
electronics

Article

Energy Efficient Computation Offloading Mechanism
in Multi-Server Mobile Edge Computing—An Integer
Linear Optimization Approach

Prince Waqas Khan 1 , Khizar Abbas 1 , Hadil Shaiba 2 , Ammar Muthanna 3,4,∗ ,
Abdelrahman Abuarqoub 5 and Mashael Khayyat 6

1 Department of computer engineering, Jeju National University, Jeju-si 63243, Korea;
princewaqas12@hotmail.com (P.W.K.); engr.khizarabbas14@gmail.com (K.A.)

2 Department of Computer Science, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, Riyadh 84428, Saudi Arabia; HAShaiba@pnu.edu.sa

3 Telecommunication Networks and Data Transmission, St. Petersburg State University of
Telecommunications, 193232 St. Petersburg, Russia

4 Department of Applied Probability and Informatics, Peoples’ Friendship University of Russia
(RUDN University), 6 Miklukho-Maklaya St, 117198 Moscow, Russia

5 Faculty of Information Technology, Middle East University, 383 Amman 11831, Jordan
aabuarqoub@meu.edu.jo

6 Department of Information Systems and Technology, College of Computer Science and Engineering,
University of Jeddah, Jeddah 23218, Saudi Arabia; Mkhayyat@uj.edu.sa

* Correspondence: ammarexpress@gmail.com

Received: 22 April 2020; Accepted: 15 June 2020; Published: 17 June 2020
����������
�������

Abstract: Conserving energy resources and enhancing computation capability have been the key
design challenges in the era of the Internet of Things (IoT). The recent development of energy
harvesting (EH) and Mobile Edge Computing (MEC) technologies have been recognized as promising
techniques for tackling such challenges. Computation offloading enables executing the heavy
computation workloads at the powerful MEC servers. Hence, the quality of computation experience,
for example, the execution latency, could be significantly improved. In a situation where mobile
devices can move arbitrarily and having multi servers for offloading, computation offloading
strategies are facing new challenges. The competition of resource allocation and server selection
becomes high in such environments. In this paper, an optimized computation offloading algorithm
that is based on integer linear optimization is proposed. The algorithm allows choosing the execution
mode among local execution, offloading execution, and task dropping for each mobile device.
The proposed system is based on an improved computing strategy that is also energy efficient.
Mobile devices, including energy harvesting (EH) devices, are considered for simulation purposes.
Simulation results illustrate that the energy level starts from 0.979% and gradually decreases to
0.87%. Therefore, the proposed algorithm can trade-off the energy of computational offloading tasks
efficiently.

Keywords: Mobile Edge Computing; energy harvesting devices; offloading; integer linear programming;
Internet of things

1. Introduction

The Internet of things (IoT) is changing our lives drastically. Connectivity among people, things,
and businesses are increasing exponentially. It enables flexible connectivity and exchange of data
among billions of devices and processes. With the rapid increase in IoT devices, energy need is also

Electronics 2020, 9, 1010; doi:10.3390/electronics9061010 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-2561-4389
https://orcid.org/0000-0002-2432-1357
https://orcid.org/0000-0003-1652-6579
https://orcid.org/0000-0003-0213-8145
https://orcid.org/0000-0001-6576-8932
http://dx.doi.org/10.3390/electronics9061010
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/6/1010?type=check_update&version=2

Electronics 2020, 9, 1010 2 of 20

increasing [1]. To cope with this issue, energy harvesting (EH) devices have been introduced in the
market. EH capture ambient recyclable energy from the environment, such as solar radiation, wind,
human motion energy, as well as ambient radio-frequency. Consequently, EH is considered one of the
promising techniques to prolong the network lifetime and provide a satisfactory quality of experiences
for IoT devices.

A new network paradigm known as Mobile Edge Computing (MEC) is introduced to liberate
mobile devices from computationally intensive tasks. Several edge servers are deployed near the
mobile devices aiming at a significant reduction in latency, congestion avoidance, and prolonging the
network lifetime. Several IoT devices offload the heavy computation workload to the MEC devices
such as base stations, access points, and so forth [2]. Integrating EH and MEC techniques contribute to
improving computation performance and open new possibilities for cloud computing [3,4].

Computational offloading is a way to help the low memory devices by performing heavy tasks on
MEC servers. Tasks are directly associated with IoT devices. A task that is going to be offloaded needs
to be transmitted over a wireless access network, and time constraint must be considered during this
process [5]. However, to decide computational offloading in MEC servers systems with multiple energy
harvesting devices is still challenging. A critical problem in the computation offloading is to select the
optimal MEC device from several candidates in the coverage radio range and data over the networks
is also vulnerable to attacks [6]. There are many computational offloading schemes been presented in
fog computing scenarios. Lyapunov optimization-based algorithm is used for offloading and resource
allocation purposes by Chang et al. [7]. Their proposed algorithm can dynamically coordinate and
allocate resources to fog nodes. They focused on subproblems such as latency, consumption of power
by EH devices, and the priority of mobile devices. To address subproblems, they have minimized
the upper bound Lyapunov drift plus penalty function. Liu et al. [8] have used a queuing model
to achieve objective optimization in fog computing scenarios. Their proposed system can help to
minimize energy consumption and improve delay performance. They also optimize the payment cost
for mobile devices. A distributed computation offloading decision-making problem has been shown
by Chen et al. [9]. They have formulated a problem for multi-user computation offloading to achieve
nash equilibrium by using a game-theoretic approach. However, they consider the offloading decision
strategy and energy control as separate issues.

It is worth noting that most of the previous works either do not consider the dynamic offloading
or only consider the wireless powered single-user MEC system with binary offloading. In this paper,
a smart and energy-efficient computation offloading algorithm for multi-user and multi-server MEC
system is designed and which have different EH devices. The proposed algorithm is based on integer
linear programming for dynamic offloading. It goes around feasible region constraint by different
linear functions, and it finds the first interaction between the objective function and feasible region.
The proposed algorithm allows choosing the execution mode among local execution, offloading execution,
and task dropping for each mobile device. The main contributions of this Paper includes

• Proposing a dynamic framework for energy-efficient computation offloading approach based on
linear programming in multi-users, multi-servers MEC environment.

• Presenting an efficient approach that allows switching between different modes (offloading execution,
task dropping, and local execution) based on the executing tasks.

• Extensive experiments to evaluate the performance has been conducted, and it is observed that
the proposed method performs well as compared to existing models.

The remainder of this paper is organized as follows. Section 2 discusses the related works of
the proposed system. Section 3 introduces the design of the proposed model. Section 4 explains the
proposed model using linear programming. Section 6 describes the experimental results and evaluates
the performance. Some discussion in Section 7 is made, and finally, our work is concluded in Section 8.

