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Abstract: Intelligent anomaly detection is a promising area to discover anomalies as manual
processing by human are generally labor-intensive and time-consuming. An effective approach
to deal with is essentially to build a classifier system that can reflect the condition of the infrastructure
when it tends to behave abnormally, and therefore the appropriate course of action can be taken
immediately. In order to achieve aforementioned objective, we proposed to build a dual-staged
cascade one class SVM (OCSVM) for water level monitor systems. In the first stage of the cascade
model, our OCSVM learns directly on single observation at a time, 1-g to detect point anomaly.
Whereas in the second stage, OCSVM learns from the constructed n-gram feature vectors based on the
historical data to discover any collective anomaly where the pattern from the n-gram failed to conform
to the expected normal pattern. The experimental result showed that our proposed dual-staged
OCSVM is able to detect anomaly and collective anomalies effectively. Our model performance has
attained remarkable result of about 99% in terms of F1-score. We also compared the performance of
our OCSVM algorithm with other algorithms.

Keywords: one class support vector machine; point anomaly; collective anomaly; cascade classifier;
water level anomaly detection

1. Introduction

Anomaly detection has been playing a very crucial part in large industries like gas, oil, power
plant, water, and telecommunication system. Effective anomaly detectors are capable of picking
up subtle unusual behaviours or abnormal data patterns which are not supposed to occur under
normal operating conditions [1]. These anomalies can be caused by malicious attacks in the physical
environment, unintentional human factors, bugs in the system’s components, etc. Therefore, we need
to facilitate the process of development, maintenance and overhaul when certain events are seen
abnormal. These research areas have been widely studied and discussed in [2–5].

Any anomaly pattern detected in the water level system such as substantial surge, abrupt decline,
stagnated level or any patterns deviated significantly from the normal behaviour have to be captured
and flagged out instantly in the anomaly detection system. However, manual examinations by human
are generally labor-intensive and time-consuming, thus smart effective diagnosis on these anomalies is
extremely imperative [6]. Coupled with anomaly detection system, a proactive course of action can be
taken to remedy the anomalies in the early stage. Not only does it enhance the reliability of the system
under monitoring, but it also reduces the costs for the overhaul of the infrastructure.
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Although many classification problems have been dealing with two or more classes,
some real-world issues like anomaly detection are best devised as one-class classification approach.
These one-class classifiers are trained mostly with majority class and never encounter those from
the minority class. Hence, it has to estimate a decision boundary which can separate the minority
class from the majority class. This paper presents an unsupervised machine learning approach called
one-class support vector machine in a dual-staged cascade to discover the anomalies in the water level
system.

2. Materials and Methods

An anomaly detector provides an efficient way to detect anomalous behaviors based on the
analysis of traffic patterns of the water level traffic data. It can be used to evaluate whether the
scenarios or situations are under non-optimal operating conditions. Anomalous behaviors essentially
indicate that the current water level deviates from the norm. The ability to discover such behaviors
in the infrastructure application is non-trivial as the impact of an abnormal water supply to the
infrastructure can be potentially severe. The deployment of an anomaly detector on water level
systems is paramount because it can fix the vulnerability of being attacked or failing.

2.1. Data Description

We used water level traffic datasets from an IT-based infrastructure company, Infranics, located
in the capital of South Korea. Infranics gathers a stream of data which are generated from several
sensor devices and provides solutions like intelligent safety diagnosis and disaster prediction services
for safety management on underground communication systems. In this paper, the data we were
dealing with were obtained from water tank level sensors. The sensors were wired on the surrounding
of the infrastructure in order to attain a real-time reading of the water level. Our acquired data
were a complete one-day operative data which were captured at a 1 Hz sampling rate. It had both
the minimum and maximum threshold for the inflow and outflow of the waterworks. Other than
identifying the anomalous behavior of the water going beyond those thresholds, we also needed to
identify the peculiar behaviors that did not conform to the expected patterns.

2.2. Artificial Data Generation

Since we had a data stream containing only the normal class (majority class), we deliberately
injected some amount of abnormal class (minority class). In order to learn the latent patterns of the
water level, we adopted autoencoder [7]. It essentially tries to learn the identity function and makes
predictions of future patterns. The predicted patterns will be subsequently transformed with the
scaling factor and treated as abnormal class.

