
electronics

Article

Priority-Based Bandwidth Management in
Virtualized Software-Defined Networks

Luca Leonardi , Lucia Lo Bello * and Simone Aglianò

Department of Electrical, Electronics and Computer Engineering, University of Catania, Viale Andrea Doria 6,
95125 Catania, Italy; luca.leonardi@unict.it (L.L.); simoagliano@gmail.com (S.A.)
* Correspondence: lobello@unict.it

Received: 4 May 2020; Accepted: 12 June 2020; Published: 17 June 2020
����������
�������

Abstract: In Industrial Internet of Things (IoT) applications, when the network size increases and
different types of flows share the bandwidth, the demand for flexible and efficient management of the
communication network is compelling. In these scenarios, under varying workload and flow priorities,
the combined use of Software-Defined Networking (SDN) and Network Virtualization (NV) is a
promising solution, as such techniques allow to reduce the network management complexity. This work
presents the PrioSDN Resource Manager (PrioSDN_RM), a resource management mechanism based on
admission control for virtualized SDN-based networks. The proposed combination imposes bounds on
the resource utilization for the virtual slices, which therefore share the network links, while maintaining
isolation from each other. The presented approach exploits a priority-based runtime bandwidth
distribution mechanism to dynamically react to load changes (e.g., due to alarms). The paper describes
the design of the approach and provides experimental results obtained on a real testbed.

Keywords: software-defined networking; network virtualization; network slicing; resource management;
admission control

1. Introduction

The Internet of Things (IoT) has brought significant benefits to several application scenarios,
such as smart cities [1,2] and smart homes [3–5], smart metering [6], robotics [7,8], healthcare [9–11],
and energy management systems [12]. Moreover, the introduction of IoT in industrial environments,
i.e., the so-called Industrial Internet of Things (IIoT) [13–15], plays a key role in the Industry 4.0 context
where a large number of different kinds of devices cooperate over a heterogeneous communication
network [16,17]. The steady increase of both network complexity and sharing of physical resources in
Industry 4.0 scenarios raises the need for flexible and efficient resource management solutions.

Recently, the combination of two emerging technologies, i.e., Software-Defined Networking (SDN)
and Network Virtualization (NV), has received significant interest from the industrial and the academic
communities [18–21], as a possible approach to successfully face the previously discussed challenges.

SDN allows to achieve flexible and easily manageable networks by providing a clear decoupling
between the data plane and the centralized control plane. This way, SDN supports a better resource
allocation, thus limiting issues, such as congestion, latency for high priority traffic, and so on.
For instance, the management of the available network bandwidth can be performed by using a
bandwidth reservation approach according to the application needs. The use of NV allows to split
the physical infrastructure of a virtualized network into logical networks, called slices, with specific
functionalities and requirements. SDN provides an easy way to define multiple virtual networks (VNs)
and to support their complete isolation through the use of a network hypervisor.

Traditionally, the slices in a virtualized network do not share resources with each other to preserve
the isolation among slices, i.e., the ability to manage a slice as a separate network, independent from

Electronics 2020, 9, 1009; doi:10.3390/electronics9061009 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-3631-7504
https://orcid.org/0000-0002-0604-9783
http://dx.doi.org/10.3390/electronics9061009
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/6/1009?type=check_update&version=2

Electronics 2020, 9, 1009 2 of 21

the others. However, for the sake of efficient resource utilization, many scenarios can require that the
network slices share some network links while still demanding isolation.

Previous work in [22] addressed an approach based on SDN and network virtualization that
allows for shared resources. In such a work a bandwidth management mechanism for a virtualized
SDN network allows slices to share links and, through limits on the bandwidth utilization of each
slice, to share the bandwidth available on such links too. However, the approach in [22] uses static
bandwidth limits and therefore it cannot adapt to traffic changes. Moreover, the work in [22] does not
consider any mechanism for safe management of alarm flows. The latter require to find bandwidth
available for them (i.e., reserved) at any time they arrive, as they are triggered by the occurrence of
critical events and therefore they must alert the system controller (e.g., sink with processing capability)
as soon as possible.

Differently from previous work, this paper proposes the PrioSDN Resource Manager
(PrioSDN_RM), an SDN-based approach that aims to wisely manage the available network bandwidth
through a dynamic priority-based mechanism based on an admission control. This way, the bandwidth
limits are dynamically set depending on the traffic load and on the flows priority, i.e., the presented
solution supports online network reconfiguration. The proposed solution assumes that alarm flows
(i.e., the flows with highest priority) need to be strongly favored over the other flows.

The main contributions of the paper are:

• a novel bandwidth management strategy
• a detailed description of the proposed priority-based admission control
• an implementation of the proposed approach and a discussion of the results obtained through

experimental performance assessments.

The rest of the paper is organized as follows. Section 2 provides a background on Software-Defined
Networking and network virtualization. Section 3 deals with related works. Section 4 presents
the PrioSDN_RM system, whereas Section 5 discusses a use case for the proposed approach.
Sections 6 and 7 address the implementation and the experimental evaluation of PrioSDN_RM,
respectively. Section 8 presents a comparative assessment with the relevant mechanisms in the
literature. Finally, Section 9 gives conclusions and hints for future works.

2. Background

SDN refers to a network architecture with the main features listed below [23].

• Control and data planes decoupling. The network devices (e.g., switches) become simple
forwarding elements, since the network logic is provided by the SDN controller.

• Control logic moving to an external entity. The SDN controller offers the key resources and
abstractions to allow easy programming of forwarding devices, based on a logically centralized
view of the network.

• Network programmability. The network is programmable through software applications running
on top of the SDN controller that, in turn, interacts with the underlying networking devices.

• Flow-based forwarding. A flow is a sequence of packets exchanged between source and
destination and is defined by a set of packet field values, acting as a match (filter) criterion,
and a set of actions (instructions). The forwarding devices manage all the packets of a flow in the
same way, thus the forwarding rules are flow-based rather than destination-based. As a result,
flow programming offers high flexibility and makes it possible a unified behavior of different
types of network devices.

Network Virtualization allows creating logical, virtual networks (VNs) that are decoupled from
the underlying networking hardware (i.e., the physical infrastructure). This way, new network services
can be added without worrying about the specific details of the physical devices. NV also allows

Electronics 2020, 9, 1009 3 of 21

sharing of physical networking resources, i.e., multiple virtual networks can operate over the same
physical network.

SDN supports a simple way to define VNs. As a result, each virtual link can be represented as a
flow. A VN includes a set of flow rules in different switches.

The virtualization of SDN networks enables to leverage the combined benefits of SDN and
network virtualization.

The architecture of a virtualized SDN network is shown in Figure 1.

Figure 1. The architecture of virtualized Software-Defined Networking (SDN) network.

The Infrastructure layer consists of network equipment, e.g., end nodes and switches, and merely
focuses on data transmission and forwarding.

The Control layer is the “brain” of the SDN network. It consists of one or more SDN controllers
implementing software functions and algorithms that manage the forwarding platform of the network.

The hypervisor is located between the Infrastructure layer and the Control layer. It is a critical
component for virtualizing SDN networks [24], as it abstracts the physical SDN network by creating
multiple logically isolated virtual SDN networks (vSDNs), each one with its own SDN controller.
The hypervisor monitors the virtual networks and allocates networking resources (e.g., link capacity)
to each virtual network (also referred as a network slice).