Electronics 2020, 9, 1010 3 of 20

2. Related Work

Edge computing refers to those computational tasks which are being done at or near the edge of
a network. In contrast, fog computing is the connection between the edge devices and the cloud in
the system. Edge computing and fog computing are beneficial technologies. Their importance and
usefulness are described by Mach, P. et al. [10]. Edge computing builds the underlying architecture
of computational resources at the edge, and fog computing uses this technique for computational
offloading. It also enhances the network connection over different edge devices or edge servers. Sensing
observations consume more energy than transmission. The energy consumption of data transmission
over the cloud is less than the local execution. Hence, offloading is helpful if performing much
computation by broadcasting a relatively small amount of data. It is usefull with the high computation
and with small communication [11]. In the case of multiple devices, there is a need to optimize resource
allocation dynamically with EH devices. Liu et al. [12]. designed a dynamic computation offloading
system in the case of fog computing while considering EH devices. They took social relationship to
minimize the exeectuion cost of social group while using game theoretic approach. Table 1 summarized
the recent research articles related to MEC based offloading. These articles have been compared
according to the offloading task, user support, edge computation model, and compatibility with energy
harvesting devices.

Table 1. Mobile Edge Computing (MEC) based research articles for offloading.

Sr# Year Technique Offloading
Task

User Support Edge
Computation

Remote
Server

Energy
Harvesting

1 [13] 2015 Sub-optimum and
Optimum statistical
approach

Single Single Single No No

2 [14] 2016 Microwave power
transfer

Single Single Single No Yes

3 [15] 2017 Linear relaxation
semi-definite
relaxation

Multiple Single Multiple No No

4 [16] 2018 Binary Computation Single Multiple Single No Yes

5 [17] 2018 Q -learning Single Multiple Multiple No Yes

6 [18] 2019 Deep Reinforcement
learning

Single Multiple Single No yes

7 [19] 2019 Semi-definite
relaxation and
stochastic mapping

Single Multiple Single Yes No

8 [20] 2019 Heterogeneous deep
learning-based
offloading

Multiple Multiple Multiple Yes No

9 [21] 2020 Deep Reinforcement
Learning

Multiple Multiple Single No No

10
[Proposed]

- Integer Linear
Programming

Multiple Multiple Multiple Yes Yes

Markov process is extensively appropriated in the state transitions of stochastic systems.
Many researchers use Markov Decision Processes (MDP) for the modeling of application placement
problems in MEC. Doshi, P. et al. [22] addresses the issue of deterministic behavior of services,
which also requires extra monitoring of execution to recover from unexpected behavior of those services.
They proposed an MDP-based model for the composition of the workflow. Henriques, D. et al. [23]
developed an algorithm to solve the issue of non-determinism. MDP is a continuation of Markov
chains. The distinction between them is the additional options and compensations for motivation.

Electronics 2020, 9, 1010 4 of 20

The author reduces MDP to a Markov chain and then applied statistical model checking to find
the optimal solution. X. Guo and O. Hernandez Lerma, [24], wrote a book completely devoted to
continuous-time MDP. They discussed the theoretical and applied implications of continuous-time
MDP with advanced criteria. Schaefer, A.J. et al. [25] uses MDP for the medical treatment decisions.
Such decisions are very critical because of the uncertainty nature of different patients. Those decisions
should be taken in insertion and sequential environment, and the doctor must have to consider all the
uncertain factors which make them complex. MDP helps to find the best treatment plan according
to the disease. But there are many challenges such as low computational power and requirement of
more data.

The design of efficient computation offloading strategies has drawn study concern in current ages.
Most works focus on single client-server MEC systems with energy harvesting devices. There is less
work done for a system with multiple users and also for numerous servers, which are more typical
scenarios in the real world. Huang, D. et al. [26] proposes a time-varying wireless channel based
algorithm. They used Lyapunov optimization to overcome the problem of high energy consumption.
Figure 1 demonstrates a basic structure of multiple energy harvesting clients and a multi-server mobile
edge computing system. Son, Y et al. [27] presented an adaptive method for offloading in a cloud
converged virtual machine system. They used a hybrid deep neural network approach to obtain
context required for synchronization from cloud-based offloading service.

Figure 1. Multi server MEC system with Energy Harvesting devices.

Task scheduling policy for delay optimization for a single user was proposed by Liu, J. et al. [28].
Their proposed work determines the offloaded components of a software-based on stochastic control.
The efficiency of computation offloading usually depends upon the wireless channel, and these
channels should remain static during the execution process. But when the coherence time of a channel
is less than the latency requirement, than it becomes difficult for channels to stay static. Optimizing
the radio and computational resource usage cna be used [13]. They demonstrate that to achieve a good
quality of the channel, computation offloading must be higher. They use multi-input multi-output
(MIMO) channels and proved that with this, more offloading is done. Energy savings are also more
significant when compared to single-input single-output (SISO) and multi-input single-output (MISO)
channels. Badri, H. et al. [29], the authors designed a parallel greedy sample average approximation.
They solved the problem of placement in mobile edge computing by developing a multi-stage stochastic
programming method. Their primary purpose was to decrease communication, computational, and
relocation cost.

Edge computing is used to overcome the limitations of mobile devices by offloading.
Edge computing saves computational capabilities, battery resources, and storage availability.
However, the problem is to find the optimal offloading mechanism for computational offloading.
Mao, Y. et al. [30] proposed a Lyapunov optimization-based dynamic computation algorithm (LODCO)
to tackle the problem of offloading mechanism in a multi-user case. It was a low complexity algorithm

Electronics 2020, 9, 1010 5 of 20

that reduces computation failures noticeably. Their proposed framework enables adaptive offloading
powered by energy harvesting. They focused on energy harvesting MEC servers and energy harvesting
mobile devices. For this purpose system operator decides the amount of computation to be offloaded.
The LODCO algorithm can make the offloading decision in every time slot, and it can reduce execution
time by up to 64 % by offloading to the MEC servers. Zhao, H. et al. [31] developed a system to obtain
low execution cost and also perform offloading tasks based on the Lyapunov optimization dynamic
computation algorithm. Their solution can improve the computation of offloading tasks, and they
also focus on the quality of experience. They mainly focus on the selection of the optimal server and
utilization of resources. But in their work, issues like the collaboration of cross-edge and overlapping
of signal coverage are not considered.

Sardellitti, S. et al. [32] analyzed a situation designed by various mobile clients inquiring for
computation offloading of their tasks to a set of edge servers. Moreover, to reduce the energy
consumption of mobile devices and to further increase their battery life, which was also a severe
issue. In this scenario, where multi-clouds are linked with every small cell Evolved Node B (eNodeB),
the energy consumption decreases with the increment of the small cell eNodeBs. In the multi-cloud
environment, each cloud is considered as a set of cloud-enabled access points clustered together,
and it is regarded as a single entity. Some researchers concentrated on advancing energy harvesting
or dynamic voltage scaling technologies. Many mobile applications generated on the IoT Mobile
Devices, require high energy consumption because they are computationally intensive. To reduce the
execution latency of MEC systems, Mao, Y. et al. [33] proposed a flow shop scheduling theory-based
low-complexity solution. They optimize both allocations of transmission power and offloading tasks.
But their presented algorithm can be applied only on single-user and single cloudlet environment.
A significant issue among computation offloading and selection of MEC servers in a multi-user
scenario is discussed by Dinh et al. [15]. They implemented a computational offloading structure
by simultaneously optimizing the task allocation decision and the CPU frequency of mobile devices.
They also proposed semidefinite relaxations based algorithms to find out the optimal task allocation
decision while keeping in view the fixed CPU frequency and elastic CPU frequency. If the edge nodes
have high computational power, it causes low computation latency. But communication delay can
occur more extensively because of the weak communication link. So it is not straightforward to satisfy
both latency and reliability at the same time. The increment in the number of edge nodes decreases the
computation delay of the task but tends to increase the risk of error probability. This issue makes it
more challenging to design an optimal offloading scheme, which takes account of computations and
communications.

