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Abstract: There is a strong positive correlation between the development of deep learning and
the amount of public data available. Not all data can be released in their raw form because of
the risk to the privacy of the related individuals. The main objective of privacy-preserving data
publication is to anonymize the data while maintaining their utility. In this paper, we propose
a privacy-preserving semi-generative adversarial network (PPSGAN) that selectively adds noise
to class-independent features of each image to enable the processed image to maintain its original
class label. Our experiments on training classifiers with synthetic datasets anonymized with various
methods confirm that PPSGAN shows better utility than other conventional methods, including
blurring, noise-adding, filtering, and generation using GANs.

Keywords: adversarial learning; data privacy; deep learning; differential privacy; generative
adversarial networks; machine learning; model inversion attacks

1. Introduction

The publication of various benchmark datasets enabled the emergence of a variety of current
state-of-the-art deep learning models. However, excellent model performance does not always
guarantee the possibility of generalization. Transfer learning and optimization techniques, such as
few-shot [1], one-shot [2], and zero-shot [3] learning, might be able to bridge the gap between two
different datasets, but none of these can be an optimal solution.

A promising approach for finding a model that works best on a specific data distribution is to
train the model with a training set directly sampled from that distribution. The importance of the
dataset increases the imbalance between those who possess it and those who do not, which increases
individual researchers’ reliance on benchmark datasets. The lack of public data makes it difficult for
data holders to take advantage of the current open-source flow in the deep learning community.

Although data publication can be beneficial for both data holders and individual researchers,
not all data can be published freely in its raw form because of privacy issues. Datasets, including
collections of images, speech, or videos, from millions of individuals are ripe with privacy risks.
Without the data provider’s full consent to publication, the dataset should be either noised with
an appropriate level of anonymity or substituted with a synthetic neighboring dataset that has
a distribution similar to the original.

Synthetic data generation [4–6] is a technique wherein sensitive data is partially or fully
replaced with synthetic data before it is published. Along with recent advancements in generative
adversarial networks (GANs) [7–12], synthetic data generation has become the focus in recent years
as a fundamental solution for privacy-preserving data publication. Beaulieu-Jones et al. [4] generate
shareable biomedical data by applying an objective perturbation [13] to ACGAN [9].
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Autoencoders are also widely used as a tool to convert an image into another synthetic image.
Ma et al. [14] and Ren et al. [15] manually extract a pose or an action from an image and feed it to the
autoencoder with the original to generate a new image with the same pose or action. Kim and Yang [16]
anonymize an image by applying Laplace and Gaussian mechanisms [17] to the latent-space-level
feature representation of the image and reconstructing it to the original pixel-level. Kim and Yang’s
approach utilizes substantial privacy-preserving aspects of differential privacy [17] but fails to preserve
the original class of the input image because of the indiscriminate noise-adding technique to the
image’s feature representation.

Conventional image anonymization methods add noise to images at the pixel-level. Modifying
an image at the pixel-level is simple and computationally efficient. However, it drastically decreases in
utility if a significant level of privacy is applied. The idea of encoding an image at the latent-space-level
allows feature manipulation rather than pixel manipulation, increasing the utility of the final result.
If it is possible to add noise only to the class-independent features, we can use the processed image data
for much broader research topics such as classification, anomaly detection, and data augmentation.
Throughout this paper, we define class-dependent features as features common to images in the same
class and class-independent features as features unique to each image.

In this work, we propose a privacy-preserving semi-generative adversarial network (PPSGAN) as
a novel solution to selective feature anonymization for private data publication. The main contributions
of our work focus on the improvement of PPAPNet [16] to enhance the utility of the processed image
data as follows:

• We introduce PPSGAN, an image anonymization deep neural network that preserves the privacy
of individuals related to the image dataset without losing the usefulness of the entire dataset.

• We use the self-attention mechanism [18] to make the noise amplifier of PPSGAN apply different
levels of privacy according to the importance of the feature. This mechanism allows PPSGAN to
keep the original class label of each image, even in strict privacy conditions.

• We evaluate the quality and the utility of the image data anonymized with our model from
different aspects, including the performance of the classifiers trained with the original data,
processed with PPSGAN, and generated or modified with other methods.