Autoencoder is made up of two neural networks, namely encoder and decoder. In the encoder
network, it learns from the input data, x, and constructs an encoded representation via a function.
Whereas the decoder will reconstruct the data, x

′
, as close as to the input data, x, given the encoded

representation. Figure 1 illustrates how an autoencoder works.
More specifically, the input normal data is being normalized and reshaped into a 3-dimensional

array (numSample, timestep, numFeature) before feeding into the encoder layer of an autoencoder.
We explain the terminology in the aforementioned array: numSample denotes the total number of
training data observations in one time step, timestep denotes the number of observations at each time
step, and lastly numFeature indicates the number of features in the dataset, where the feature is the
water level itself. An encoded feature will be extracted and compressed by going through the LSTM
hidden layer of our autoencoder. Subsequently, the decoder reconstructs the water level pattern to be
mostly normal based on the reconstruction probability. We minimize the reconstruction error with the
objective function as shown in Equation (1).
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Reconstruction Error =

√√√√ N

∑
t=1

(xt − x′t)2 (1)

We process the output of the decoder layer with a scaling factor, β to generate the anomalous data.
The mixture of both normal and anomalies will be fed as the input data for the dual-staged cascade
one class support vector machine (OCSVM) system. We designed our system flow in two stages. The
former stage detects the point anomalies via 1-g as the feature vector in the data instances. It analyses
the water level system whether any specific components are performing within the optimal operating
range. Subsequently, in the latter stage, the algorithm constructs a sliding window from the historical
data and learns n-gram feature vectors to detect collective anomalies. This is to identify an unexpected
or abnormal manner based on the historical data.

Figure 1. Illustration of the LSTM autoencoder.

2.3. One-Class Classifier

Support vector machine, also known as SVM [8,9] was a learning technique based on the principle
of structural risk minimization from statistical learning theory. The idea was first introduced to
solve classification problems on two classes. It was also devised and adapted to handle one-class
classification problems by [10–12].

2.3.1. Support Vector Data Description

Support vector data description (SVDD) [12] is an algorithm which creates a hypersphere in the
high-dimensional space. Given a set of data points, the hypersphere defined by the algorithm can
encompass the data. Therefore, it is able to separate the data points from the outliers and discover the
anomalies. SVDD has been widely practiced in handwritten digit recognition, face recognition and
anomaly detection. Its mathematical function is expressed as follows:

minimize
R, a, ξ

R2 + C
l

∑
i=1

ξi

subject to
∥∥φ(xi)− a

∥∥2 ≤ R2 + ξi, i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l

where R and a denote radius and centre of the hypersphere respectively, C is a hyperparameter that
controls the number of data points falls outside the hypersphere, whereas φ(·) denotes a mapping
function to high dimensional space, and ξ represents a slack variable.
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2.3.2. One-Class Support Vector Machine

In our work, we employ one-class support vector machine and build it in two stages. We are
going to use one-class information (normal class) to learn a classifier that is potential to identify
instances belonging to its own class and rejecting unseen classes as outliers. The OCSVM algorithm
was implemented using scikit-learn library [13], which was based on LIBSVM [10]. Assume Dtraining =

{xt, xt+1, xt+2, ..., xt+n}, where xt+n ∈ R, and consider every instances from the training set are
distributed under a certain probability distribution, P. We want to find if the instances from testing set
Dtesting are distributed according to the distribution of training set, P. A region of feature space will be
determined in such a way that the probability of the test instance being drawn from P falls outside of
that region is confined by a specific parameter, ν ∈ (0, 1). Thus, the decision function is estimated to
infer the instances within the region to be positive and negative elsewhere.

The input data are transformed into a high-dimensional space from the original space via
a non-linear kernel function. Therefore in this case, one-class SVM algorithm creates a decision
boundary in the high-dimensional space and linearly separates the data points with the outliers.
Its quadratic equation [14] is expressed as follows:

minimize
ω, ξ, ρ

1
2
‖ω‖2 +

1
ν`∑

i
ξi − ρ

subject to ω · φ(xi) ≥ ρ− ξi, ξi ≥ 0

where ν is a parameter controls the upper bound for the outliers, ρ is an offset that characterizes a
hyperplane ω, φ(·) represents a mapping function and ξi denotes a slack variable.