The communication between the Infrastructure layer and the Control layer is realized through the
southbound Application Programmming Interfaces (APIs). OpenFlow (OF) [25], developed by the
Open Networking Foundation (ONF), is the most used communication protocol in SDN environments
and enables the SDN controllers to interact with the data plane through a hypervisor or not.

The Application layer consists of a set of network management applications. Each application
runs in its own network slice on top of an individual SDN controller, which only presents the network
view that corresponds to a specific virtual network. The Application layer and Control layer use the
so-called northbound APIs to communicate.

3. Related Work

From the state of the art, it is widely known that bandwidth reservation is a key network
management mechanism to provide adequate levels of Quality of Service or real-time guarantees.
For example, thanks to bandwidth reservation, the IEEE Audio-Video Bridging (AVB) set of standards

Electronics 2020, 9, 1009 4 of 21

is able to flexibly support multiple traffic classes even under high workloads, thus offering adequate
performance to real-time flows both in automotive [26–28] and industrial communications [29].
However, the need for flexible and efficient resource management introduces new challenges, such as
how to perform dynamic network reconfiguration while meeting the required Quality of Service
(QoS). SDN allows the designers to easily implement dynamic and adaptable QoS control solutions
for both wired and wireless networks [30,31]. Several works proposed resource management
approaches suitable for various scenarios, such as data centers [32], 5G SDN-based networks [33],
Industrial Wireless Sensor Networks [34,35], and IoT-enabled smart homes [36]. Other notable
software-defined bandwidth management mechanisms were proposed in [37–40]. In particular,
the work in [37] proposed an architecture for software-defined Ethernet Passive Optical Networks
(EPONs) that allows the SDN controller to manage different dynamic bandwidth allocation algorithms
based on the network status. In the works [38,39] two different mechanisms able to reserve bandwidth
to each node of a software-defined network were proposed. Such mechanisms address a node-oriented
bandwidth management, differently from our approach, that is flow-oriented. The work in [40]
proposes an adaptive resource provisioning scheme for network flows that is based on continuous
monitoring of several thresholds on the range of allowed transmission rates. Differently from our
approach, none of such previous works deals with virtual networks.

A network hypervisor that includes an admission control was proposed in [41]. However,
differently from our approach, it does not allocate bandwidth to the flows based on their priority,
but it only checks whether enough bandwidth is available when a request for creating a network
slice arrives.

A secure virtual controller (SVC) architecture was proposed in [42], that uses SDN in combination
with network function virtualization. However, compared to our approach, such a work has a different
target, as the aim of the SVC is to balance the traffic load and reduce the energy consumption.

A FlowVisor-based network virtualization layer, called EnterpriseVisor, was proposed in [43].
EnterpriseVisor proposes a dynamic resource management scheme that manages the distribution
of network resources among slices to improve the overall network resource utilization. As a result,
EnterpriseVisor is not able to provide Quality-of-Service (QoS) guarantees to high-priority flows.

The work in [44] proposed an extension of the Floodlight controller to dynamically manage link
and switch resources in a virtualized SDN environment. The controller, based on the network status,
performs path migrations by adding, modifying or deleting flow rules from the switches. Such an
approach aims to improve the utilization of the network resources, whereas our goal in this paper is
avoiding link overload to cope with bandwidth limits and to handle flows with different priorities.

This paper addresses the management of network link resources in virtualized SDN-based
networks. In particular, we propose a mechanism, based on an admission control, to dynamically
allocate the available bandwidth per link based on the priority of the flows.

Among previous works, the ones that are more relevant to our paper are the ones in [22]
and [45]. In fact, both of them propose bandwidth management mechanisms, based on an admission
control, that exploit SDN and network virtualization while supporting resource sharing. In particular,
the approach in [22] proposes the use of static values for limiting the bandwidth utilization of each
slice and supports high priority and low priority flows. However, such an approach is not able to
react to critical events that cause changes in the network traffic. On the other hand, in [45] a dynamic
bandwidth distribution framework, called DART, is described, that is able to dynamically distribute
the network bandwidth between various services to allow an efficient use of the network resources.
In DART, the SDN controllers cooperate to distribute the bandwidth among slices in order to mitigate
congestion on the shared links. The admission control defines a priority limit and performs a simple
task. Every time a new flow with priority higher than the priority limit asks for bandwidth, it is
admitted for transmission and a flow rule is sent to the switch. Otherwise, the flow is prevented from
transmitting. Comparing with DART, the PrioSDN_RM here proposed differs in some important
respects. First, the admission control here proposed takes decisions based on both the flow priority

Electronics 2020, 9, 1009 5 of 21

and the network traffic, i.e., it does not directly discard low priority flows, as they can be admitted
according to the policies discussed in Section 4. Second, we fix two different moving bandwidth
thresholds that change when alarms occur. Third, in the PrioSDN_RM a portion of bandwidth is
reserved to alarm flows to promptly handle critical events.

4. PrioSDN_RM: Bandwidth Management Strategy

This section presents the design of the PrioSDN_RM and the logic behind the admission control.
The description of the reference system includes a generic virtualized SDN network. The admission
control is presented in a detailed way, as it defines the strategy that allows a dynamic bandwidth
management based on the priority of the flows.

4.1. System Design

The proposed resource management mechanism can be applied to any virtualized SDN network.
The reference architecture is shown in Figure 2. Compared to a general virtualized SDN network,
our solution includes a Priority-based Admission Control (PAC), which is an extension to a plain SDN
controller and consists of a custom resource manager including specific policies for the bandwidth
allocation. We assume to use OpenFlow for the communication between the infrastructure layer and
the control layer. The physical network can be divided into multiple slices (thanks to the use of a
hypervisor). The architecture can include both fully isolated slices and slices that share a part of the
physical network to increase the resource utilization efficiency. Conversely, if a part of the network is
shared between two or more slices, the shared resource allocation module is devoted to statically or
dynamically negotiate the bandwidth portion reserved to each slice.

Figure 2. The PrioSDN Resource Manager (PrioSDN_RM) architecture.

In particular, Figure 2 depicts a network divided into three slices, therefore with three SDN
controllers. In such a network, the slice 1 is isolated from the others, while the slices 2 and 3 share one
network link (i.e., the one drawn in red in Figure 2). Consequently, both SDN 1 and SDN 2 can operate
on the shared link.

4.2. Priority-Based Admission Control-Basic Concepts

The admission control is the core of the priority-based bandwidth management in the SDN
controller. In the case of a typical SDN controller, whenever the first message of a specific flow is sent
by an end node or the flow rule (i.e., the routing rule for that flow) is not found in the flow table of
the switch (i.e., a table-miss rule event occurs), the switch queries the SDN controller to obtain the
relevant flow rule. After that, the switch inserts the flow rule provided by the SDN controller in its

Electronics 2020, 9, 1009 6 of 21

routing table and forwards the message accordingly. Please note that the SDN controller does not
perform any bandwidth consideration, e.g., it does not prevent overloading of the network links and
therefore dropped messages (e.g., due to overflow of the network resources). Consequently, the SDN
controller cannot guarantee a specific level of Quality of Service (QoS) for the flows, for instance in
terms of Packet Loss Ratio (PLR).

For this reason, we propose a priority-based admission control (PAC) for the SDN controllers.
Please note that in our proposal we consider three different types of flows, i.e., low priority, high priority
and alarms. In particular, we assume that an alarm is an event-driven flow (i.e., it is triggered by the
occurrence of a specific event). In our model, alarm flows have the highest priority in the network.