PPSGAN consists of two sets of networks: a set of encoder and decoder networks with
a noise amplifier and a set of critic and classifier networks. The encoder and decoder networks
add noise to class-independent features of the input image, and the critic and classifier networks
evaluate the processed image via comparison with real samples. We train two sets in an adversarial
setting, a common strategy for training GANs. The encoder converts an image into its latent-space
representation, z, a vector that contains the essential features of the image. Unlike PPAPNet, we attach
a self-attention module [18] after the encoder to distinguish class-dependent features from z. The noise
amplifier references the attention matrix inside the self-attention module to set class-independent
features as targets for noise-adding. The decoder reconstructs the modified latent-space representation,
z̃, into a new image. To ensure that the decoder is not merely generating random images, we add
a penalty to the training loss of the encoder and the decoder. The critic decides whether the processed
image is real or fake, and the classifier decides the class. Figure 1 contains a detailed visualization of
the model architecture of PPSGAN.

Unlike PPAPNet, we use the ACGAN [9] critic instead of the WGAN-GP [19] critic to guide the
training of the self-attention module. The ACGAN critic has an auxiliary classifier that determines
whether the image still has its class-dependent features. With feedback from the critic and the
classifier, the self-attention module updates its attention matrix for improved discrimination between
class-dependent and independent features. While Kim and Yang [16] penalize their model with an
attacker, a network that tries to reconstruct the original image from the processed image, we use
a simple penalty term, zero-noise penalty. In Figure 2, PPSGAN successfully converts images into
visually different images in the same class without the attacker.
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Figure 1. The model architecture of PPSGAN. The encoder–decoder network performs selective feature
anonymization to original images. The self-attention module selects class-dependent features. The noise
amplifier references the attention matrix of the self-attention module to add noise to class-independent
features. The critic and the classifier evaluate processed images. The critic measures the quality
(whether it is real or fake), and the classifier measures the utility (whether it preserves the original
class label).

Figure 2. Samples from PPSGAN trained on the MNIST dataset. Our model successfully converts each
image (top) into a new image (bottom) while preserving class-dependent features. With our novel
selective feature anonymization mechanism, PPSGAN-processed image data can be used for much
broader research topics such as classification, anomaly detection, and data augmentation.

2. Background

In this section, we summarize the essential concepts of generative adversarial networks,
differential privacy, and self-attention. PPSGAN utilizes the ACGAN [9] critic to perform the quality
and utility evaluation of processed images. We fuse differential privacy and self-attention for selective
feature anonymization.

2.1. Generative Adversarial Networks

In recent years, generative adversarial networks (GANs) [8–12] have played a pivotal role in
the area of data generation and style transfer. The underlying idea is a two-player minimax game
between a generator and a critic (discriminator) that trains two networks in an adversarial mode.
This methodology minimizes a particular f -divergence between the model distribution (Pθ) and
the real distribution (Pr) [20]. Choosing an appropriate f -divergence is essential in preventing
a mode collapse, which is a well-known problem when the GAN’s generator only draws one or
a few foolish examples.The earth mover (EM) distance is one of the most popular f -divergences used
in state-of-the-art GANs [7,19,21].

Making slight modifications to the original GAN structure can broaden its usefulness. By replacing
the generator with deep convolutional encoder–decoder networks, researchers also perform style
transfer with GANs [22–25]. Kim et al. [22] use deep convolutional encoder–decoder networks and
a DCGAN [11] critic to find mappings between two different image domains. Odena et al. [9] add an
auxiliary classifier to the critic and feed the generator with random noise and a target class label to
make images in the target class.
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The power of GAN comes from its ability to generate images from random noise that are
indistinguishable from real images. If the utility of generated images is guaranteed, we can also
replace the original dataset with a synthetic dataset generated with GANs for privacy-preserving
purposes. Ren et al. [15] propose a video anonymizer that modifies each person’s face with minimal
effect on the action detection performance. Ma et al. [14] manipulate the foreground, background,
and pose of the input image using different embedding vectors. To preserve the privacy of an individual
in an image, Sun et al. [26] replace the face of the target with a randomly generated face image.