We apply radial-basis function (RBF) kernel for our algorithm, as shown in Equation (2). It is
primarily because RBF can create a non-linear curve that encompasses the data well. Thus it is able to
identify any outliers in the original space. The data points belonging to normal class will lie within the
boundary, whereas the abnormal class will be on the other side. We performed OCSVM on the data
with different parameters, ν, to evaluate the accuracy performance of our model. The mathematical
expression for RBF is given as:

K(x, xt) =

N

∑
t=0

exp

(
−||x− xt||2

2σ2

)
(2)

where ||x− xt||2 is L2 norm of two feature vectors (i.e., x and xt) and σ is a parameter that controls
deviation of the kernel function.

As the input data of our water level system is time series data (which incorporates temporal
dependence among the elements), we employ sliding window approach [15] to transform data into
n-gram feature vectors. Let xt as t-th input sequence of the data points and n as the size of the sliding
window, then we obtain a set of window, Wi = (xt, xt+1, xt+2, ..., xt+n−1). Take 3-g, for example—if the
water level dataset has the sequence of {2, 3, 4, 6, 3, 1}, then the set created from this sequence would
be {(2, 3, 4), (3, 4, 6), (4, 6, 3), (6, 3, 1)}. These n-grams form a set of feature vectors for the water level
dataset. The sliding window of fixed size n will be progressively slid across the entire input sequence
from the beginning till the end to construct a bag of n-gram feature vectors [16,17], as illustrated in
Figure 2. One-class SVM classifier will label the window as a whole to be abnormal if there is at least
one input instance lies as an outlier, otherwise it will be labeled as normal. Given the data points,
the aim of the machine learning algorithm is to generate a hypothesis that estimates the inference,
h(Wi) −→ ci ∈ {−1, 1}, where ci denotes the corresponding class label with +1 as “normal” and −1 as
“abnormal”.

Together, we have a dual-staged cascade one-class support vector machine (OCSVM) by making
use of both 1-g and n-gram feature vectors. The overall architecture of our proposed method is
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illustrated in Figure 3. The former identifies a particular data point that deviates significantly from
the normal data pattern, whereas the latter implies a collection of data in a consecutive time intervals
which behaves anomalously with respect to the entirety of the data stream. The goal is to detect both
point anomalies, such as an abrupt change between ti and ti+1, and collective anomalies like a peculiar
pattern within a specified window.

Figure 2. Illustration of n-gram feature vectors.

Figure 3. Architecture of dual-staged cascade one class support vector machine (OCSVM).

During the first stage of the cascade model, the learning algorithm fits OCSVM model from point
observation and the generated OCSVM detects if particular data instance is outlier—this stage is
called point anomaly detection stage. For the second stage, the observational data is constructed into
n-gram feature vectors and fed into the SVM learning algorithm to learn OCSVM model for them.
The generated classifier predicts whether a given n-gram feature is an outlier or not. The purpose of
building this second stage is to manage the continuous pattern of water level, so that any peculiar
behavior failed to discover in point anomaly detection stage can be detected—this stage is called the
collective anomaly detection stage. A more in-depth explanation will be described in Section 3.

2.4. Evaluation Metric

In order to monitor the performance of our proposed system, we generate a confusion matrix
from our experimental results. For our anomaly detection problem, we form a 2 × 2 confusion matrix
as shown in Table 1. It computes the number of true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) results.
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Table 1. The illustration of the confusion matrix for binary classification problem. a, b, c, and d
denotes the number of true positive (TP), false negative (FN), false positive (FP) and true negative (TN),
respectively. TP: actual class, anomaly (True = Yes) and prediction class, anomaly (True = Yes); FN:
actual class, anomaly (True = Yes) and prediction class, normal (False = Yes); FP: actual class, normal
(False = Yes) and prediction class, anomaly (True = Yes); TN: actual class, normal (False = Yes) and
prediction class, normal (False = Yes).

Prediction

Abnormal Normal

Actual
Abnormal a b

Normal c d

From the confusion matrix, we can compute the score of precision and recall, as shown in
Equations (3) and (4) respectively.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Moreover, F1-score in Equation (5) is described as a harmonic mean of precision and recall [18].
Its mathematical formula is derived as below:

F1 =
2× Precision× Recall

Precision + Recall
(5)

3. Experiments

First of all, we partitioned our entire dataset (as shown in Figure 4) to form a training set and
a testing set with the ratio of 70:30. In other words, the classifier is trained with novelty data (70% of
the dataset) and the rest, 30% of the dataset will be held out from the entire dataset for testing our
trained one-class SVM model. The training set contains only normal data, whereas the testing set is
comprised of mixture of normal and abnormal data.

