
electronics

Article

Exploration of FPGA-Based Hardware Designs for
QR Decomposition for Solving Stiff ODE Numerical
Methods Using the HARP Hybrid Architecture

Carlos Alberto Oliveira de Souza Junior 1,*,† , João Bispo 2,† , João M. P. Cardoso 2,† ,
Pedro C. Diniz 3,† and Eduardo Marques 1,†

1 Institute of Mathematics and Computer Science, University of São Paulo, São Carlos 13566-590, Brazil;
emarques@icmc.usp.br

2 Department of Informatics Engineering, Faculty of Engineering, University of Porto and INESC TEC,
4200-465 Porto, Portugal; jbispo@fe.up.pt (J.B.); jmpc@fe.up.pt (J.M.P.C.)

3 INESC-ID, 1000-029 Lisboa, Portugal; pedro.diniz@inesc-id.pt
* Correspondence: caosjr@usp.br
† These authors contributed equally to this work.

Received: 10 April 2020; Accepted: 14 May 2020; Published: 19 May 2020
����������
�������

Abstract: In this article, we focus on the acceleration of a chemical reaction simulation that relies on a
system of stiff ordinary differential equation (ODEs) targeting heterogeneous computing systems
with CPUs and field-programmable gate arrays (FPGAs). Specifically, we target an essential kernel of
the coupled chemistry aerosol-tracer transport model to the Brazilian developments on the regional
atmospheric modeling system (CCATT-BRAMS). We focus on a linear solve step using the QR
factorization based on the modified Gram-Schmidt method as the basis of the ODE solver in this
application. We target Intel hardware accelerator research program (HARP) architecture with the
OpenCL programming environment for these early experiments. Our design exploration reveals a
hardware design that is up to 4 times faster than the original iterative Jacobi method used in this
solver. Still, even with hardware support, the overall performance of our QR-based hardware is lower
than its original software version.

Keywords: ODE; linear-solver; QR factorization; parallel; heterogeneous-system; FPGA; OpenCL;
Intel HARP architecture

1. Introduction

Several engineering problems that rely on physical laws and relations can be modeled in the form
of differential equations classified, in general, as either ordinary differential equation (ODE) or partial
differential equation (PDE) [1].

In this article, we focus on the chemical reaction problem, an ordinary differential equation, in the
Brazilian atmospheric model application code CCATT-BRAMS (http://brams.cptec.inpe.br/). This
problem relies on a system of stiff ODEs using the Rosenbrock which is organized as a series of 4
linear-solver steps, each of which currently uses a sequential implementation of LU decomposition
named Sparse 1.3a.

In this work, we explore the implementation of a direct method, the QR factorization, rather than
the iterative Jacobi LU factorization method currently used in CCATT-BRAMS. The current LU
factorization is sequential, includes an expensive update operation due to its pivoting, even though it
uses a sparse format to decrease the amount of computing. We opted to implement QR, a direct method
without pivoting that exhibits some degree of concurrency which we explore in a field-programmable
gate array (FPGA) device implementation.

Electronics 2020, 9, 843; doi:10.3390/electronics9050843 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-9742-5926
https://orcid.org/0000-0002-3017-9449
https://orcid.org/0000-0002-7353-1799
http://brams.cptec.inpe.br/
http://dx.doi.org/10.3390/electronics9050843
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/5/843?type=check_update&version=3


Electronics 2020, 9, 843 2 of 14

This approach offers performance potential at various levels. Namely, fine-grain parallelization of
the QR factorization itself, avoid thread divergence issues present in software implementations due to
distinct time stepping, the ability to exploit performance trade-offs using different and non-standard
floating-point precision.

Besides, we explored two variants of the modified Gram-Schmidt QR. As a vehicle for our
experiments, we rely on the hybrid HARP architecture from Intel using the OpenCL high-level
programming language. We used an Arria-10 FPGA coupled to a CPU, which allowed us better
communication and floating-point DSP blocks.