While other researchers manually replace and preserve certain features to achieve privacy,
Kim and Yang [16] introduce the concept of differential privacy to manipulate the features of images in
a dataset with total randomness. Diluting unique features of each image makes the processed dataset
immune to model inversion attacks [27] but reduces the utility of the entire dataset, resulting in a low
inception score [28] on unsupervised CIFAR-10 [29].

2.2. Differential Privacy

Dwork et al. [17,30,31] first introduced differential privacy, an algorithm that captures the
increased risk to one’s privacy incurred by participating in a database. Nowadays, differential privacy
is a reliable standard for privacy guarantees for algorithms on aggregate databases. Differential privacy
for two neighboring datasets that differ by a single element is defined as follows:

A randomized mechanism, M : D → R, with domain D and range R, satisfies (ε, δ)-differential
privacy if for any two adjacent inputs d, d′ ∈ D and for any subset of outputs S ⊆ R, it holds that:

Pr[M(d) ∈ S] ≤ eε Pr[M(d′) ∈ S] + δ (1)

The Gaussian and Laplace noise mechanisms [17] are commonly used to approximate
a deterministic real-valued function, f : D → R, via additive noise calibrated to f ’s sensitivity
s f , which is defined as the maximum of the absolute distance | f (d) − f (d′)|, where d and d′ are
adjacent inputs. The Gaussian noise mechanism is defined as follows:

M(d) , f (d) + N(0, σ2) (2)

where N(0, σ2) is a normal (Gaussian) distribution with mean 0 and standard deviation σ.
This mechanism satisfies (ε, δ)-differential privacy with σ =

√
2 log(1.25/δ)

s f
ε . The Laplace noise

mechanism is defined as follows:
M(d) , f (d) + Lap(0, b) (3)

where Lap(0, b) is a Laplace distribution with mean 0 and scale b. This mechanism satisfies
(ε, 0)-differential privacy with b =

s f
ε .

2.3. Self-Attention

Vaswani et al. first introduced the self-attention mechanism as a particular case of their
scaled-dot-product attention [18]. The input consists of queries and keys of dimension dk and values
of dimension dv. They compute the dot products of the query with all keys, divide each by

√
dk,

and apply the softmax function to obtain the weights on the values. For computational efficiency, they
packed together the queries, keys, and values into matrices Q, K, and V. The matrix of outputs is
defined as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (4)

Compared to additive attention [32], scaled-dot-product attention is much faster and more
space-efficient in practice because it can be implemented using a highly optimized matrix multiplication
code. In a self-attention version of scaled-dot-product attention, the keys, values, and queries come
from the same place, which, in the case of PPSGAN, is the final output of the encoder.
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3. PPSGAN

Our PPSGAN methodology aims to protect the privacy of individuals related to an image
dataset by generating a synthetic image dataset that can replace the original. The selective feature
anonymization mechanism of PPSGAN effectively conceals the class-independent features and
highlights the class-dependent features of each image.

3.1. Model Architecture

PPSGAN consists of a set of the encoder Ge, noise amplifier Na, and decoder Gd and a set of the
critic Cd and the classifier, Cc. The encoder Ge converts an input image x into its original feature vector
z. The noise amplifier Na adds noise to z using its novel anonymization mechanism. The decoder
Gd reconstructs the modified feature vector z̃ to an anonymized image x̃. The critic Cd evaluates the
quality of x̃, and the classifier Cc evaluates the utility of x̃.

The encoder Ge takes an image x of size n × n × k and outputs a d-dimensional vector z.
The decoder Gd reconstructs an image x̃ of size n × n × k from the d-dimensional vector z̃. Ge is
composed of four convolution layers with 5 × 5 kernel and stride 2, each followed by the batch
normalization [33] and the LeakyReLU [34]. We also add a 4096× d dense layer after the last activation
function to reduce the output to a d-dimensional vector z. Gd starts with a d × 4096 dense layer
that expands z̃ to fit the first deconvolution layer, followed by four sets of 5× 5 kernel and stride
2 deconvolution (transposed convolution) layer [35], the batch normalization, and the LeakyReLU
(the first three) or the sigmoid (the last).

The critic Cd and the classifier Cc take an image and share the four convolution layers with 5× 5
and stride 2, each followed by the batch normalization and the LeakyReLU. In this method, Cd uses
a 4096× 1 dense layer with the sigmoid activation function for discrimination and Cc uses a 4096× 10
dense layer with the softmax activation function for classification.