The PAC module, shown in Figure 3, includes a compute module (CM) and a storage in which the
information about the current network state (e.g., the current bandwidth utilization for each network
link) is maintained. The data in the storage are always updated thanks to the OpenFlow functionality
that allows to retrieve the flows currently registered in the routing table and to compute the current
bandwidth utilization. This way, when the switch asks the SDN controller for a flow rule, the latter
checks whether there is enough bandwidth on the links to allocate a flow with a specific priority
(see Section 4.3). If no bandwidth is available for this flow, the flow rule is not established.

Figure 3. The priority-based admission control.

The decision on the bandwidth allocation is based on specific criteria. Each SDN controller keeps
in the PAC storage the bandwidth limit value for each network link relevant to the slice that it manages.
As a result, the compute module can allocate bandwidth for the flows of the slice up to the bandwidth
limit of a specific link. Moreover, the available bandwidth per link is partitioned into three parts,
as shown in Figure 4, using two moving thresholds, i.e., the alarm threshold (θalarm) and the high
priority threshold (θhp). Such thresholds delimit the portions of bandwidth reserved for alarms and
high priority flows, respectively.

Figure 4. The bandwidth subdivision.

Electronics 2020, 9, 1009 7 of 21

In particular, a portion of bandwidth is set-aside for alarm flows. These are the highest priority
flows, as they have stringent timeliness and reliability requirements. For this reason, a fixed amount
(a configurable value) of bandwidth, i.e., the green portion in Figure 4, is left “free” to be allocated
to new alarm flows. Consequently, every time a new alarm flow is generated by an end node and
then allocated by the SDN controller, the thresholds manager module of the PAC changes the alarm
threshold by moving it downwards, thus enlarging the portion of bandwidth reserved for alarm flows
(i.e., the sum of the green and red portions). This way, the red portion in Figure 4 (i.e., the bandwidth
currently used by alarm flows) increases when a new alarm flow is generated, while the green section
remains constant. Conversely, when an alarm flow is stopped (i.e., the alarm ends) the portion of
bandwidth reserved to alarm flows is reduced by moving the alarm threshold upwards.

The choice to use a bandwidth reservation approach for alarm flows introduces a limited
bandwidth waste, since a portion of available resources (i.e., the green portion) is not used. However,
this makes it possible to promptly allocate bandwidth to alarm flows and start their transmission
without introducing delay due to the lack of available bandwidth. This way, we provide the highest
QoS to alarm flows. Please note that in PrioSDN_RM the portion of bandwidth that is left “free” to
be allocated to new alarm flows is an application-dependent configurable parameter. To reduce the
potential bandwidth underutilization to a minimum, we suggest to set the alarm threshold so as to
leave “free” the bandwidth portion that is needed to accommodate one alarm flow only, i.e., the most
demanding one among all the alarms that the application could generate.

The portion of bandwidth reserved for high priority flows (i.e., the orange portion in Figure 4),
is a fixed amount (a configurable value) set-aside for the flows with a priority higher than a given
application-dependent value (that is maintained in the PAC storage). Since the orange bandwidth
portion must be fixed, the high priority threshold follows the changes of the alarm threshold,
i.e., the two thresholds move in the same direction every time an alarm flow is generated or stopped.
As a result, our approach applies a runtime monitoring of the two thresholds that automatically
triggers the redistribution of resources to the flows based on their priorities.

Please note that in Figure 4, θalarm represents the maximum portion of bandwidth that can be used
by high priority flows, while θhp is the maximum bandwidth available to low priority flows. In other
words, this approach allows the high priority flows to use the bandwidth up to θalarm, i.e., they can use
both the white section and the orange one in Figure 4.

4.3. Priority-Based Admission Control-Bandwidth Allocation Procedure

We assume that the end nodes can send multiple data flows, each one with a specific level of
priority depending on the data importance. As a result, each end node can transmit flows with different
priority levels.

The main aim of the PAC is to check the priority of the data flows and allocate bandwidth
(if available) on the links that will be used for the flow transmission.

Whenever a new flow is generated by an end node, a request is sent to the switch the end node
is directly connected to. This request includes the required bandwidth and the flow priority. As the
switch does not have any forwarding rule for the messages of the new flow (i.e., the relevant flow rule
is missing), it forwards the request to the SDN controller that manages the slice to which both the end
node and the switch belong. Such a request is managed by the SDN controller and, in particular, it is
delegated to the PAC module, which acts as follows.

The compute module extracts the flow parameters, i.e., the required bandwidth and priority,
from the allocation request. Then, the flow rules manager submodule queries the PAC storage to
check the current status of the network slice. In particular, what is needed is the current bandwidth
utilization and the threshold values of the links within the slice managed by the SDN controller.

Once the flow rules manager checks if enough bandwidth is available on the links on which
the flow should be transmitted, then it can decide about the allocation of the bandwidth for the
flow according to the proposed algorithm. Since the admission control algorithm runs on each SDN

Electronics 2020, 9, 1009 8 of 21

controller in the network, henceforward we will refer to an individual SDN controller and therefore to
a specific network slice to simplify the description of the approach here proposed.

The flow rules manager decides based on three parameters, i.e., bandwidth limit (BWlim),
thresholds (i.e., θalarm and θhp) and priority level (priolev). Each one of these parameters is defined for
each link within the considered network slice. The BW l

lim defines the maximum bandwidth of the link
l that the network slice can use. If the link l is shared among two or more slices, then BW l

lim will be
only a portion of the total bandwidth available on the link. If a bandwidth allocation request would
cause an increase of the bandwidth utilization of the link l above BW l

lim, that request is not accepted.
The alarm threshold (θalarm) and the high priority threshold (θhp) allow to partition the bandwidth

to provide different QoS levels in case of tight bandwidth availability. In such a case, the high priority
flows (and in particular, the alarm flows) are favoured over the low priority flows. The priolev defines a
priority level that distinguishes high priority flows from the low priority ones. The flows with priority
below priolev are considered to have low priority. A smaller priority value represents a lower priority.
For instance, if flows can have 8 different priority levels (i.e., from 0 to 7) and the priority level for the
link l (priol

lev) is 4, then the priority values from 0 to 3 are considered as low priority (in particular, 0 is
the lowest priority). The θhp parameter delimits the maximum portion of bandwidth that low priority
flows can use. The bandwidth portion between θhp and θalarm is set-aside for the high priority flows.
The bandwidth portion above θalarm is reserved to alarm flows.

If a request for a low priority flow to be transmitted on link l is forwarded to the SDN controller
when the current bandwidth utilization exceeds the θl

hp threshold, the flow rules manager rejects it.
Otherwise, the flow rules manager accepts the request.

Similarly, if a request for a high priority flow is sent when the current bandwidth utilization is
above θl

alarm, the flow rules manager rejects it. Conversely, the requests for alarm flows are always
accepted, as a fixed portion of bandwidth is reserved for them (see Section 4.2).

If the request can be accepted, the compute module gives a positive response and therefore the
SDN controller sends the flow rule to the switch, which stores it in the flow table. Otherwise, the flow
rule is not registered and the messages of the flow are not transmitted.