The integration of MEC with vehicular networks is evolving a new paradigm called vehicular
edge computing. But offloading the tasks to edge vehicles poses security and privacy issues.
Huang, X. et al. [34] suggested a decentralized reputation management system to implement security
assurance and improve network efficiency in the implementation of vehicular edge computing.
But in this scenario, roadside units are vulnerable to intrusions, so that problem still needs to be
addressed. Zhang, K. et al. [35], the authors devised a contract-based computation offloading scheme in
cloud-enabled vehicular networks. Their system maximized the advantage of the MEC service provider
by improving the allocation of the computing resources based on the scheduling threshold. They used
the MEC servers to offer computation offloading services and designed an optimal offloading algorithm.
Their system considers the resource limitation of MEC servers, latency tolerance, and transmission
cost. The MEC server also gets the payment from vehicles based on the computational offloading
task. It uses a wireless communication service for the contract information payment. One of the
main issues is to analyze the effect of transmission control between data of mobile users and vehicles.
Another problem in vehicular edge computing networks is to minimize the cost of service sharing as a
volunteer node. Such as providing a video streaming service that requires resources from mobile users.
A valid service control mechanism was composed in an online vehicle MEC environment to address
these issues by Nguyen, T. et al. [36]. They propose a video streaming service model based on the

Electronics 2020, 9, 1010 6 of 20

lower cost of obtaining data from nearby vehicles. They also recommend an incentive mechanism to
encourage users to rent their resources. Roadside units play a vital role in vehicular edge computing
networks. Liu, Q. et al. [37] proposed an adequate disseminated computation offloading algorithm
to enable better offloading arrangements for the vehicle to vehicle networks. To guarantee the most
beneficial use of underutilized vehicular computational resources. Feng, J. et al. [38] introduced an
autonomous vehicular edge (AVE) structure in controlling the unused computational resources of
vehicles. They select MEC based environment to address various network related issues in vehicular
technology. The authors present an efficient scheduling and adaptive offloading scheme that reduces
the computation complexities in a VANET environment.

MEC has the potential to achieve an optimal trade-off for delay-sensitive and computation-
intensive tasks. Hou, X. et al. [39] observed two types of vehicles (parked vehicles and slow vehicles)
as a foundation in implementing computational resources for vehicles with computation-intensive
jobs in the vehicular edge computing. Vehicle to vehicle communication requires service-deployment
latencies below a few tens of milliseconds. They proposed a new paradigm with the name of Vehicular
Fog Computing. Their system satisfies basic requirements such as location awareness, low latency,
and mobility.

The abundance of IoT devices has risen significantly in licensed and unlicensed band networks
(e.g., wireless fidelity). Ho, J. et al. [40] introduced a queueing model for energy storage and
battery consumption behavior of IoT devices and a low energy probability model. The proposed
model provides a formula for the downlink speed of IoT devices by calculating battery exhaustion,
download opportunities, and the likelihood of the initial window size of the licensed assisted access
channel backoff. They have distinguished how to transmit power packs for wireless EH devices,
which exist on authorized secondary access channels with WiFi channels. They continued this notion
to wireless networks using the power pack concept practiced in wired networks. However, their
work did not focus on diminishing interference by downloading licensed and unlicensed bands.
Another offloading model for EH devices is proposed through providing sustainable energy supply
and adequate computer skills in a work by Li, C. et al. [41]. Nowadays, MEC is combined with
wireless power transmission to improve wireless devices’ performance in IoT systems called wirelessly
powered MEC. In their work, they used non-orthogonal multiple access technologies to handle a
boot collision where two or more devices could identify the same syncword. syncword is used for
synchronizing data transmission. The results of theoretical performance analysis show that the power
consumption of the system is performing well. But they have not considered the task dropping
scenarios for mobile EH devices.

3. System Model

A multi-user, multi-server mobile edge computing systems with energy harvesting devices is
considered. The proposed system model consists of N different mobile devices, and those devices
have EH components. Many EH devices rely on renewable energy sources to captured stored for
future use. This system also contains M MEC servers. Those servers will be used for the offloading
purpose, and they are located at some distance D from EH devices. Mobile devices can use the wireless
medium to access the MEC servers [42]. These servers are capable of performing computational tasks
on behalf of mobile devices. In the experimental simulations, N = {1, 2, . . . , N}mobile devices and
M = {1, 2, . . . , M}MEC servers are used. It is assumed that every device resides within the range of
the MEC server. Through the proposed smart offloading strategy, the computational process can be
boosted significantly. The system model of multi-server, multi-user computing systems is explained in
Figure 2. Every energy harvesting device has two types of tasks. Some computation is done locally,
while others will be offloaded to the server [43].

The wireless medium is identically distributed through the system, and the time slot is denoted
by τ = 0.002 s. Maximum current is set to be Emax = 3 mJ and minimum current Emin = 0.02 mJ.
The remaining notations and their values, along with their descriptions, are enlisted in Table 2.

Electronics 2020, 9, 1010 7 of 20

Figure 2. System model for multi-server MEC system.

Table 2. Notations along with values used for experiments.

Sr Notations Description Values

1. K switching power supply 10−28

2. τ time slot 0.002 s

3. ω omega 106 Hz

4. σ sigma 10−13 W

5. Emax maximum current 3.00 mJ

6. L one bit size 1000 bit

7. X movement for a period of time 737.5 s

8. W = (L× X) number of clock cycles 737,500

9. g0 Path −40 dB

10. N amount of devices 10

11. M MEC servers 5

12. T Iterations 50

13. Emin Minimum current 0.02 mJ

14. V Penalty value 10−5 (J2/s)

15. ρ density 0.6

16. EHmax upper limit of the value 48−6 J

17. Ptxmax maximum movement 1 W

18. fmax maximum period of CPU time 1.5 GHz

4. Integer Linear Programming Based Computation Offloading

Integer linear programming is one of the top algorithms of the last century, which is used to
solve linear problems. This algorithm goes around feasible region constraint by using different linear
functions. Then it finds the first intersection between the objective function and the feasible region.
It allows users to switch between different modes. Linear programming is used to switch between
different states. MEC system is comprised of different modes based on executing tasks such as
offloading execution, task dropping, and local execution. Integer linear programming is useful in such

Electronics 2020, 9, 1010 8 of 20

scenarios. The run time complexity of integer linear programming is NP-complete [44]. Let D = (N, R)
be an undirected graph. Define a linear program as an Equation (1) with the constraint of xv + xu ≥ 1
for all uv belongs to R it implies that at least one end point of every edge is included in this subset.

min ∑
v∈N

xv. (1)

Another constraint of xv ≥ 0 where v belongs to N . Likewise given vertex cover that treat C,
v ∈ C can set xv to 1, and v 6∈ C can set xv to 0. Thus giving us a feasible solution to the integer
program [45].