3.2. Noise Amplifier

The noise amplifier Na adds noise to z. For Na, we refine the original noise amplifier [16]
using scaled-dot-product self-attention [18]. We first initialize the encoder Ge and the decoder Gd
with a pretrained autoencoder to find the approximate sensitivity. In Kim and Yang’s work [16],
the approximate sensitivity se is defined as follows:

se = max
xi ,xj∼St

|Ge(xi)− Ge(xj)| (5)

where xi and xj are images sampled from the training set, St, and | · | is the element-wise absolute
value calculation of a vector. With se, the next step is to find the optimal scale vector σ∗ for the initial
noise vector α. Kim and Yang utilize the Gaussian and Laplace noise mechanisms [17] to find σ∗.
With privacy budget hyperparameters ε and δ, σ∗ is defined as follows:

σ∗ =
{√

2 log(1.25/δ) se
ε δ 6= 0

se
ε δ = 0

(6)

If δ = 0, we sample α from the Laplace distribution Lap(0, 1). Otherwise, we use the normal
distribution N(0, 1). To find class-dependent features in z, we use scaled-dot-product self-attention [18].
The attention matrix is defined as follows:

Attention(z) = so f tmax(
zzT
√

d
) (7)

We use Attention(z) as a weight matrix to find class-dependent features. Note that our attention
matrix Attention(z) is the output of the softmax function. To find a weight matrix for class-independent
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features, we subtract each value of Attention(z) from 1 to reverse the weight. The negative-attention
matrix is defined as follows:

NegAttention(z) = J − Attention(z) (8)

where J is a matrix of ones that has the same dimension as the attention matrix. Now the final modified
feature vector z̃ is defined as follows:

z̃ = Attention(z) · z + NegAttention(z) · (α ◦ σ∗) (9)

where · is the dot product and ◦ is the Hadamard product of two matrices. In our experiments, we use
various combinations of ε and δ to train models with different levels of privacy.

3.3. Zero-Noise Penalty

The role of the decoder Gd is to rebuild a modified feature vector z̃ into its unique image form.
Since the critic Cd and the classifier Cc evaluate the entire Ge - Na - Gd network by the final output
image, the performance of Gd also effects the training of the noise amplifier Na. If Gd disregards the
utility aspect, Na amplifies the initial noise α as a whole to help Gd create realistic random images.
The opposite case of Gd focusing too much on the utility can also happen. In this case, Na cancels out
α, feed Gd the raw feature vector z, and the Ge - Na - Gd network works like an autoencoder.

To guide Gd in the right direction, we add a new term, zero-noise penalty Lzero, to the Ge - Na - Gd
network’s loss function. The zero-noise penalty is the mean-squared-error loss between the original
image and the reconstructed version of the original feature z using Gd as follows:

Lzero = [(x− Gd(z)]2 (10)

To calculate Lzero, we add a skip-connection [36] that jumps over Na and directly connects Ge and
Gd. Samples of Gd(z) are in Figure 3.

Figure 3. Samples from PPSGAN trained on the Fashion-MNIST dataset. Our model anonymizes each
image (top) into a new image (middle). The zero-noise penalty is the mean-squared-error between the
original (top) and the reconstructed version of the original feature z using the decoder Gd (bottom).

3.4. Adversarial Training

As depicted in Figure 1, the two sets of networks, Ge - Na - Gd and Cd - Cc, are trained in an
adversarial mode based on the training theme of ACGAN [9]. We first sample two batches of images
x and x′ from the real dataset Pr. Then, the Ge - Na - Gd network anonymizes x into x̃, and Cd - Cc

compares x̃ and x′.
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The critic Cd attempts to label x̃ as fake (0) and x′ as real (1). The classifier Cc predicts class labels
of x′ and x̃. The objective function for Cd - Cc has two parts: the log-likelihood of correct discrimination,
Ld, and the log-likelihood of correct class c, Lc.