Once a flow rule is inserted in the flow table of a switch, a timer is set with a timeout value.
When the flow rule timeout expires, the flow rule is dropped from the flow table. Consequently,
a subsequent message of the flow would not be directly transmitted, as the switch will not find
the relevant flow rule in its flow table. The switch will forward the request to the SDN controller,
which creates a new flow rule or drops the flow, according to the PAC module mechanism. The value
of the flow rule timeout allows the choice of the desired trade-off between the QoS and the overall
delay introduced by the admission control. In fact, a lower timeout value introduces a higher delay,
as the switch will experiment a higher number of table-miss rule events, and therefore the admission
control task will be performed more times. On the other hand, this choice increases the proposed
mechanism capability to quickly adapt to changes in traffic flows, as the admission control would
evaluate the current state of the network more frequently. Otherwise, a higher value of the timeout
will bring the opposite outcome.

Please note that the value of the timeout is per-flow and can be changed at runtime, i.e., the SDN
controller can set the timeout with different values (according to a specific algorithm) every time the
flow rule expires. This way, different values of timeout can be used for the low priority flows and the
high priority ones. For instance, the use of a smaller timeout for the low priority flows is expected to
increase the QoS offered to high priority flows in case of traffic congestion. In fact, we assume that low
priority flows use as much bandwidth as possible (i.e., all the white section in Figure 4) and the high
priority flows use a portion (%) of bandwidth equal to (θalarm − θhp)%. If a new high priority flow
asks for bandwidth, such a request will fail, at least until the low priority flows release the required
bandwidth, i.e., at least until the timeout of a low priority flow expires. As a result, a lower timeout
value for low priority flows guarantees a better management of the high priority flows.

Electronics 2020, 9, 1009 9 of 21

5. A Use Case for the PrioSDN_RM

The PrioSDN_RM can be applied to several real scenarios, such as the one discussed in [45].
In particular, the network topology is the same, while the kind of application is slightly different
as in [45] no alarm flows are present. Here we consider a factory-wide communication network,
that includes a surveillance system in which the bandwidth is dynamically allocated based on the
priority of the flows. The network is partitioned into several slices to keep separated virtual network
domains (e.g., shop floor, sales office, administrative office, etc.) and to differentiate the QoS levels
across the slices. However, some of the network services have to be available for more than one slice
simultaneously and therefore resource sharing between slices has to be supported too.

The end nodes send messages, organized in flows, with different priorities, according to their
QoS requirements. For instance, the surveillance system includes end nodes with attached cameras
that transmit video streams (i.e., they periodically send a sequence of images) to a central station
(i.e., the sink). Such end nodes have limited processing capability that only allows them to run simple
motion detection algorithms, whereas the video streams are processed in a centralized way, as the sink
stores and analyses the images. Such a sink can reside in a shared network slice with limited bandwidth.
Consequently, a priority-based bandwidth management should prevent network congestion while
satisfying the QoS requirements. Based on the monitored area, the end node with cameras send
either low priority or high priority flows according to the importance of the video stream. Moreover,
every time an end node detects something suspicious, an alarm flow is generated.

6. Implementation

This section presents an implementation of the proposed PrioSDN_RM. For this purpose we used:

• FloodLight. An open source (Apache-licensed) Java-based OpenFlow SDN controller, commonly
used for research purposes [46]. The FloodLight architecture includes multiple modules that can
be easily modified and improved.

• FlowVisor [47]. A network hypervisor for virtualizing software-defined networks, based on the
OpenFlow protocol. FlowVisor allows both isolation and sharing of network slices [44].

• Zodiac FX. A small OpenFlow switch with an open source firmware. The Zodiac FX represents an
excellent option for experimental purposes in research projects, as it is very cheap and it does not
require complex setup or configuration.

• Raspberry Pi. A low cost single-board computer used as an end node.

Experimental Setup

A real testbed, shown in Figure 5, was implemented to show the feasibility of the
proposed approach.

The implemented topology includes three nodes (Raspberry PIs), i.e., two senders and one receiver,
and is partitioned into two slices. The link between the switch and the receiver node is shared between
the slices. For each slice, a FloodLight controller (FL) is needed. The Zodiac FX OpenFlow switch
is equipped with four Ethernet ports. Three of them are connected to the Raspberry PIs, while the
other one is connected to a laptop, that runs both the hypervisor and the SDN controllers. In particular,
FlowVisor runs in a virtual machine, while the FloodLight controllers operate on the host. The Zodiac
FX switch communicates with the FloodLight controllers through FlowVisor.

The proposed priority-based admission control module, whose architecture is shown in Figure 3,
was implemented as an extension of FloodLight. We disabled the forwarding module of Floodlight,
as it automatically manages flow rules. This way, every time a message of a new flow arrives to a
switch, the latter forwards the request to the SDN controller that includes the PAC module. The latter
processes the request and decides whether to accept or prevent the flow transmission according to the
previously defined policies. If the transmission is allowed, a flow rule is inserted in the relevant switch
flow table.

Electronics 2020, 9, 1009 10 of 21

Figure 5. The testbed setup.

IEEE 802.1Q frames were used for the communications in the implemented testbed. The IEEE
802.1Q frame format, shown in Figure 6, includes four additional bytes compared to the Ethernet
frame format. In particular, it adds the Virtual Local Area Network (VLAN) tag, that is placed between
the Destination/Source MAC addresses and the Length/Type fields of an Ethernet frame to identify
the VLAN to which the frame belongs.

Figure 6. IEEE 802.1Q frame.

The first two bytes of the VLAN tag consists of the Tag Protocol Identifier (TPID) and indicates
the frame type, e.g., the value 0 × 8100 indicates an IEEE 802.1Q frame. The other two bytes are used
for the Tag control information (TCI) that, in turn, contains the Priority code point (PCP), Drop eligible
indicator (DEI), and VLAN identifier (VID). The PCP is a 3-bit field (its value is in the range from
0 to 7) that refers to the class of service and maps to the frame priority level. Different PCP values can
be used to prioritize different traffic classes. A higher value indicates a higher priority. The DEI allows
to mark the frames that are eligible to be dropped in case of congestion. Finally, the VID indicates the
VLAN to which a frame belongs.

The senders periodically generate and send messages belonging to different flows, each one with
a specific priority. The periodic flows of each sender are shown in Table 1. The bit rate (and therefore
the required bandwidth) is encoded in all the messages that are sent to the FloodLight controller.
Moreover, sporadic alarm flows (i.e., flows whose messages have PCP equal to 7) can be generated by
the senders. Each sender can generate multiple alarm flows at the same time. The receiver creates logs
to record statistics about the received messages.

We consider a static partitioning of the bandwidth among the slices, as they have the same
workload. The admission control parameters for the shared link (sl) were set as follows. The bandwidth
limit (BWsl

lim) for both slices was set to 200 bps, while the high priority (θsl
hp) and alarm (θsl

alarm) thresholds
were initialized to 70% and 90% of the BWlim, i.e., to 140 bps and 180 bps, respectively. The priority
level (priolev) was set to 3.

Electronics 2020, 9, 1009 11 of 21

Table 1. Network slice periodic flows.

Flow ID Bit Rate PCP
(Bit/s)

1 90 1
2 25 1
3 90 2
4 30 5
5 40 0
6 50 4

7. Performance Evaluation

In the implemented network, we evaluated the performance in terms of throughput and Frame
Drop Ratio (FDR) measured on the shared link. The FDR is a measure of the number of frame
transmission requests dropped compared to the total number of requests. It is expressed as a percentage
according to Equation (1),

FDR =
(ndropFrm

ntotFrm

)
×100 =

(
1 − naccFrm

ntotFrm

)
×100 (1)

where ntotFrm, ndropFrm and naccFrm are the number of total, dropped and accepted frame transmission
requests, respectively, measured on the shared port that connects the switch to the receiver.