4.1. Resolve Linear Problems for Offloading

Solving a linear problem requires three essential components. The first one is the objective function,
which defines what the user wants to achieve. For example, the user wants to maximize profit or
minimize time. Decision variables are the variables that are updated in search of optimal values that
meet the objective function. The third is the constraints. In the real world, there are many limitations,
such as insufficient running time, resources, computational power, and so on. Linear programming
has two foremost objectives to deal with, inequalities and minimization. The offset point is a matrix
Ax = B, but the only adequate solutions are non-negative. It expects x > 0, meaning that no
component of x can be negative. From many possible solutions, linear programming chooses the
solution that minimizes the cost. The computation offloading delay comprises a couple of parts,
computation time, and transmission delay [46]. There is a trade-off between the two parts due to
their differences in computing capability and distances. The computational offloading problem can be
formulated as Equation (2).

Costζ,η,θ =
m

∑
i=1

n

∑
j=1

(
ci,j + di,j

)
, (2)

where ci,j denotes the computation time and di,j denotes the transmission delay. ζ, η, θ are used
to denote the status of task offloading execution, task dropping, and local execution based on the
executing tasks according to the following scenarios.

ζ =

{
1, local execution

0, otherwise.
η =

{
1, offloading execution

0, otherwise.
θ =

{
1, task dropping

0, otherwise.
(3)

This cost minimization function also involves some constraints,such as MEC server is constraint
and its total number is M. Equation (5) is to represent the limitation of resources for computation
offloading request. Equation (4) shows that tasks can be dropped due to lack of energy of EH device.
EH devices often faces random variation in harvesting energy.

m

∑
i=1

yi,j,θ ≤ m ∀j ∈ [1, n] (4)

m

∑
i=1

yi,j,η ≤ min{m, M} ∀j ∈ [1, n]. (5)

4.2. Multiple Server and Multiple Users Scenario

In the real-time scenario, the delay-sensitive task request can be generated dynamically.
The scheduling methodology for the task is handled by an integer linear programming based
computational task model. The task should be executed within the required task execution time.
The proposed model provides an execution slot while considering the optimization and availability of
resources and the best quality of experience (QoE) provisioning. It determines a strategy to drop the

Electronics 2020, 9, 1010 9 of 20

task or to execute it locally. In this model, the computational task is represented as taskt
i where i is the

ith device and t is the time stamp at which task request is popped to be executed. Now the probability
of a task popped at ith device at time slot τ is represented by Equations (6) and (7). These two equations
illustrate the constraint that one module can be computed at either the mobile device or server-side.
If task request arrives computation can be done by the ith device at the τ time depending on energy
value which is Et

i =1 and computation case can be decided as an offloading or local else if the energy of
the ith device is insufficient, the value Et

i =0 and task will be dropped.

ζt
i + ηt

i + θt
i = 1, t ∈ τ, i ∈ N (6)

ζ, η, θ ∈ {0, 1}. (7)

In the proposed scenario, no task buffer is considered. Task execution is decided using indicators
(ζ, η, θ). The indicators determine whether to execute locally or offload or to drop the task. The indicator
determines the value of task i at time τ with computation strategy. We have three task computation
approaches (ζ, η, θ) where ζ is local execution, η is the offloading, and θ is the dropping of the task.
So the indicators for the task i can be determined as ζt

i , ηt
i ,and θt

i and the computation probability for
them is as according to Equation (6). Two main factors determine the value for each of the indicators.
One is the cost of execution at local, and the other is the cost of execution in offloading. In case of
offloading request the computation model can be represented as taskt

i,j where i is the ith device, j is the
jth server and τ is τth timestamp . Depending on the channelization in terms of transmission delay,
computation in terms of CPU cycles, and optimize resource utilization in terms of energy consumption,
the offloading cost is decided, and the model can be executed [31].

Rt
i,η = log2

(σ× L
ω× ht

i,j

)
, t ∈ τ, i ∈ N, j ∈ M (8)

PLη =
(L
(ω× τd)− 1

)2 × σ

ht
i,j

t ∈ τ, i ∈ N, j ∈ M (9)

Rt
i,ζ =

L

∑
v

(
f t
i,v
)
, t ∈ τ, i ∈ N, (10)

PLζ =
L

∑
v
×c
(

f t
i,v
)
, t ∈ τ, i ∈ N. (11)

Achievable rate for (Rt) can be calculated using Equation (8) where σ, ω and L denote noise
power, bandwidth and task bit size respectively in the case of offloading. Power needed for execution
of computation task can be calculated (pLτ) using Equation (9). In the case of local execution dynamic
voltage v and frequency f is applied to get local transmission delay Rt

i,ζ , expressed in Equation (10) and
local energy consumed PLζ , expressed in Equation (11). Where c is the coefficient of capacitance, L is
the computational task in bits, N = {1, 2, . . . , N}mobile devices and M = {1, 2, . . . , M}MEC servers.

5. System Flow

The proposed method allows switching between different modes (i.e., offloading execution,
task dropping, and local execution) based on the executing tasks. Figure 3 shows the process flow
diagram of the proposed system. It initializes the map of the number of EH devices. If the task is
for offloading, the system will calculate the channelization of the EH device. Then it will check the
status of the Boolean variable KBoolPair. If the status is false, then it will calculate position variable
pos; Otherwise, it will assign the server for offloading.

Electronics 2020, 9, 1010 10 of 20

Start

Service Request

Offloading Task

Yes

Channelization

(PI<=Pu)

No

Execute Locally

YesNo

Js=L/rJs=inf

KeyValuePair

True

Assign Server

End

Figure 3. Flow process of proposed system.

The proposed methodology starts with initializing the map with null then stores the number of
mobile devices connected to each MEC server. The function produces a computational task, find out
the best energy harvesting devices, and then calculates the delay of execution. After that, from the first
server and a mobile device that is limited to a distance within 0 to 60, it derives channelization of the
mover. Then, it assigns the server or alternative mode for those tasks that users choose to uninstall to
perform and finds mobile devices with minimal transmission latency of MEC server pairs. We store
the values of key pair, device i, and optimal server j, in map. mini and minj is obtained corresponding
to the minimum delay. At this point, only offloading or uninstall execution is considered. Then the
key-value pair is removed from the map and synchronize a series of commonly maintained variables.
When the mobile device has a server that can be selected, it will continually look for the shortest delay
that can be found. It will then return the outermost while loop to start inspecting for the lowest Js

again. It will then remove the key-value pair from the map and synchronize a series of co-maintained
variables. The time complexity of Algorithm 1 is represented by O(T(EH)), where T and EH denote
the total number of time slots and energy harvesting devices, respectively.

Electronics 2020, 9, 1010 11 of 20

Detailed steps of the proposed algorithm are explained in Algorithm 1 and its sub-algorithms.
Table 3 describe the variables which are used in algorithms.

Table 3. Description of variables used in algorithms.

Sr # Variable Description

1 mini Minimum delay for device
2 minj Minimum delay for server
3 Eremotematrix Current energy consumption
4 Pmatrix Best transmission power
5 Jm Locally executed delay
6 Fu Upper frequency of local execution
7 Fl Lower frequency of local execution
8 KBoolPair Boolean variable Flag
9 h Channel power gain

10 Jmatrix
s Delay value of the current mobile device

Algorithm 1 Energy-efficient computation offloading.