Ld = E[log P(D = 1 | x′)] + E[log P(D = 0 | x̃)] (11)

Lc = E[log P(C = c | x′)] + E[log P(C = c | x̃)] (12)

Herein, Cd - Cc is trained to maximize Ld + Lc, while Ge - Na - Gd is trained to maximize Lc − Ld.
In our implementation, we use the sigmoid-cross-entropy loss for Ld, the softmax-cross-entropy

loss for Lc, and the zero-noise penalty to stabilize the training of Gd. Therefore, Cd - Cc learns to
minimize Ld + Lc, and Ge - Na - Gd learns to minimize Lc − Ld + Lzero.

After initializing Ge and Gd with a pretrained autoencoder and calculating the approximated
sensitivity se, all the weights in PPSGAN are fine-tuned by carrying out an adversarial training in
Algorithm 1. When the model converges, Ge - Na - Gd is optimized to process any image sampled from
the real dataset Pr to a synthetic image in the same class, with its novel selective feature anonymization.

Algorithm 1 PPSGAN training with default values of n = 5, η = 1.0× 10−4, β1 = 0.5, and β2 = 0.9.
G(wg, x) stands for Ge - Na - Gd and Gzero(wg, x) stands for Ge - Gd.

Require: Initial Ge - Na - Gd parameters wg0, initial Cd - Cc parameters wc0, and batch size m.
1: while wg has not converged do
2: for t = 1, ..., n do
3: for i = 1, ..., m do
4: Sample real data x ∼ Pr and x′ ∼ Pr.
5: x̃ ← G(wg, x)
6: L(i)

C ← Ld(wc, x̃, x′) + Lc(wc, x̃, x′)
7: wc ← AdamW(∇ 1

m ∑m
i=1 L(i)

C , wc, α, β1, β2)
8: for i = 1, ..., m do
9: Sample real data x ∼ Pr and x′ ∼ Pr.

10: x̃ ← G(wg, x)
11: x̂ ← Gzero(wg, x)
12: L(i)

G ← Lc(wc, x̃, x′)− Ld(wc, x̃, x′) + [x− x̂]2
13: wg ← AdamW(∇ 1

m ∑m
i=1 L(i)

G , wg, α, β1, β2)

4. Experiments

We evaluate the performance of our model both quantitatively and qualitatively using the MNIST
[37], Fashion-MNIST [38], CIFAR-10 [29], and SVHN [39] datasets. More details about each dataset are
provided in Table 1. We first compare the classification accuracy of classifiers trained with the original,
PPSGAN-processed, and ACGAN [9]-generated dataset. We also measure the sample diversity of the
anonymized images using the Fréchet inception distance [40] on the CIFAR-10 dataset.

Table 1. Detailed information about datasets.

Dataset Name Resolution Training Set Test Set

MNIST 28× 28× 1 60,000 10,000
Fashion-MNIST 28× 28× 1 60,000 10,000
CIFAR-10 32× 32× 3 50,000 10,000
SVHN 32× 32× 3 73,257 26,032

4.1. Experimental Details

Our implementation is done using TensorFlow [41]. We used a single NVIDIA Titan V GPU with
a minibatch size of 256 and optimized our model with the AdamW optimizer [42] with a learning rate
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of 1.0× 10−4, a weight decay of 1.0× 10−4, β1 = 0.5, and β2 = 0.9. ε and δ determine the privacy level
of the noise amplifier. We use four combinations of (ε, δ): (1.0, 0) and (1.0, 1.0× 10−8) for standard
privacy and (0.1, 0) and (0.1, 1.0× 10−8) for strong privacy. We indicate each model as PPSGAN-(ε, δ).
The dimension size of the feature vectors z and z̃ is 128.

For ACGAN, we use the decoder Gd, the critic Cd, and the classifier Cc trained with the ACGAN
training theme, feeding Gd with the noise sampled from U[−1, 1] and class labels. We use the model
structure of Cc for the utility evaluation classifier.

4.2. Utility Performance on Classifier Training

Publishing a useful synthetic image dataset necessitates a level of quality close to that of
the original. In particular, we would like to know that if a classifier trained only with the
PPSGAN-processed dataset still shows comparable performance to a classifier trained with the original.
We first train PPSGAN and ACGAN using the training set in Table 1 and process or generate a synthetic
dataset of the same size and class distribution. After training classifiers with the original or synthetic
training sets, we measure the classification accuracy of each classifier with test sets. The performance
results of the classifiers are listed in Table 2.