We also evaluated the overhead introduced by the admission control.

7.1. Throughput

The throughput was measured on the receiver side, i.e., considering the shared link between the
switch and the receiver, with and without PrioSDN_RM for both slices 1 and 2.

If the PAC module is disabled, the SDN controllers provide flow rules regardless of the flows
priority, the bandwidth requirements and the bandwidth limits. Consequently, as shown in Figure 7,
if we sum the bandwidth used by both slice 1 and slice 2, the throughput of the shared link grows up
to the bandwidth saturation (400 bps) in about 30 s.

Figure 7. Throughput of both slices without admission control.

The same experiment was performed with the PAC module enabled. The results are shown
in Figures 8, where the bandwidth limit and the thresholds are also depicted by horizontal lines.
The results prove that the PAC module successfully controls the bandwidth utilization. If fact, in both
slices the throughput does not exceed the bandwidth limit, fixed on 200 bps.

Electronics 2020, 9, 1009 12 of 21

Figure 8. Throughput with PrioSDN_RM; (a) slice 1; (b) slice 2.

In particular, in the slice 1 the throughput went over the high priority threshold and sometimes
over the alarm threshold, but it was always below the bandwidth limit. In the slice 2 the throughput
remained below the high priority threshold, and therefore below the bandwidth limit.

Please note that the different values of throughput for the slice 1 and 2 depend on the internal
scheduling of the flows in the sender nodes. In fact, the application layers of the senders are
not synchronized, and therefore, the arrival time of the flows transmission requests is different.
Consequently, the processing order at the admission control varies and the resulting allocation decisions
are not the same. For instance, the throughput trend in Figure 8b is due to the fact that the high priority
flows arrive first and receive all the bandwidth they require. Afterwards, the low priority flows arrive,
but some of them cannot be transmitted, as this would imply exceeding the θsl

hp.

7.2. Frame Drop Ratio

The frame drop ratio (FDR) on the shared link was obtained collecting data during 20 min long
experiments. In particular we evaluated the FDR for slices 1 and 2 with both a plain SDN controller
(i.e., without admission control) and the proposed PrioSDN_RM. When the plain SDN controller
without admission control was used, due to the overload of the network links, frames of any priority
were lost. No significant difference between the number of dropped high priority frames and low
priority ones was found, as all the flows were handled in the same way.

Tables 2 and 3 show the FDR for slices 1 and 2, respectively, obtained with the PrioSDN_RM.
In particular, two configurations were evaluated. In the first configuration (a) the flow rule timeout
(f rtout) was set to 40 s for each flow. In the second configuration (b) the flow rule timeout was set to
40 s for the high priority flows and to 30 s for the low priority ones.

Table 2. PrioSDN_RM: Frame drop ratio-Slice 1.

Configuration a Configuration b
PCP FDR Timeout (s) FDR Timeout (s)

1 64% 40 43% 30
1 33% 40 30% 30
2 70% 40 74% 30
5 28% 40 22% 40
0 89% 40 76% 30
4 35% 40 24% 40
7 0% 40 0% 40

Electronics 2020, 9, 1009 13 of 21

Table 3. PrioSDN_RM: Frame drop ratio-Slice 2.

Configuration a Configuration b
PCP FDR Timeout (s) FDR Timeout (s)

1 52% 40 47% 30
1 58% 40 26% 30
2 84% 40 74% 30
5 29% 40 22% 40
0 100% 40 82% 30
4 60% 40 27% 40
7 0% 40 0% 40

The results demonstrate that the use of the PrioSDN_RM significantly improves the FDR of both
alarm and high priority flows comparing with the same scenario without admission control, in which
the drop ratio was between 44% and 47% for alarms and between 47% and 53% for high priority flows,
respectively. Conversely, the obtained FDRs for the low priority flows is worse than the ones obtained
without admission control (i.e., between 49% and 55%), as PrioSDN_RM strongly favors alarm and
high priority flows. As we expected, the frame drop ratio of the alarm flow packet is 0%, since a
fixed amount of bandwidth is reserved for new alarm flows at any time. The comparison between the
FDR obtained in the two different configurations confirmed that, by setting a lower flow rule timeout
value for the low priority flows, in configuration b we improve the performance of high priority ones,
as discussed in Section 4.3. Moreover, the more frequent evaluation of the current network state allows
the PAC module to perform a fairer distribution of the bandwidth among the low priority flows. As it
was expected, the lower the flow rule timeout values, the higher the QoS offered by the PAC module.

7.3. Priority-Based Admission Control Overhead

In this section we present the experimental assessment of the delay introduced by the proposed
priority-based admission control, that is based on a virtualized SDN-based network. Such a delay was
calculated as the cumulative delay introduced by both the hypervisor (i.e., FlowVisor) and the SDN
controller (i.e., FloodLight). In particular we assessed the latency experienced when a message cannot
be directly forwarded by the switch as the latter does not find the relevant flow rule in its flow table.
In the other case, our approach does not introduce a significant delay. As discussed in [43] FlowVisor
does not add overhead to the data plane, whereas it adds overhead to the tasks that involve both the
control and data plane. In particular, FlowVisor increases the port status response latency by about
0.71 ms when the OpenFlow port status is requested.

The overhead introduced by our approach was obtained as the time difference between the
instants of the bandwidth allocation request from the switch and of the reception of the relevant
admission control response at the switch, respectively.

We performed 20 min long experiments. The obtained results showed that the delay introduced
is always less than 10 ms.

Please note that for each flow the SDN controller processes only the first message plus each message
sent after the flow rule expires. The other messages are handled only by the switch. Consequently,
the flow rule timeout values impact on the overall overhead introduced by the proposed mechanism:
The lower the flow rule timeout values, the greater the delay introduced (as the SDN controller will
perform the priority-based admission control task more frequently), and vice versa.

Electronics 2020, 9, 1009 14 of 21

8. Comparative Assessment with the Relevant Mechanisms in the Literature

This section discusses the PrioSDN_RM performance (in terms of throughput, frame drop ratio
and overhead) in comparison with that of related mechanisms in the literature, i.e., the mechanism
used in [22] and the DART approach in [45].

We considered two different configurations, in terms of periodic flows, in the scenario shown in
Figure 5 in order to show how different workloads affect the performance of the three mechanisms.
Sporadic alarm flows can be generated by the senders. Each alarm can require 15 bps at maximum.
Each sender can generate multiple alarm flows at the same time. The bandwidth limit for both slices
was set to 200 bps. We assume that the high priority traffic consists of messages with a priority higher
than 2.

The high priority and alarm thresholds of the PrioSDN_RM here proposed were initialized to
150 bps and 185 bps, respectively. The priority level was set to 3. For the sake of comparing the
mechanisms under similar operating conditions, the threshold of the approach proposed in [22] was
set to 160 bps, while the priority level was set to 3. The priority limit in DART [45] was set to 2 and it is
moved to 3 when an alarm occurs.

8.1. Configuration A

The periodic flows of each sender in the Configuration A are shown in Table 4. Such a configuration
consists of a set of periodic flows with different priorities. The amount of high priority traffic is similar
to the low priority one.

Table 4. Configuration A: Network slice periodic flows.

Flow ID Bit Rate PCP
(Bit/s)

1 30 0
2 40 1
3 30 1
4 40 2
5 30 2
6 20 3
7 25 4
8 20 5
9 30 5

10 20 6

The same experiments were performed with the three mechanisms. Figures 9–11 show the throughput
trend for both slices 1 and 2 using the PrioSDN_RM, the approach in [22] and DART [45], respectively.