Ensure: Initialize flags with null
Ensure: Initialize Eremotematrix, Pmatrix, Jm

while T 6= Tmax do
while EHi 6= EHmax do

generate fl and fu

if fl ≤ fu then
generate f0

calculate Elocal(t, i)
else

set Jm(i) equal to infinity
set KBoolPair as true

end if
end while
calculate channelization of mover // Execute Algorithm 2
if KBoolPairis false then

use integer linear programming // Execute Algorithm 3
else

assigns the server for those tasks needs to be offloaded // Execute Algorithm 4
end if
slice iteration++

end while

5.1. Computation Offloading

The primary purpose of this system is to choose the mode for offloading or local execution.
In Algorithm 1, the proposed energy-efficient computation offloading mechanism is discussed. This
algorithm works for every iteration of Time T initializing from 1. It starts with the mapping null and
initializing flags, Eremotematrix, Pmatrix, and Jm. Eremotematrix and a matrix of zeros initializes Pmatrix with
the dimension of τ × N, where τ is the number of time slices, and N is the number of mobile devices.
Flags are initialized with the matrix of M× 1, where M is the number of MEC servers. Eremotematrix
is to save the current energy consumption of the mobile device to each MEC server separately in
a matrix. Pmatrix is to save the best transmission power of the current mobile device to each MEC
server separately. Jm is to store the locally executed delay of each mobile device separately for use in

Electronics 2020, 9, 1010 12 of 20

secondary decision making. The number of devices is set as N, and a loop is initialized for every device.
A variable zeta is initialized with binomial distribution and generate Lower frequency Fl and upper
frequency Fu of local execution by N mobile devices, using Equation (12) and Equation (13) respectively.
If Fl is less than or equal to Fu, then the function will calculate the execution delay. Calculate energy
consumption performed locally by ith mobile device Elocal(t, i) and generate Fo using Equation (14).
The KBoolPair set to be False. However, KBoolPair is True when Fl is greater than Fu, where Jm(i) is
infinity otherwise KBoolPair will remain False.

After that, the channelization of mover is calculated using Algorithm 2 to decide between using
integer linear programming or assigning of the task to the server. After the execution of Algorithm 2
system will check the status of KBoolPair. If KBoolPair is false, then use integer linear programming
mechanism using Algorithm 3. Otherwise, the tasks that need to be offloaded are assigned to a server
using Algorithm 4. In the end, the time slice iteration is incremented, and the whole procedure is
repeated until the maximum time T is reached.

FL = max
(√ Emin

k× w
÷ w

τd

)
(12)

Fu = min
(√ Emin

k×ω
÷ fmax

)
(13)

fo =
(v

θ ×ω∆ × k
) 1

3 . (14)

Algorithm 2 Calculate channelization of mobile devices.

Ensure: Initialize htmp

Ensure: Calculate Rt, PLτ

if pl ≤ pu then
set jS as inf
set KBoolPair as true

else
calculate Js by dividing L to r;
set KBoolPair as true

end if
set Jmatrix

s (i, j) as Js;
calculate container number of the execution

5.2. Channelization of EH Device

One of the major reasons for anomalies is the incorrect calculation of the channels’ access
mechanism. In this research, the adaptable width of channelization is calculated. It helps in minimizing
performance anomalies. The calculation of the channelization of mobile devices is explained in
Algorithm 2. To calculate the mover’s channelization, initialize htmp with a matrix h(i, j), where h is
channel power gain from the mobile device to the server. Then calculate temporary achievable rate
(Rt) using Equation (8) and power needed for execution of computation task (pLτ) using Equation (9).
If pL is less than or equal to pU , set jS as infinity and set KBoolPair as true. Otherwise calculate Js by
dividing L to r; and set KBoolPair as true. then set Jmatrix

s (i, j) as Js. If the mode is equal to two, then
calculate the value of the map.

Electronics 2020, 9, 1010 13 of 20

5.3. Integer Linear Programming

The use of integer linear programming is explained in Algorithm 3. For this, we initialize the
target as a matrix of zeros. We also initialize variables intcon, A, b, lb, ub and calculate an updated
target and a goal. Intcon is the vector of positive integers which ranges from 1 to N × (M + 2). Then,
we return the calculation result of the system operation and set the value of position variable (pos)
where system operation is true. If pos is equal to 1, then set indicator(t, i) as 1. If pos is equal to 2,
then set indicator(t, i) as 3. Otherwise, set indicator (t, i) as 2.

Algorithm 3 Use integer linear programming.

Ensure: Initialize target as a matrix of zeros
Ensure: Initialize intcon, A, b, lb, ub

while Iter 6= 10 do
calculate updated target and goal
returns calculation result of system operation
set pos where system operation as true
if pos is equal to 1 then

set indicator(t, i) as 1;
if pos is equal to 2 then

set indicator(t, i) as 3;
else

set indicator (t, i) as 2;
end if

end if
end while

5.4. Assigning the Server

The steps for assigning the server for those tasks which need to be offloaded are described in
Algorithm 4. For this purpose, start with setting the movement of the maximum CPU time of the
server and calculate the upper bound ub. Then repeat the next steps until the map is not equal to
null. The function to find a mobile device with minimal transmission latency also finds minimum i
and j corresponding to the minimum delay. At this point, the algorithm only considers uninstalling
execution tasks. If rand is less than or equal to eps than delete the key-value pair from the map and
synchronize a series of commonly maintained variables. Corresponding to the MEC server, Increment 1
in the flag and Set Jmatrix

s (mini, minj) to in f and if min value of Jmatrix
s is not equal to inf then return the

outermost while to start looking for the smallest Js again. Otherwise, initialize the indicator variable
and delete the key-value pair from the map and synchronize a series of co-maintained variables. Here,
Jmatrix
s is to save the delay value of the current mobile device to each MEC server. In a case where

the mode is equal to 2, the current optimal mode will still execute for uninstallation if f lagsminj are
less then or similar to ub, than remove the key-value pair from the map and synchronize a series of
commonly maintained variables. Set Jmatrix

s (mini, minj) to infinity, and if min value of Jmatrix
s is not

equal to inf, then return the outermost variable and reset the indicator variable. After that, set the new
optimal mode and initialize indicator (t, i) to mode, Also remove the key-value pair from the map.
This algorithm is used to assign the server or alternative mode for those tasks that users choose to
uninstall to perform.

Electronics 2020, 9, 1010 14 of 20

Algorithm 4 Assigns the server for those tasks needs to be offloaded.

