini, S.; Chen, R.; Shao, Z. Emerging NVM: A survey on architectural integration and

research challenges. ACM Trans. Des. Autom. Electron. Syst. 2017, 23, 1–32.

11. Asadinia, M.; Bobda, C. Enhancing Lifetime of PCM-Based Main Memory with Efficient Recovery of

Stuck-at Faults. In Proceedings of the 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

Hong Kong, China, 8–11 July 2018; pp. 357–362.

12. Zilberberg, O.; Weiss, S.; Toledo, S. Phase-change memory: An architectural perspective. ACM Comput.

Surv. 2013, 45, 1–33.

13. Chen, X.; Sha, E.H.-M.; Jiang, W.; Zhuge, Q.; Chen, J.; Qin, J.; Zeng, Y. The design of an efficient swap

mechanism for hybrid DRAM-NVM systems. In Proceedings of the 13th International Conference on

Embedded Software - EMSOFT ’16, Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10.

14. Salkhordeh, R.; Asadi, H. An Operating System Level Data Migration Scheme in Hybrid DRAM-NVM

Memory Architecture. In Proceedings of the 2016 Design, Automation & Test in Europe Conference &

Exhibition (DATE), Dresden, Germany, 14–18 March 2016; pp. 936–941.

15. Liu, D.; Zhong, K., Zhu, X.; Li, Y.; Long, L.; Shao, Z. Non-Volatile Memory Based Page Swapping for

Building High-Performance Mobile Devices. IEEE Trans. Comput. 2017, 66, 1918–1931.

Electronics 2020, 9, 1013 13 of 13

16. Bock, S.; Childers, B.R.; Melhem, R.; Mosse, D. Concurrent Migration of Multiple Pages in

software-managed hybrid main memory. In Proceedings of the 2016 IEEE 34th International Conference

on Computer Design (ICCD), Scottsdale, AZ, USA, 2–5 October 2016; pp. 420–423.

17. Jia, G.; Han, G.; Xie, H.; Du, J. Hybrid-LRU Caching for Optimizing Data Storage and Retrieval in Edge

Computing-Based Wearable Sensors. IEEE Internet Things J. 2019, 6, 1342–1351.

18. Ramos, L.E.; Gorbatov, E.; Bianchini, R. Page placement in hybrid memory systems. In Proceedings of the

ICS ’11: International Conference on Supercomputing, Tucson, AZ, USA, 1–4 June 2011; pp. 85–95.

19. Alawneh, T.A. A Dynamic Row-Buffer Management Policy for Multimedia Applications. 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Pavia,

Italy, 13–15 February 2019; pp. 148–157.

20. Guthaus, M.R.; Ringenberg, J.S.; Ernst, D.; Austin, T.M.; Mudge, T.; Brown, R.B. MiBench: A free,

commercially representative embedded benchmark suite. In Proceedings of the Fourth Annual IEEE

International Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538), Austin, TX, USA, 2–2

December 2001; pp. 3–14.

21. Fritts, J.E.; Steiling, F.W.; Tucek, J.A.; Wolf, W. MediaBench II Video: Expediting the next generation of

video systems research. Microprocess. Microsyst. 2009, 33, 301–318.

22. Wang Q, Chen L, Hao X. Hybrid memory system using memory access-aware remapping mechanism. J.

Chin. Comput.Syst. 2014, 6, 1201–1206.

23. Binkert, N.; Sardashti, S.; Sen, R.; Sewell, K.; Shoaib, M.; Vaish, N.; Hill, M.D.; Wood, D.A.; Beckmann, B.;

Black, G.; et al. The gem5 simulator. ACM SIGARCH Comput. Archit. News. 2011, 39, 1–7.

24. Li, Y.; Ghose, S.; Choi, J.; Sun, J.; Wang, H.; Mutlu, O. Utility-Based Hybrid Memory Management. In

Proceedings of the 2017 IEEE International Conference on Cluster Computing (CLUSTER), Honolulu, HI,

USA, 5–8 September 2017; pp. 152–165.

25. Dulloor, S.R.; Kumar, S.; Keshavamurthy, A.; Lantz, P.; Reddy, D.; Sankaran, R.; Jackson, J. System

software for persistent memory. In Proceedings of the Ninth European Conference on Computer Systems

- EuroSys ’14, Amsterdam, Netherlands, 14–16 April 2014; pp. 1–15.

26. Xu, J.; Swanson, S. NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main

Memories. In Proceedings of the FAST’16: Proceedings of the 14th Usenix Conference on File and Storage

Technologies, Santa Clara, CA, USA, 22–25 February 2016; pp. 323–338.

27. Wu, X.; Qiu, S.; Narasimha Reddy, A.L. SCMFS: A File System for Storage Class Memory and its

Extensions. Trans. Storage. 2013, 9, 1–23.

28. Siegl, P.; Buchty, R.; Berekovic, M. Data-Centric Computing Frontiers: A Survey On

Processing-In-Memory. In Proceedings of the Second International Symposium on Memory Systems -

MEMSYS ’16, Alexandria, VA, USA, 3–6 October 2016; pp. 295–308.

29. Kim, H.; Ahn, J.; Ryu, S. In-Memory File System for Non-Volatile Memory. In Proceedings of the

RACS ’13: Proceedings of the 2013 Research in Adaptive and Convergent Systems, Montreal, Quebec,

Canada, 1–4 October 2013; pp. 479–484.

30. Poremba, M.; Zhang, T.; Xie, Y. NVMain 2.0: A User-Friendly Memory Simulator to Model (Non-)Volatile

Memory Systems. IEEE Comput. Arch. Lett. 2015, 14, 140–143.

31. Liu, H.; Chen, Y.; Liao, X.; Jin, H.; He, B.; Zheng, L.; Guo, R. Hardware/software cooperative caching for

hybrid DRAM/NVM memory architectures. In Proceedings of the International Conference on

Supercomputing - ICS ’17, Chicago, IL, USA, 14–16 June 2017; pp. 1–10.

32. Salkhordeh, R.; Mutlu, O.; Asadi, H. An Analytical Model for Performance and Lifetime Estimation of

Hybrid DRAM-NVM Main Memories. IEEE Trans. Comput. 2019, 68, 1114–1130.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