In these conditions, PrioSDN_RM obtained an average throughput that is slightly lower than the
one of the approach in [22], due to the unexploited bandwidth that, in our approach, is left out for
handling new alarm flows. As far as DART is concerned, all the low priority messages (i.e., messages
with priority lower than the current priority limit) are dropped, whereas PrioSDN_RM is more flexible,
as it accepts allocation requests for low priority flows (i.e., it sends positive responses) provided that
there is enough bandwidth available for them. Consequently, as shown in Figure 11, the throughput
obtained using DART is lower than the one of the other approaches.

Electronics 2020, 9, 1009 15 of 21

Figure 9. Configuration A: Throughput with PrioSDN_RM; (a) slice 1; (b) slice 2.

Figure 10. Configuration A: Throughput with the approach in [22]; (a) slice 1; (b) slice 2.

Figure 11. Configuration A: Throughput with DART [45]; (a) slice 1; (b) slice 2.

Table 5 shows the FDR for slices 1 and 2 obtained with the three approaches compared here.

Electronics 2020, 9, 1009 16 of 21

Table 5. Configuration A: Frame drop ratio.

Flow ID PCP
FDR-Slice 1 FDR-Slice 2

PrioSDN_RM Mechanism DART PrioSDN_RM Mechanism DART
in [22] [45] in [22] [45]

1 0 60% 65% 100% 55% 70% 100%
2 1 88% 91% 100% 93% 86% 100%
3 1 86% 61% 100% 81% 69% 100%
4 2 83% 72% 100% 88% 70% 100%
5 2 70% 46% 100% 86% 59% 100%
6 3 0% 9% 72% 4.2% 5% 69%
7 4 6% 30% 0% 4% 12% 0%
8 5 0% 0% 0% 0% 13% 0%
9 5 0% 0% 0% 6.6% 6% 0%

10 6 2% 0% 0% 2% 0% 0%
Alarms 7 0% 15% 0% 0% 14% 0%

As far as the number of dropped messages is concerned, the PrioSDN_RM and the approach
in [22] present a similar FDR for both low priority and high priority flows. Conversely, the approach
in [22] experiences a higher number of dropped alarm messages, as that approach does not reserve
bandwidth for them, while the PrioSDN_RM guarantees that no alarm messages are dropped. In DART
all the low priority messages were dropped, while no high priority messages were dropped, as the
amount of bandwidth available in each slice is enough to manage these flows. Moreover, although there
is no explicit provision for alarm handling and there is no bandwidth reserved for them, no alarms
were dropped thanks to the limited amount of bandwidth required by the high priority flows.
Some messages with priority equal to 3 were dropped because the priority limit dynamically changes
from 2 to 3, and vice versa.

8.2. Configuration B

Table 6 shows the periodic flows of each sender in the Configuration B. Such a configuration
involves a higher amount of high priority traffic than the one in Configuration A.

Table 6. Configuration B: Network slice periodic flows.

Flow ID Bit Rate PCP
(Bit/s)

1 30 0
2 40 1
3 40 2
4 30 2
5 30 3
6 40 4
7 30 5
8 40 5
9 30 6

10 50 6

The throughput measured with the Configuration B with the PrioSDN_RM, the approach in [22]
and DART [45] is depicted in Figures 12–14, respectively.

Electronics 2020, 9, 1009 17 of 21

Figure 12. Configuration B: Throughput with PrioSDN_RM; (a) slice 1; (b) slice 2.

Figure 13. Configuration B: Throughput with the approach in [22]; (a) slice 1; (b) slice 2.

Figure 14. Configuration B: Throughput with DART [45]; (a) slice 1; (b) slice 2.

In these conditions, the three approaches obtained similar results in terms of throughput due to
the significant amount of high priority traffic.

Electronics 2020, 9, 1009 18 of 21

The FDR for slices 1 and 2 obtained with the three approaches is shown in Table 7.

Table 7. Configuration B: Frame drop ratio.

Flow ID PCP
FDR-Slice 1 FDR-Slice 2

PrioSDN_RM Mechanism DART PrioSDN_RM Mechanism DART
in [22] [45] in [22] [45]

1 0 84% 85% 100% 85% 83% 100%
2 1 97% 96% 100% 90% 95% 100%
3 2 90% 94% 100% 85% 91% 100%
4 2 91% 95% 100% 92% 94% 100%
5 3 59% 57% 93% 53% 59% 94%
6 4 66% 78% 45% 71% 76% 43%
7 5 18% 34% 32% 25% 41% 27%
8 5 47% 27% 27% 50% 23% 29%
9 6 44% 31% 31% 15% 36% 31%

10 6 13% 45% 37% 19% 42% 34%
Alarms 7 0% 34% 47% 0% 35% 50%

The results in Table 7 show that both the PrioSDN_RM and the approach in [22] present a slightly
better FDR for the low priority flows than DART, as the latter drops all the low priority messages.
Moreover, our approach guarantees that no alarms are dropped, whereas the other two approaches
dropped several alarms, as they do not reserve bandwidth for them. Actually, DART could be
configured in different ways to avoid dropped alarms. For example, the priority limit could be set to a
value higher than 3 when an alarm occurs. This way, all the messages with a priority below the priority
limit (even the high priority messages) would be dropped, whereas the flows with a priority higher
than the priority limit would experience an FDR equal to 0%. DART is therefore a very interesting
pass/fail mechanism. However, tuning of the priority limit in DART is a critical task under high
traffic load.

In terms of overhead, no notable differences between the three mechanisms under consideration
are found, as in both cases the delays introduced depend on the admission control implemented in the
SDN controller. The obtained results showed that the delay introduced by the three mechanisms is
always less than 10 ms.

9. Conclusions

The combination of Software-Defined Networking and Network Virtualization allows to reduce
the network management complexity. In particular, the ability to handle multiple logically isolated
virtual networks (slices) plays an important role in Industrial Internet of Things applications, as they
need to cope with the management of different domains, each one with specific QoS requirements.
In this context, this paper presented the design and implementation of the PrioSDN_RM, a dynamic
resource management mechanism for virtualized SDN networks in which multiple slices can share
some network links. The PrioSDN_RM is based on a priority-based admission control that is aware of
the current network state and that exploits two thresholds that limit the portion of bandwidth reserved
for the different kinds of flows, i.e., low priority, high priority, and alarms. Experimental evaluations
on a real testbed showed the effectiveness of the approach. Comparative assessments with similar
mechanisms in the literature, i.e., the one proposed in [22] and DART [45], highlighted that the
PrioSDN_RM combines the ability to guarantee that no alarm flow will be dropped with flexibility, as it
tries to accommodate as many flows as possible with the available bandwidth. In fact, the PrioSDN_RM
can accept allocation requests for low priority flows provided that there is enough bandwidth available
for them.

Future work will deal with an extensive performance evaluation of the proposed approach in
multi-hop networks.