Figure 4. Illustrated graph of the water level dataset after mixing with artificial anomalous data.
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One-class SVM infers each of observational data as +1 or −1 to tell whether does it belong to
inlier or outlier respectively. For the evaluation of our model performance, we compare the predicted
label against the defined ground truth label. To demonstrate the practical effectiveness of the anomaly
detection system, we deployed our dual-staged cascade one-class SVM model to the web framework
via Flask REST API.

In our dual-staged cascade system, we designed our classifier in an optimized manner. First,
our anomaly detection model treats every single input data as an individual feature vector and
evaluates them in discrete point form. Next, the second stage reconstructs the dataset into n-gram
feature vector, where n = {60, 120, 180, 300}, which spans over 1 min, 2 min, 3 min and 5 min,
respectively, in our designed system. The choice of having this window size is to enable the system
to learn the pattern and discover the anomalies in a short turnaround time. Note that overly large
window size tends to increase the chances of being overfitted. A group of n-grams feature vectors is
created through fixed-size sliding window from the input data and fed into the model for inference.
The model receives the data in JSON format and makes inference on them to decide whether it is
normal or abnormal. We proposed this dual-staged anomaly detection system to discover these point
anomalies and collective anomalies [19] in the water level monitoring system.

We employed the RBF kernel (based on Equation (2)) in our dual-staged one-class SVM classifier
and experimented with two different parameters, which are n, and ν. The former denotes the size of
the sliding window whereas the latter, ν parameter, is known as an upper bound for the outliers—it
controls the compromise between the mislabeled normal class and the vector-norm of the learned
weight. We ran a grid search method on these parameters to choose the best combination with respect
to F1-score.

4. Results

4.1. Data Preparation

Data Preparation and Preprocessing

Before feeding the data to train the classifier model, it is vital to preprocess the raw data.
The performance of the classifier model boils down to the data preprocessing. Since not all of the data
collected are useful, we need to perform important steps such as data cleaning, data transformation
and noise identification beforehand. After that, we extract the appropriate features from the raw
data which gives significant impact on the performance of machine learning algorithm. It is because
constructing an appropriate number of gram on the dataset will impact the experimental results as it is
time-dependent.

4.2. Experiment Result

We have used test data containing 34,400 observations to evaluate the performance of the model.
We have explored different parameters with the combination of n = {60, 120, 180, 300} and ν =

{0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5} to attain the optimal performance result. Table 2 summarizes the
result for the one-class SVM classifier on the water level anomaly detection with respect to precision,
recall and F1-score, according to Equations (3)–(5). The precision, recall and F1-score on the 1-g and
n-gram one-class support vector machine have been computed to assess their model performance.

5. Discussion

Table 2 presents the results of the dual-staged one-class SVM by varying different parameters,
n and ν. We focus on improving the F1-score by performing a series of experiments on these parameters.
High value of F1-score describes the model has the best possible performance given with the optimal
parameter values.
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As we can see from Table 2, the model achieved the highest F1-score of 99.48% with configuration
of ν = 0.25 on 1-g. On the subsequent stage for 60-g in Table 2, it attained a F1-score up to 98.55% at
ν = 0.25. We can conjecture that it can detect the anomalous behavior effectively in the 1-min trend
window, although there might trigger minor amount of false alarms sporadically. Generally, it still
showed relatively high precision and recall score. Our OCSVM model of 300-g configuration achieved
even higher F1-score than the models with 60-g, 120-g and 180-g. We can clearly observe that it has
99.06% at ν = 0.3, which was quite satisfactory. It reduced the rates of false positives and false negatives.
The comparison of dual-staged OCSVM on 60-g, 120-g, 180-g and 300-g is illustrated in Figure 5a–d.
As shown in Figure 5, 600-g OCSVM was able to detect more anomalies and trigger less false alarm
compared to those of 60, 120, and 180-g collectively.