Require: movement of maximum CPU time period of server
Ensure: Calculate UB

while map 6= null do
Found device with minimal transmission latency
if rand ≤ eps then

if Flagminj ≤ UB then
Corresponding to the MEC server Increment 1 in flag
Set Jmatrix

s (mini, minj) = in f
else

Reset indicator variable
end if

else
if rand > eps then

Current optimal mode is still executed for uninstallation
if f lagsminj is less than or equal to UB then

f lagsminj 1++
Set Jmatrix

s (mini, minj) = in f
else

if min(Jmatrix
s) 6= in f then

Returns the outermost
else

Reset indicator variable
end if

end if
else

initialize indicator (t, i) to mode
Remove the key-value pair from the map

end if
end if

end while

6. Performance Evaluation

In this section, the analysis of the proposed algorithm based on parameters, enlisted in Table 2 is
performed. The experiments to compare simulation results with the existing mixed-integer nonlinear
program based software defined task offloading algorithm [47] and Lyapunov optimization-based
genetic algorithm [31] is also conducted. The experimental system consists of the intel core i5 processor
with 16 GB RAM and R2019b version of MATLAB. The active switching power supply is initialized
as K = 1× 10−28 and server bandwidth as ω = 1× 106 Hz. The value of tau = 0.002 and noise power,
σ = 1× 10−13. The movement of the maximum CPU time is initialized with 1.5× 109 Hz, maximum
current with 0.003 (j), the movement for a period of time as 737.5. L×X calculates the required number
of clock cycles needed by the mobile device to perform local computing tasks. In the multi-server
environment, the number of MEC servers is set as M = 8 and the number of mobile devices as N = 10.
There is a penalty value in LODCO to optimize the performance of the tasks, which is V = 1× 10−3 [30].
Furthermore, some containers are required to store the values of run-time results such as the value of
momentum, offload execution, frequency of mobile devices for local and remote execution frequency,
and execution cost. Detailed values and their descriptions are given in Table 2.

Electronics 2020, 9, 1010 15 of 20

6.1. Results

This section demonstrates the results of the proposed algorithm. The algorithm was implemented
in MATLAB R2019b for simulation. The graphs and plots were also designed using the functions of
MATLAB. For the graphs toolbox, MATLAB plot gallery [48] is used. MATLAB requires extensive
execution time for solving complex problems. So only the small size of mobile devices and servers is
considered. Table 4 shows the components used for experimental simulations

Table 4. Simulation environment.

Sr # Component Description

1 CPU Intel Core i5-8500
2 RAM 16 GB
3 OS MS Window 10
4 IDE Matlab 2019b
5 Graph tool MATLAB plot gallery

Quality of experience (QoE) cost depends upon the execution delay and cost of offloading the
task. It can be calculated using Equation (15). The average QoE-cost is demonstrated in Figure 4 for
all mobile devices. The proposed algorithm obtains this cost at each time slot. The average QoE cost
starts with a maximum of 0.9× 10−3 J, and then it gradually starts decreasing. By using the proposed
algorithm, a stable state of average QoE cost at the end of this graph is obtained. It shows the stability
obtained by the proposed algorithm.

QoE = ΣiεN
(
w/ fi

)
/τi (15)

Figure 4. Average quality of experience (QoE)-Cost of all mobile device and time.

In Figure 5, the X-axis shows the number of time slots for energy harvesting devices, and the
battery energy level is shown on Y-axis. There are 10 Mobile devices (MD) and one offsetting level.
This graph depicts the variation in the level of average battery energy for different time slots. It shows
significant improvement in stabilizing the energy level. It acquired the stability between 125th and

Electronics 2020, 9, 1010 16 of 20

150th-time slots. The energy level starts increasing at the beginning and finally maintains an energy
level close to the offsetting level for all mobile devices.

Figure 5. Battery energy level of each mobile device and time.

Figure 6 shows the average battery energy level of all mobile devices. The X-axis shows the
index of the mobile device, and Y-axis shows the average energy level of the battery. All the devices
maintained almost the same maximum level of energy, which ranges from 0.0017 J to 0.0021 J.

Figure 6. Average battery energy level of each mobile device.

6.2. Comparison

To verify the effectiveness of the proposed algorithm, it is compared with the existing
mixed-integer nonlinear program based software defined task offloading algorithm [47] and Lyapunov
optimization-based genetic algorithm [31]. The results of the comparison are displayed in Figure 7.
Lyapunov optimization-based genetic algorithm and mixed integer nonlinear program based software
defined task offloading algorithm are NP-hard programs, whereas the integer programming solution is

Electronics 2020, 9, 1010 17 of 20

NP-complete [44]. Lyapunov optimization-based algorithm and the proposed algorithm are dynamic,
but results show that proposed algorithm is taking average less energy concerning each device.
The X-axis shows the number of maximum distance between every Mobile device and servers, whereas
Y-axis displays the average ratio of offloading tasks. Each energy level starts from 0.979% and
gradually decreases to 0.87%. This graph depicts the variation in the level of offloading tasks to
distance. When the distance increases, the average ratio of offloading tasks starts decreasing. If the
distance between the MEC server and a mobile device is increased, then the channel power also
amplifies, this increment in channel power requires more energy and results in the execution delay.

Figure 7. Comparison with existing algorithms.

7. Discussion

MEC with multi servers is emerging as a new paradigm that can replace client cloud architecture.
Many devices with low computational power are also included in the MEC environment. Offloading
the work for such computationally intensive energy harvesting devices can increase the quality of
computation experience. The authors of References [30,49] use dynamic computation offloading
algorithms for MEC with energy harvesting devices. However, the presented aspects and details
are not generic. The paper proposes an approach based on linear programming to improve the
efficiency of energy consumption in the MEC server. A dynamic and energy-efficient computation
offloading approach for multi-users and multi-servers is introduced in the mobile edge computing
system. The proposed method allows switching between different modes of offloading execution,
task dropping, and local execution based on the executing tasks. The reason for conducting this
study is to improve the quality of experience by energy-efficient computation offloading. Simulation
results illustrate that the proposed solution can trade off the energy of computational offloading tasks
efficiently. During the simulation, it is observed that the energy level starts from 0.979% and gradually
decreases to 0.87%. The impact of channelization is also focused on this work because the incorrect
calculation of the channel’s access mechanism leads to anomalies. In this research, the adaptable width
of channelization is calculated, which will help to minimize the performance anomalies. In the future,
this work can be extended by considering the MEC servers with limited resources.

8. Conclusions

In this paper, a multi-user and multi-server mobile-edge computing system with energy harvesting
devices is examined. An algorithm for computation offloading is proposed. Multi-server mobile edge

Electronics 2020, 9, 1010 18 of 20

computing has the purpose of decreasing the response rate of mobile devices, and it is getting popular
day by day. The proposed system is an improved computation offloading strategy, which is also
energy efficient. Experimental analysis and simulation results show that the proposed algorithm can
efficiently trade-off the power of computational offloading tasks. It also requires less time for execution,
and it fits very well with mobile edge computing operations. In the proposed future work strategy,
we will study the resource limitations of the MEC server and provide a more general situation for
mobile device users to dynamically leave during computation offloading.

Author Contributions: Conceptualization, P.W.K. and A.M.; methodology, K.A.; software, A.A.; validation, H.S.,
A.M. and M.K.; formal analysis, P.W.K.; investigation, A.M.; resources, A.A.; writing—original draft preparation,
P.W.K.; writing—review and editing, A.M. and M.K.; supervision, A.M.; project administration, H.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman
University through the Fast-track Research Funding Program.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the design of this study,
the analyses, or the writing of this manuscript.

Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
EH Energy Harvesting
MEC Mobile Edge Computing
MDP Markov Decision Processes
MIMO Multi Input Multi Output
SISO Single Input Single Output
MISO Multi Input Single Output
LODCO Lyapunov optimization based dynamic computation algorithm
VANET Vehicular AdHoc Network
QoE Quality of Experience
MD Mobile devices

References

1. Li, Y.; Orgerie, A.C.; Rodero, I.; Parashar, M.; Menaud, J.M. Leveraging renewable energy in edge clouds for
data stream analysis in iot. In Proceedings of the 2017 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), Madrid, Spain, 14–17 May 2017; pp. 186–195.

2. Abbas, K.; Afaq, M.; Khan, T.A.; Rafiq, A.; Iqbal, J.; Islam, I.U.; Song, W.C. An efficient SDN-based LTE-WiFi
spectrum aggregation system for heterogeneous 5G networks. Trans. Emerg. Telecom. Tech. 2020, e3943.
[CrossRef]

3. Singh, S.; Sharma, P.K.; Moon, S.Y.; Park, J.H. EH-GC: An Efficient and Secure Architecture of Energy
Harvesting Green Cloud Infrastructure. Sustainability 2017, 9, 673. doi:10.3390/su9040673. [CrossRef]

4. Elgendy, I.; Zhang, W.; Liu, C.; Hsu, C.H. An efficient and secured framework for mobile cloud computing.
IEEE Trans. Cloud Comput. 2018. [CrossRef]

5. Ahmad, S.; Kim, D. A multi-device multi-tasks management and orchestration architecture for the design of
enterprise IoT applications. Future Gener. Comput. Syst. 2020, 106, 482–500. [CrossRef]

6. Kashif, M.; Malik, S.A.; Abdullah, M.T.; Umair, M.; Khan, P.W. A Systematic Review of Cyber Security and
Classification of Attacks in Networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 201–207. [CrossRef]

7. Chang, Z.; Liu, L.; Guo, X.; Sheng, Q. Dynamic Resource Allocation and Computation Offloading for IoT
Fog Computing System. IEEE Trans. Ind. Inform. 2020. [CrossRef]

8. Liu, L.; Chang, Z.; Guo, X.; Mao, S.; Ristaniemi, T. Multiobjective optimization for computation offloading in
fog computing. IEEE Internet Things J. 2017, 5, 283–294. [CrossRef]

9. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing.
IEEE/ACM Trans. Netw. 2015, 24, 2795–2808. [CrossRef]

http://dx.doi.org/10.1002/ett.3943
https://doi.org/10.3390/su9040673
http://dx.doi.org/10.3390/su9040673
http://dx.doi.org/10.1109/TCC.2018.2847347
http://dx.doi.org/10.1016/j.future.2019.11.030
http://dx.doi.org/10.14569/IJACSA.2018.090629
http://dx.doi.org/10.1109/TII.2020.2978946
http://dx.doi.org/10.1109/JIOT.2017.2780236
http://dx.doi.org/10.1109/TNET.2015.2487344

Electronics 2020, 9, 1010 19 of 20

10. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading.
IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [CrossRef]

11. Kumar, K.; Lu, Y.H. Cloud computing for mobile users: Can offloading computation save energy? Computer
2010, 43, 51–56. [CrossRef]

12. Liu, L.; Chang, Z.; Guo, X. Socially aware dynamic computation offloading scheme for fog computing
system with energy harvesting devices. IEEE Internet Things J. 2018, 5, 1869–1879. [CrossRef]

13. Munoz, O.; Pascual-Iserte, A.; Vidal, J. Optimization of radio and computational resources for energy
efficiency in latency-constrained application offloading. IEEE Trans. Veh. Technol. 2014, 64, 4738–4755.
[CrossRef]

14. You, C.; Huang, K.; Chae, H. Energy efficient mobile cloud computing powered by wireless energy transfer.
IEEE J. Sel. Areas Commun. 2016, 34, 1757–1771. [CrossRef]

15. Dinh, T.Q.; Tang, J.; La, Q.D.; Quek, T.Q. Offloading in mobile edge computing: Task allocation and
computational frequency scaling. IEEE Trans. Commun. 2017, 65, 3571–3584.

16. Bi, S.; Zhang, Y.J. Computation rate maximization for wireless powered mobile-edge computing with binary
computation offloading. IEEE Trans. Wirel. Commun. 2018, 17, 4177–4190. [CrossRef]

17. Dinh, T.Q.; La, Q.D.; Quek, T.Q.; Shin, H. Learning for computation offloading in mobile edge computing.
IEEE Trans. Commun. 2018, 66, 6353–6367. [CrossRef]

18. Huang, L.; Bi, S.; Zhang, Y.J. Deep reinforcement learning for online computation offloading in wireless
powered mobile-edge computing networks. IEEE Trans. Mob. Comput. 2019. [CrossRef]

19. Liu, F.; Huang, Z.; Wang, L. Energy-efficient collaborative task computation offloading in cloud-assisted
edge computing for IoT sensors. Sensors 2019, 19, 1105. [CrossRef]

20. Huang, L.; Feng, X.; Zhang, L.; Qian, L.; Wu, Y. Multi-server multi-user multi-task computation offloading
for mobile edge computing networks. Sensors 2019, 19, 1446. [CrossRef]

21. Park, S.; Kwon, D.; Kim, J.; Lee, Y.K.; Cho, S. Adaptive Real-Time Offloading Decision-Making for Mobile
Edges: Deep Reinforcement Learning Framework and Simulation Results. Appl. Sci. 2020, 10, 1663.
[CrossRef]

22. Doshi, P.; Goodwin, R.; Akkiraju, R.; Verma, K. Dynamic workflow composition: Using markov decision
processes. Int. J. Web Serv. Res. (IJWSR) 2005, 2, 1–17. [CrossRef]

23. Henriques, D.; Martins, J.G.; Zuliani, P.; Platzer, A.; Clarke, E.M. Statistical model checking for Markov
decision processes. In Proceedings of the 2012 Ninth International Conference on Quantitative Evaluation of
Systems, London, UK, 17–20 September 2012; pp. 84–93.

24. Guo, X.; Hernández-Lerma, O. Continuous-time Markov decision processes. In Continuous-Time Markov
Decision Processes; Springer: London, UK, 2009; pp. 9–18.

25. Schaefer, A.J.; Bailey, M.D.; Shechter, S.M.; Roberts, M.S. Modeling medical treatment using Markov decision
processes. In Operations Research and Health Care; Springer: London, UK, 2005; pp. 593–612.

26. Huang, D.; Wang, P.; Niyato, D. A dynamic offloading algorithm for mobile computing. IEEE Trans. Wirel.
Commun. 2012, 11, 1991–1995. [CrossRef]

27. Son, Y.; Jeong, J.; Lee, Y. An Adaptive Offloading Method for an IoT-Cloud Converged Virtual Machine
System Using a Hybrid Deep Neural Network. Sustainability 2018, 10, 3955. doi:10.3390/su10113955.
[CrossRef]

28. Liu, J.; Mao, Y.; Zhang, J.; Letaief, K.B. Delay-optimal computation task scheduling for mobile-edge
computing systems. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT),
Barcelona, Spain, 10–15 July 2016; pp. 1451–1455.