Electronics 2020, 9, 1009 19 of 21

Author Contributions: Conceptualization, L.L. and S.A.; Investigation, L.L.; Methodology, L.L. and L.L.B.;
Software, S.A.; Supervision, L.L.B.; Validation, L.L.; Writing—original draft, L.L.; Writing—review & editing,
L.L.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aslam, M.S.; Khan, A.; Atif, A.; Hassan, S.A.; Mahmood, A.; Qureshi, H.K.; Gidlund, M. Exploring Multi-Hop
LoRa for Green Smart Cities. IEEE Netw. 2020, 34, 225–231. [CrossRef]

2. Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-khah, M.; Siano, P. Iot-based smart
cities: A survey. In Proceedings of the 2016 IEEE 16th International Conference on Environment and
Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

3. Qian, Y.; Wu, D.; Bao, W.; Lorenz, P. The Internet of Things for Smart Cities: Technologies and Applications.
IEEE Netw. 2019, 33, 4–5. [CrossRef]

4. Stojkoska, B.L.R.; Trivodaliev, K.V. A review of Internet of Things for smart home: Challenges and solutions.
J. Clean. Prod. 2017, 140, 1454–1464. [CrossRef]

5. Iannizzotto, G.; Lo Bello, L.; Nucita, A.; Grasso, G.M. A Vision and Speech Enabled, Customizable,
Virtual Assistant for Smart Environments. In Proceedings of the 2018 11th International Conference on
Human System Interaction (HSI), Gdansk, Poland, 4–6 July 2018; pp. 50–56.

6. Kabalci, Y.; Kabalci, E.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F. Internet of Things Applications as
Energy Internet in Smart Grids and Smart Environments. Electronics 2019, 8, 972. [CrossRef]

7. Simoens, P.; Dragone, M.; Saffiotti, A. The Internet of Robotic Things: A review of concept, added value and
applications. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418759424. doi:10.1177/1729881418759424. [CrossRef]

8. Patti, G.; Leonardi, L.; Lo Bello, L. A Novel MAC Protocol for Low Datarate Cooperative Mobile Robot
Teams. Electronics 2020, 9, 235. [CrossRef]

9. Ansari, S.; Aslam, T.; Poncela, J.; Otero, P.; Ansari, A. Internet of Things-Based Healthcare Applications.
In IoT Architectures, Models, and Platforms for Smart City Applications; IGI Global: Hershey, PA, USA, 2020;
pp. 1–28.

10. Catarinucci, L.; De Donno, D.; Mainetti, L.; Palano, L.; Patrono, L.; Stefanizzi, M.L.; Tarricone, L.
An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2015, 2, 515–526. [CrossRef]

11. Leonardi, L.; Lo Bello, L.; Battaglia, F.; Patti, G. Comparative Assessment of the LoRaWAN Medium Access
Control Protocols for IoT: Does Listen before Talk Perform Better than ALOHA? Electronics 2020, 9, 553.
[CrossRef]

12. Pasetti, M.; Ferrari, P.; Silva, D.R.C.; Silva, I.; Sisinni, E. On the Use of LoRaWAN for the Monitoring and
Control of Distributed Energy Resources in a Smart Campus. Appl. Sci. 2020, 10, 320. [CrossRef]

13. Wan, J.; Tang, S.; Shu, Z.; Li, D.; Wang, S.; Imran, M.; Vasilakos, A.V. Software-Defined Industrial Internet of
Things in the Context of Industry 4.0. IEEE Sens. J. 2016, 16, 7373–7380. [CrossRef]

14. Sisinni, E.; Ferrari, P.; Fernandes Carvalho, D.; Rinaldi, S.; Marco, P.; Flammini, A.; Depari, A. LoRaWAN
Range Extender for Industrial IoT. IEEE Trans. Ind. Inform. 2020, 16, 5607–5616. [CrossRef]

15. Luvisotto, M.; Tramarin, F.; Vangelista, L.; Vitturi, S. On the Use of LoRaWAN for Indoor Industrial IoT
Applications. Wirel. Commun. Mob. Comput. 2018, 2018, 1–11. [CrossRef]

16. Leonardi, L.; Ashjaei, M.; Fotouhi, H.; Lo Bello, L. A Proposal Towards Software-Defined Management of
Heterogeneous Virtualized Industrial Networks. In Proceedings of the IEEE 17th International Conference
on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019. [CrossRef]

17. Lucas-Estañ, M.C.; Raptis, T.P.; Sepulcre, M.; Passarella, A.; Regueiro, C.; Lazaro, O. A software defined
hierarchical communication and data management architecture for industry 4.0. In Proceedings of the 2018
14th Annual Conference on Wireless On-Demand Network Systems and Services (WONS), Isola, France,
6–8 February 2018; pp. 37–44.

18. Wan, M.; Yao, J.; Jing, Y.; Jin, X. Event-based Anomaly Detection for Non-public Industrial Communication
Protocols in SDN-based Control Systems. Comput. Mater. Contin. 2018, 55, 447–463.

19. Wang, J.; Yang, Y.; Wang, T.; Sherratt, R.S.; Zhang, J. Big Data Service Architecture: A Survey.
J. Internet Technol. 2020, 21, 393–405.

http://dx.doi.org/10.1109/MNET.001.1900269
http://dx.doi.org/10.1109/MNET.2019.8675165
http://dx.doi.org/10.1016/j.jclepro.2016.10.006
http://dx.doi.org/10.3390/electronics8090972
http://dx.doi.org/10.1177/1729881418759424
http://dx.doi.org/10.3390/electronics9020235
http://dx.doi.org/10.1109/JIOT.2015.2417684
http://dx.doi.org/10.3390/electronics9040553
http://dx.doi.org/10.3390/app10010320
http://dx.doi.org/10.1109/JSEN.2016.2565621
http://dx.doi.org/10.1109/TII.2019.2958620
http://dx.doi.org/10.1155/2018/3982646
http://dx.doi.org/10.1109/INDIN41052.2019.8972223

Electronics 2020, 9, 1009 20 of 21

20. Zhang, J.; Zhong, S.; Wang, T.; Chao, H.C.; Wang, J. Blockchain-based systems and applications: A survey.
J. Internet Technol. 2020, 21, 1–14.

21. Liu, P.; Wang, X.; Chaudhry, S.; Javeed, K.; Ma, Y.; Collier, M. Secure video streaming with lightweight cipher
PRESENT in an SDN testbed. Comput. Mater. Contin. 2018, 57, 353–363. [CrossRef]

22. Aglianò, S.; Ashjaei, M.; Behnam, M.; Lo Bello, L. Resource management and control in virtualized SDN
networks. In Proceedings of the 2018 Real-Time and Embedded Systems and Technologies (RTEST),
Tehran, Iran, 9–10 May 2018; pp. 47–53. [CrossRef]

23. Kreutz, D.; Ramos, F.M.V.; Veríssimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined
Networking: A Comprehensive Survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]

24. Blenk, A.; Basta, A.; Reisslein, M.; Kellerer, W. Survey on Network Virtualization Hypervisors for Software
Defined Networking. IEEE Commun. Surv. Tutor. 2016, 18, 655–685. [CrossRef]

25. Sherwood, R.; Chan, M.; Covington, A.; Gibb, G.; Flajslik, M.; Handigol, N.; Huang, T.Y.; Kazemian, P.;
Kobayashi, M.; Naous, J.; et al. Carving Research Slices out of Your Production Networks with OpenFlow.
ACM Spec. Interest Group Data Commun. (SIGCOMM) Comput. Commun. Rev. 2010, 40, 129–130. [CrossRef]

26. Alderisi, G.; Iannizzotto, G.; Lo Bello, L. Towards IEEE 802.1 Ethernet AVB for Advanced Driver Assistance
Systems: A preliminary assessment. In Proceedings of the 2012 IEEE 17th International Conference on
Emerging Technologies Factory Automation (ETFA), Krakow, Poland, 17–21 September 2012; pp. 1–4.