Table 2. Precision, recall, and F1-score of different gram and ν parameters on OCSVM. Best performance
of the F1-score is highlighted in bold.

gram ν Precision Recall F1

1

0.1 0.9842 0.5510 0.7065
0.2 0.9844 0.9771 0.9807

0.25 0.9897 1.00 0.9948
0.3 0.9394 1.00 0.9687

0.35 0.9292 1.00 0.9633
0.4 0.9255 1.00 0.9613
0.5 0.9202 1.00 0.9585

60

0.1 0.9868 0.5354 0.6942
0.2 0.9882 0.9591 0.9734

0.25 0.9753 0.9959 0.9855
0.3 0.9560 0.9994 0.9772

0.35 0.9460 1.00 0.9723
0.4 0.9433 1.00 0.9708
0.5 0.9389 1.00 0.9685

120

0.1 0.9887 0.5348 0.6941
0.2 0.9897 0.9537 0.9713

0.25 0.9814 0.9960 0.9886
0.3 0.9989 0.9619 0.9800

0.35 0.9530 1.00 0.9759
0.4 0.9498 1.00 0.9743
0.5 0.9449 1.00 0.9717

180

0.1 0.9842 0.5510 0.7065
0.2 0.9821 0.9565 0.9691

0.25 0.9867 0.9771 0.9818
0.3 0.9811 0.9884 0.9847

0.35 0.9603 1.00 0.9797
0.4 0.9556 1.00 0.9772
0.5 0.9532 1.00 0.9760

300

0.1 0.9915 0.5263 0.6876
0.2 0.9918 0.9340 0.9620

0.25 0.9908 0.9826 0.9867
0.3 0.9839 0.9974 0.9906

0.35 0.9766 0.9996 0.9879
0.4 0.9742 1.00 0.9869
0.5 0.9699 1.00 0.9848

Besides, we experimented additional techniques like sampling technique to study the inference on
the population. Two different sampling methods we used are average sampling and random sampling.
Each instance was sampled averagely or randomly from every 60-observations interval window to
form a set of observational data. According to the Figure 6a,b, the performance results were not that
satisfactory as the population had been significantly down-sampled. It could only detect a handful of
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anomalous data due to the sparse filtering. Another factor that led to poor performance was attributed
to the small training dataset.

(a) OCSVM on 60-g with ν = 0.25 (b) OCSVM on 120-g with ν = 0.25

(c) OCSVM on 180-g with ν = 0.30 (d) OCSVM on 300-g with ν = 0.30
Figure 5. Comparison of dual-staged one-class SVM on the anomaly detection.

(a) Average sampling on 60-observation window
for 60-g OCSVM

(b) Random sampling on 60-observation window for 60-g
OCSVM

Figure 6. Comparison of sampling techniques (average and random) of 60-observations window on
the population.

We also performed a series of experiments with SVDD algorithm [12] to compare the performance
with dual-stage OCSVM system. For fair comparison with our OCSVM which is based on LIBSVM,
we adopted SVDD extension of LIBSVM. Table 3 illustrates the precision, recall and F1-score evaluated
with various values of C parameter. On the first stage for 1-g, the model showed the F1-score of 94.04%
when the parameter C = 0.0001, whereas on the subsequent stage for 60-g, 120-g, 180-g and 300-g,
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the F1-score gave the highest F1-scores of 92.75%, 93.56%, 92.82% and 92.88% respectively. Figure 7
illustrates the comparison of SVDD of different n-gram = {60, 120, 180, 300}. It can be clearly seen that
their results were pretty much comparable among each other and there exists a certain amount of false
alarms. In overall, we conjectured OCSVM algorithm outperforms SVDD in our water level anomaly
detection task.

Table 3. Precision, Recall, F1-score of different grams on SVDD algorithm. Best performance of the
F1-score is highlighted in bold.

n-gram C Precision Recall F1

1

0.00005 0.7878 1.00 0.8813
0.00002 0.7599 1.00 0.8636
0.0001 0.9094 0.9735 0.9404
0.001 0.9356 0.7658 0.8423
0.01 0.9495 0.7234 0.8212
0.1 0.9633 0.6920 0.8054
0.5 0.9724 0.6887 0.8063
0.9 0.9724 0.6887 0.8063

60

0.00005 0.8079 1.00 0.8938
0.00002 0.7899 1.00 0.8826
0.0001 0.9154 0.9398 0.9275
0.001 0.9436 0.7432 0.8315
0.01 0.9630 0.7198 0.8239
0.1 0.9647 0.7124 0.8196
0.5 0.9648 0.7114 0.8190
0.9 0.9646 0.7117 0.8191