29. Badri, H.; Bahreini, T.; Grosu, D.; Yang, K. A sample average approximation-based parallel algorithm for
application placement in edge computing systems. In Proceedings of the 2018 IEEE International Conference
on Cloud Engineering (IC2E), Orlando, FL, USA, 17–20 April 2018; pp. 198–203.

30. Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic computation offloading for mobile-edge computing with energy
harvesting devices. IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]

http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/MC.2010.98
http://dx.doi.org/10.1109/JIOT.2018.2816682
http://dx.doi.org/10.1109/TVT.2014.2372852
http://dx.doi.org/10.1109/JSAC.2016.2545382
http://dx.doi.org/10.1109/TWC.2018.2821664
http://dx.doi.org/10.1109/TCOMM.2018.2866572
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.3390/s19051105
http://dx.doi.org/10.3390/s19061446
http://dx.doi.org/10.3390/app10051663
http://dx.doi.org/10.4018/jwsr.2005010101
http://dx.doi.org/10.1109/TWC.2012.041912.110912
https://doi.org/10.3390/su10113955
http://dx.doi.org/10.3390/su10113955
http://dx.doi.org/10.1109/JSAC.2016.2611964

Electronics 2020, 9, 1010 20 of 20

31. Zhao, H.; Du, W.; Liu, W.; Lei, T.; Lei, Q. Qoe aware and cell capacity enhanced computation offloading
for multi-server mobile edge computing systems with energy harvesting devices. In Proceedings of
the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City
Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October
2018; pp. 671–678.

32. Sardellitti, S.; Barbarossa, S.; Scutari, G. Distributed mobile cloud computing: Joint optimization of radio
and computational resources. In Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin,
TX, USA, 8–12 December 2014; pp. 1505–1510.

33. Mao, Y.; Zhang, J.; Letaief, K.B. Joint task offloading scheduling and transmit power allocation for
mobile-edge computing systems. In Proceedings of the 2017 IEEE Wireless Communications and Networking
Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6.

34. Huang, X.; Yu, R.; Kang, J.; Zhang, Y. Distributed reputation management for secure and efficient vehicular
edge computing and networks. IEEE Access 2017, 5, 25408–25420. [CrossRef]

35. Zhang, K.; Mao, Y.; Leng, S.; Vinel, A.; Zhang, Y. Delay constrained offloading for mobile edge computing
in cloud-enabled vehicular networks. In Proceedings of the 2016 8th International Workshop on Resilient
Networks Design and Modeling (RNDM), Halmstad, Sweden, 13–15 September 2016; pp. 288–294.

36. Nguyen, T.; Nguyen, T.D.; Nguyen, V.; Pham, X.Q.; Huh, E.N. Cost-Effective Resource Sharing in an Internet
of Vehicles-Employed Mobile Edge Computing Environment. Symmetry 2018, 10, 594. [CrossRef]

37. Liu, Q.; Su, Z.; Hui, Y. Computation Offloading Scheme to Improve QoE in Vehicular Networks with Mobile
Edge Computing. In Proceedings of the 2018 10th International Conference on Wireless Communications
and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–5.

38. Feng, J.; Liu, Z.; Wu, C.; Ji, Y. AVE: Autonomous vehicular edge computing framework with ACO-based
scheduling. IEEE Trans. Veh. Technol. 2017, 66, 10660–10675. [CrossRef]

39. Hou, X.; Li, Y.; Chen, M.; Wu, D.; Jin, D.; Chen, S. Vehicular fog computing: A viewpoint of vehicles as the
infrastructures. IEEE Trans. Veh. Technol. 2016, 65, 3860–3873. [CrossRef]

40. Ho, J.; Jo, M. Offloading wireless energy harvesting for IoT devices on unlicensed bands. IEEE Internet
Things J. 2018, 6, 3663–3675. [CrossRef]

41. Li, C.; Tang, J.; Zhang, Y.; Yan, X.; Luo, Y. Energy efficient computation offloading for nonorthogonal multiple
access assisted mobile edge computing with energy harvesting devices. Comput. Netw. 2019, 164, 106890.
[CrossRef]

42. Ateya, A.A.; Muthanna, A.; Vybornova, A.; Algarni, A.D.; Abuarqoub, A.; Koucheryavy, Y.; Koucheryavy,
A. Chaotic salp swarm algorithm for SDN multi-controller networks. Eng. Sci. Technol. Int. J. 2019, 22,
1001–1012. [CrossRef]

43. Mao, Y.; Zhang, J.; Song, S.; Letaief, K.B. Stochastic joint radio and computational resource management for
multi-user mobile-edge computing systems. IEEE Trans. Wirel. Commun. 2017, 16, 5994–6009. [CrossRef]

44. Papadimitriou, C.H. On the complexity of integer programming. J. ACM (JACM) 1981, 28, 765–768.
[CrossRef]

45. Wikipedia. Integer Programming. 2020. Available online: https://en.wikipedia.org/wiki/Integer_
programming (accessed on 3 June 2020).

46. Ning, Z.; Dong, P.; Kong, X.; Xia, F. A cooperative partial computation offloading scheme for mobile edge
computing enabled Internet of Things. IEEE Internet Things J. 2018, 6, 4804–4814. [CrossRef]

47. Chen, M.; Hao, Y. Task offloading for mobile edge computing in software defined ultra-dense network.
IEEE J. Sel. Areas Commun. 2018, 36, 587–597. [CrossRef]

48. Team, M.P.G. MATLAB Plot Gallery. MATLAB Cent. File Exch. 2020. https://www.mathworks.com/
products/matlab/plot-gallery.html (accessed on 22 July 2019).

49. Zhang, G.; Zhang, W.; Cao, Y.; Li, D.; Wang, L. Energy-delay tradeoff for dynamic offloading in mobile-edge
computing system with energy harvesting devices. IEEE Trans. Ind. Inform. 2018, 14, 4642–4655. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2017.2769878
http://dx.doi.org/10.3390/sym10110594
http://dx.doi.org/10.1109/TVT.2017.2714704
http://dx.doi.org/10.1109/TVT.2016.2532863
http://dx.doi.org/10.1109/JIOT.2018.2890114
http://dx.doi.org/10.1016/j.comnet.2019.106890
http://dx.doi.org/10.1016/j.jestch.2018.12.015
http://dx.doi.org/10.1109/TWC.2017.2717986
http://dx.doi.org/10.1145/322276.322287
https://en.wikipedia.org/wiki/Integer_programming
https://en.wikipedia.org/wiki/Integer_programming
http://dx.doi.org/10.1109/JIOT.2018.2868616
http://dx.doi.org/10.1109/JSAC.2018.2815360
https://www.mathworks.com/products/matlab/plot-gallery.html
https://www.mathworks.com/products/matlab/plot-gallery.html
http://dx.doi.org/10.1109/TII.2018.2843365
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Model
	Integer Linear Programming Based Computation Offloading
	Resolve Linear Problems for Offloading
	Multiple Server and Multiple Users Scenario

	System Flow
	Computation Offloading
	Channelization of EH Device
	Integer Linear Programming
	Assigning the Server

	Performance Evaluation
	Results
	Comparison

	Discussion
	Conclusions
	References