27. Zhao, L.; Pop, P.; Zheng, Z.; Li, Q. Timing Analysis of AVB Traffic in TSN Networks Using Network Calculus.
In Proceedings of the 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
Porto, Portugal, 11–13 April 2018; pp. 25–36.

28. Alderisi, G.; Patti, G.; Lo Bello, L. Introducing support for scheduled traffic over IEEE audio video bridging
networks. In Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies Factory Automation
(ETFA), Cagliari, Italy, 10–13 September 2013; pp. 1–9. [CrossRef]

29. Ashjaei, M.; Patti, G.; Behnam, M.; Nolte, T.; Alderisi, G.; Lo Bello, L. Schedulability analysis of Ethernet
Audio Video Bridging networks with scheduled traffic support. Real-Time Syst. 2017, 53, 526-577. [CrossRef]

30. Ashjaei, M.; Girs, S. Dynamic Resource Distribution using SDN in Wireless Networks. In Proceedings
of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina,
26–28 February 2020; pp. 967–972.

31. Girs, S.; Ashiaei, M. Designing a Bandwidth Management Scheme for Heterogeneous Virtualized Networks.
In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), Turin, Italy, 4–7 September 2018; Volume 1, pp. 1079–1082. [CrossRef]

32. Paliwal, M.; Shrimankar, D. Effective Resource Management in SDN Enabled Data Center Network Based
on Traffic Demand. IEEE Access 2019, 7, 69698–69706. [CrossRef]

33. Trivisonno, R.; Guerzoni, R.; Vaishnavi, I.; Frimpong, A. Network Resource Management and QoS
in SDN-Enabled 5G Systems. In Proceedings of the 2015 IEEE Global Communications Conference
(GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–7. [CrossRef]

34. Lo Bello, L.; Lombardo, A.; Milardo, S.; Patti, G.; Reno, M. Experimental Assessments and Analysis of an
SDN Framework to Integrate Mobility Management in Industrial Wireless Sensor Networks. IEEE Trans.
Ind. Inform. 2020, 16, 5586–5595. [CrossRef]

35. Satija, S.; Sharma, T.; Bhushan, B. Innovative approach to Wireless Sensor Networks: SD-WSN.
In Proceedings of the 2019 International Conference on Computing, Communication, and Intelligent Systems
(ICCCIS), Greater Noida, India, 18–19 October 2019; pp. 170–175.

36. Jang, H.C.; Lin, J.T. Bandwidth management framework for smart homes using SDN: ISP perspective. Int. J.
Internet Protoc. Technol. (IJIPT) 2019, 12, 110–120. [CrossRef]

37. Li, C.; Guo, W.; Wang, W.; Hu, W.; Xia, M. Programmable bandwidth management in software-defined
EPON architecture. Opt. Commun. 2016, 370, 43–48. [CrossRef]

38. Chang, Y.; Chen, Y.; Chen, T.; Chen, J.; Chiu, S.; Chang, W. Software-Defined Dynamic Bandwidth
Management. In Proceedings of the 2019 21st International Conference on Advanced Communication
Technology (ICACT), PyeongChang, Korea, 17–20 February 2019; pp. 201–205. [CrossRef]

39. Jimson, E.R.; Nisar, K.; bin Ahmad Hijazi, M.H. Bandwidth management using software defined network
and comparison of the throughput performance with traditional network. In Proceedings of the International
Conference on Computer and Drone Applications (IConDA), Kuching, Malaysia, 9–11 November 2017;
pp. 71–76. [CrossRef]

http://dx.doi.org/10.32604/cmc.2018.04142
http://dx.doi.org/10.1109/RTEST.2018.8397078
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/COMST.2015.2489183
http://dx.doi.org/10.1145/1672308.1672333
http://dx.doi.org/10.1109/ETFA.2013.6647943
http://dx.doi.org/10.1007/s11241-017-9268-5
http://dx.doi.org/10.1109/ETFA.2018.8502450
http://dx.doi.org/10.1109/ACCESS.2019.2919348
http://dx.doi.org/10.1109/GLOCOM.2015.7417376
http://dx.doi.org/10.1109/TII.2020.2963846
http://dx.doi.org/10.1504/IJIPT.2019.099678
http://dx.doi.org/10.1016/j.optcom.2016.02.070
http://dx.doi.org/10.23919/ICACT.2019.8702052
http://dx.doi.org/10.1109/ICONDA.2017.8270402

Electronics 2020, 9, 1009 21 of 21

40. Becker, M.; Lu, Z.; Chen, D. An Adaptive Resource Provisioning Scheme for Industrial SDN Networks.
In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN),
Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 877–880. [CrossRef]

41. Min, S.; Kim, S.; Lee, J.; Kim, B.; Hong, W.; Kong, J. Implementation of an OpenFlow network virtualization
for multi-controller environment. In Proceedings of the 2012 14th International Conference on Advanced
Communication Technology (ICACT), PyeongChang, Korea, 19–22 February 2012; pp. 589–592.

42. Priyadarsini, M.; Bera, P. A Secure Virtual Controller for Traffic Management in SDN. IEEE Lett. Comput. Soc.
2019, 2, 24–27. [CrossRef]

43. Chen, J.; Ma, Y.; Kuo, H.; Yang, C.; Hung, W. Software-Defined Network Virtualization Platform for
Enterprise Network Resource Management. IEEE Trans. Emerg. Top. Comput. 2016, 4, 179–186. [CrossRef]

44. Mijumbi, R.; Serrat, J.; Rubio-Loyola, J.; Bouten, N.; Turck, F.D.; Latré, S. Dynamic resource management
in SDN-based virtualized networks. In Proceedings of the 10th International Conference on Network and
Service Management (CNSM) and Workshop, Rio de Janeiro, Brazil, 17–21 November 2014; pp. 412–417.
[CrossRef]

45. Struhár, V.; Ashjaei, M.; Behnam, M.; Craciunas, S.S.; Papadopoulos, A.V. DART: Dynamic Bandwidth
Distribution Framework for Virtualized Software Defined Networks. In Proceedings of the 45th Annual
Conference of the IEEE Industrial Electronics Society (IECON), Lisbon, Portugal, 14–17 October 2019;
Volume 1, pp. 2934–2939.

46. Asadollahi, S.; Goswami, B. Experimenting with scalability of floodlight controller in software defined
networks. In Proceedings of the 2017 International Conference on Electrical, Electronics, Communication,
Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 15–16 December 2017; pp. 288–292.

47. Sherwood, R.; Gibb, G.; kiong Yap, K.; Casado, M.; Mckeown, N.; Parulkar, G. FlowVisor: A Network
Virtualization Layer; OpenFlow Switch Consortium, Technical Report; ETH Zürich: Zürich, Switzerland, 2009.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/INDIN41052.2019.8972194
http://dx.doi.org/10.1109/LOCS.2019.2933418
http://dx.doi.org/10.1109/TETC.2015.2478757
http://dx.doi.org/10.1109/CNSM.2014.7014204
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Related Work
	PrioSDN_RM: Bandwidth Management Strategy
	System Design
	Priority-Based Admission Control-Basic Concepts
	Priority-Based Admission Control-Bandwidth Allocation Procedure

	A Use Case for the PrioSDN_RM
	Implementation
	Performance Evaluation
	Throughput
	Frame Drop Ratio
	Priority-Based Admission Control Overhead

	Comparative Assessment with the Relevant Mechanisms in the Literature
	Configuration A
	Configuration B

	Conclusions
	References