Table 2. Classification accuracies (%) of classifiers trained with the original or synthetic datasets.
The PPSGAN-processed data show comparable performance to the original datasets, while the
ACGAN-generated data show poor results.

Method MNIST Fashion-MNIST CIFAR-10 SVHN

Original Data 99.60± 0.11 96.61± 0.02 88.80± 0.12 95.56± 0.03
ACGAN 98.15± 0.05 87.35± 0.34 59.58± 0.87 86.32± 0.67

PPSGAN-(1.0, 0) 98.23± 0.15 95.01± 0.08 76.91± 0.38 91.11± 0.01
PPSGAN-(1.0, 1.0× 10−8) 98.51± 0.20 95.07± 0.03 72.68± 0.04 90.85± 0.27
PPSGAN-(0.1, 0) 98.60± 0.11 94.53± 0.08 72.23± 0.03 90.56± 0.02
PPSGAN-(0.1, 1.0× 10−8) 98.24± 0.09 94.31± 0.21 72.36± 0.01 90.63± 0.01

This analysis shows that an anonymized dataset processed with PPSGAN preserves its original
distribution and can replace the original dataset with a fair amount of utility. As shown in Table 2,
our models with different privacy levels synthesize a dataset in sound quality for the classifier training,
while synthetic datasets from ACGAN result in training a weak classifier. The selective feature
anonymization is another strength of our model. The effect of a stronger privacy level is minimal
because the majority of anonymization is applied to class-independent features.

4.3. Sample Diversity on CIFAR-10

We measure the inception score (IS) and the Fréchet inception distance (FID) of PPSGAN trained
with CIFAR-10 to compare the sample diversity of PPSGAN with that of other published models.
Lower inception scores and higher Fréchet inception distance indicate a lower sample diversity with
a higher rate of mode collapse.

Kim and Yang [16] state that the randomness in the latent-space-level feature anonymization
mechanism results in the low IS of PPAPNet, as shown in Table 3. The gap between our model and
PPAPNet in the IS certifies that our selective feature anonymization is a more suitable method for
privacy-preserving image data publishing. Our model also shows better results than ACGAN in the IS
and FID as shown in Tables 3 and 4, respectively. PPSGAN-(0.1, 0) shows 6.12± 0.05 of the IS, which is
similar to that of DCGAN [11] and PPSGAN-(0.1, 1.0× 10−8) shows 46.62 of the FID, similar to that of
the residual flow method [43].

The IS and the FID of our model were obtained without significant optimization or fine-tuning
of the hyperparameters for sample diversity. However, as analysed in the previous paragraph,
our model produced either comparable or improved performance over other approaches. In fact,
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our model produced fairly good results in the IS. We plan to improve PPSGAN for generating more
diverse samples.

Table 3. Inception score on CIFAR-10.

Method Score

Original Data 11.31± 0.08
PPAP-se-(ε) [16] 2.83± 0.01
PPAP-se-(ε, δ) [16] 2.60± 0.01
ACGAN 5.70± 0.03

PPSGAN-(1.0, 0) 5.87± 0.13
PPSGAN-(1.0, 1.0× 10−8) 6.01± 0.08
PPSGAN-(0.1, 0) 6.12± 0.05
PPSGAN-(0.1, 1.0× 10−8) 5.91± 0.09

ALI [44] (in [45]) 5.34± 0.05
BEGAN [8] 5.62
DCGAN [11] (in [46]) 6.16± 0.07

Improved GAN (-L+HA) [28] 6.86± 0.06
WGAN-GP Resnet [19] 7.86± 0.07

Table 4. Fréchet inception distance on CIFAR-10.