120

0.00005 0.8290 1.00 0.9065
0.00002 0.8006 1.00 0.8893
0.0001 0.9193 0.9524 0.9356
0.001 0.9503 0.7370 0.8303
0.01 0.9663 0.7140 0.8213
0.1 0.9674 0.7079 0.8176
0.5 0.9673 0.7079 0.8175
0.9 0.9674 0.708 0.8179

180

0.00005 0.8379 1.00 0.9118
0.00002 0.8091 1.00 0.8945
0.0001 0.9279 0.9283 0.9282
0.001 0.9558 0.7315 0.8287
0.01 0.9687 0.7074 0.8176
0.1 0.9694 0.7039 0.8156
0.5 0.9694 0.7039 0.8156
0.9 0.9695 0.7047 0.8162

300

0.00005 0.8560 1.00 0.9224
0.00002 0.8219 1.00 0.9022
0.0001 0.9358 0.9220 0.9288
0.001 0.9625 0.7221 0.8251
0.01 0.9733 0.6951 0.8109
0.1 0.9736 0.6924 0.8093
0.5 0.9736 0.6921 0.8091
0.9 0.9739 0.6933 0.8099

It should also be noted that we compared our method with two other different algorithms—Elliptic
Envelope and Isolation Forest. What the Elliptic Envelope algorithm does is that it assumes the data
is drawn from a Gaussian distribution and the shape is defined based on the data distribution.
Any instances which lie outside the variance will be treated as outliers. Isolation Forest, on the other
hand, performs random partition on the data instances and computes the split value between the
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maximal and minimal value of the selected observation. Instances will be classified as anomalies if
and only if the path length of the partitioned observation is short.

(a) SVDD on 60-g with C = 0.0001 (b) SVDD on 120-g with C = 0.0001

(c) SVDD on 180-g with C = 0.0001 (d) SVDD on 300-g with C = 0.0001
Figure 7. Comparison of support vector data description (SVDD) anomaly detection on different gram
configurations

From the results in Table 4, it was worth noting that one-class SVM has achieved outstanding
result over those of using Elliptic Envelope and Isolation Forest. We made the comparisons in the
aspect of precision and recall, finding that one-class SVM obtained the best performance result among
them. It has emitted lesser false positives and false negatives than the other two algorithms. Elliptic
Envelope algorithm has appeared to be have high rate of false negatives and led to unsatisfactory
performance. The performance on Isolation Forest algorithm is promising when it is evaluated with
1-g configuration. However, as the n-gram grows larger, we noticed that precision and recall have
started to degrade, with more and more data instances being misclassified. Our dual-staged cascade
system built with OCSVM algorithm still generally outperforms these two algorithms.

Table 4. Comparison of Elliptic Envelope, Isolation Forest and one-class SVM algorithms.
Best performance is highlighted in bold.

n-gram Algorithm Precision Recall F1

1 Elliptic Envelope 0.9571 0.0639 0.1187
Isolation Forest 0.9935 0.9425 0.9624
One-class SVM 0.9897 1.00 0.9948

60 Elliptic Envelope 0.9686 0.0672 0.1246
Isolation Forest 0.9980 0.9381 0.9621
One-class SVM 0.9753 0.9959 0.9855

300 Elliptic Envelope 0.9782 0.0732 0.1349
Isolation Forest 0.9695 0.8123 0.8840
One-class SVM 0.9815 0.9960 0.9887
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6. Conclusions

In this work, we have presented our method—dual-staged cascade OCSVM for anomaly detection
on water level system. It comprises of two stages, the first one detects any point anomalies by running
1-g on the observational data, and the subsequent stage runs n-gram to identify collective anomalies in
the broader perspective. We tuned the parameters of the model and the window size configuration to
seek for the best performance out of the model. Our dual-staged OCSVM technique achieved excellent
result of 99.06% F1-score with the parameter ν = 0.3. Other than that, additional comparison with
other algorithms like SVDD, Isolation Forest and Elliptic Envelope were evaluated. Our implemented
technique has outperformed those state-of-the-art algorithms in this application. It was thus found
that our proposed dual-staged OCSVM technique can detect different kinds of anomalies in different
scenarios effectively. The use of dual-staged technique is able to isolate both point anomalies and
collective anomalies, and therefore gives higher yield.

In our future work, we plan to explore and extend our study in several directions. First of all,
we are actively doing research to further enhance and increase our model performance. In addition,
we need to investigate on more corner cases as the dataset we used contains deliberately injected
anomalies. Different anomalies should have their distinct characteristic for the classifier model
to detect.
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