Method Score

ACGAN 50.01

PPSGAN-(1.0, 0) 49.67
PPSGAN-(1.0, 1.0× 10−8) 47.67
PPSGAN-(0.1, 0) 48.99
PPSGAN-(0.1, 1.0× 10−8) 46.62

Residual Flow [43] 46.37

MSGAN [47] 28.73
FOGAN [48] 27.4
NCSN [49] 25.32
WGAN-GP + TT Update Rule [48] 24.8
SN-GANs [48] 21.7
MMD-GAN-rep [50] 16.21
AutoGAN [51] 12.42

4.4. t-SNE Visualization of the Latent Features

We present the t-SNE [52] visualizations of latent feature vectors of PPSGAN in Figure 4.
The t-SNE visualizations of the original feature vector z, Figure 4 (left), show that the encoder Ge has
learned to extract class-dependent features from the input image. In Figure 4 (right), the feature vectors
of the anonymized image Ge(x̃) are also well clustered by the class-dependent features. Interestingly,
the modified feature vector z̃, Figure 4 (middle), first form several clusters that do not correlate with
class labels. Each cluster is then divided into smaller clusters according to each class label. As the
noise amplifier Na applies the normal or Laplace distribution-sampled noise to the class-independent
features, class-dependent features also affect the t-SNE embedding. This unique cluster-in-cluster
structure proves that Na selectively adds noise to the class-independent features and preserves the
class-dependent features.
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(a) t-SNE visualizations of latent feature vectors on the MNIST.

(b) t-SNE visualizations of latent feature vectors on the CIFAR-10.

Figure 4. t-SNE visualizations of latent feature vectors on the MNIST and CIFAR-10 datasets. Original
feature vectors z (left), anonymized feature vectors z̃ (middle), and encoder-passed feature vectors
of anonymized images Ge(x̃) (right). Both z and Ge(x̃) are well clustered according to each class
label. The z̃ (middle) shows an interesting cluster-in-cluster structure, first clustered according to the
class-independent features and then further clustered into smaller groups of each class label.
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4.5. Anonymized Samples

We present five anonymized image samples of each class obtained with PPSGAN in Figure 5 and
six representative samples in the MNIST, Fashion-MNIST, CIFAR-10, and SVHN datasets along with
their anonymized versions modified with PPSGAN and other conventional image-processing methods
in Figure 6. For conventional methods, we use Gaussian-blur, Laplace-blur, Gaussian-noise-adding,
Laplace-noise-adding, uniform-filtering, and median-filtering. For each method, we train classifiers
with various versions of training sets processed with different hyperparameters and choose the ones
that show similar performance to the results of our models in Table 2. Compared to the realistic
privacy-preserved images from our model, samples modified with conventional methods are either
hard to recognize or still at privacy risk, as they maintain the unique features of the original. Samples
of each class obtained with PPSGAN, as displayed in Figure 5, visually show that our PPSGAN
methodology is a promising option for privacy-preserving image data publication.

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10 (d) SVHN
Figure 5. Five samples of PPSGAN anonymized images for each class (row) in the MNIST,
Fashion-MNIST, CIFAR-10, and SVHN datasets. These samples show that our PPSGAN anonymizes
an image without losing the class-dependent features.

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10 (d) SVHN
Figure 6. Six representative samples in the MNIST, Fashion-MNIST, CIFAR-10, and SVHN datasets,
along with their anonymized versions modified with various processing methods. We list the original,
PPSGAN-processed, Gaussian-blur, Laplace-blur, Gaussian-noise-adding, Laplace-noise-adding,
uniform-filtering, and median-filtering (row). For conventional methods, we use hyperparameters that
show comparable performance to PPSGAN in training classifiers. PPSGAN successfully preserves the
class-dependent features and modifies the class-independent features. In contrast, samples modified
with conventional methods are either hard to recognize or still at privacy risk, as they maintain the
unique features of the original.
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5. Conclusions

In this work, we present a privacy-preserving semi-generative adversarial network (PPSGAN),
a methodology to selectively anonymize class-independent features of an image at the
latent-space-level. In PPSGAN, a set of encoder–noise amplifier–decoder and a set of critic-classifier are
trained in an adversarial mode to find the best way to modify an image in a privacy-preserving manner
without losing its original class label. The noise amplifier plays a vital role in noise optimization
and class-independent feature discrimination for adequate image anonymization. We evaluate the
proposed PPSGAN with different metrics and datasets to demonstrate its potential.

In the future, we hope to strengthen our model with a deeper network structure to cover
high-resolution image datasets, including ImageNet [53], CelebA [54], and LSUN [55]. We also
intend to broaden the coverage of our novel selective feature anonymization methodology to a broader
range of data domains, including video, text, and speech.
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