The results reveal that our modified implementation, tuned in OpenCL, is approximately 4 times
faster than the original unmodified algorithm of QR. We used some reordering of the algorithm,
already described in the literature [2], to improve wall-clock time performance and FPGA area usage.
That reordering also allowed us to explore floating-point optimizations on the compiler side. Still,
and mainly due to data communication overhead to and from the CPU, the hybrid CPU + FPGA
implementation of the modified QR did not improve the performance over the original software
implementation of this application.

This article is organized as follows: In Section 2, we describe the CCATT-BRAMS application.
In Section 3, we present iterative and direct methods for solving the linear systems that arose from
chemical modeling. In Section 4, we show the results we obtained with our linear system solvers.
In Section 5, we describe the related work. We conclude in Section 6.

2. CCATT-BRAMS Application Characterization

The CCATT-BRAMS application code implements a coupled chemistry aerosol-tracer transport
model for the Brazilian regional atmospheric modeling system. That is an online regional chemical
transport model designed for local and regional studies of atmospheric chemistry from the surface to
the lower stratosphere specifically developed to handle the tropics. This application, suitable both for
operational and research purposes runs operationally at CPTEC/INPE (CPTEC is the center of weather
forecasting and climate studies, and it belongs to the national institute for space research (INPE) [3])
since 2003; it covers entire South America with a spatial resolution of 25 km enabling the prediction
of the emission of Gases and Aerosols in real time (http://meioambiente.cptec.inpe.br/), as well
as meteorological variables (http://previsaonumerica.cptec.inpe.br/golMapWeb/DadosPages?id=
CCattBrams). Currently, the BRAMS source code is mostly in Fortran 90, with a small C/C++ code
portion used in performance-sensitive sections.

We profiled the CCATT-BRAMS on a Stratix V platform with Gprof [4] using real input data
from CPTEC/INPE/ weather forecasting for the profiling and considered two scenarios: (A) with the
chemical module disabled and (B) enabled. These profiling results reveal that the community aerosol
and radiation model for atmospheres (CARMA) radiation and chemical reactivity steps are the most
computationally intensive.

Without the chemical module, radiation is responsible for 75% of the total execution time.
When we enable the chemical module, we observe that the ODEs from the chemical reactivity account
for 52% of the total execution time, and the radiation takes only 19%. As the radiation function interacts
with the chemical module, this function is always active, and as expected, the most expensive operation
in this chemical module involves the solution of linear systems.

Currently, CCATT-BRAMS [5] is the largest high-performance application in Brazil with over
450 thousands lines of Fortran code. BRAMS is an atmospheric model based on RAMS, a Brazilian
modification to include tropics/subtropics. CCATT is the chemical transport model designed for local
and regional studies of the atmospheric chemistry coupling a chemical model in an online fashion
with BRAMS [5].

These online chemistry models must combine implementation aspects related to spatial resolution,
simulation length, and degree of complexity of the chemical mechanism. As such, fine-grained
resolution, large domains, and detailed chemistry are infeasible in long production runs due to its

http://meioambiente.cptec.inpe.br/
http://previsaonumerica.cptec.inpe.br/golMapWeb/DadosPages?id=CCattBrams
http://previsaonumerica.cptec.inpe.br/golMapWeb/DadosPages?id=CCattBrams


Electronics 2020, 9, 843 3 of 14

associated computing costs. In BRAMS, the chemical reaction model is a stiff problem solved by the
Rosenbrock method as depicted by the pseudocode in Figure 1. This code reflects an implementation
with 65 columns, corresponding to 65 3D columns in the partition of the physical space and are used
for concurrency management purposes.

Figure 1. Pseudocode of the Rosenbrock method block for 65 columns. Equation (2.2) stands for the
linear system solver.

Previous results showed that the parallel nature from Jacobi is not enough to beat the sequential
algorithm in CPU. That is because of the efficient data structure associated with the decomposition
reuse across the Rosenbrock stages. A small change of the matrix does not require the entire
decomposition either; that is, they provide an update function.



Electronics 2020, 9, 843 4 of 14

3. Methods for Solving Linear Systems

In this section, we present Jacobi and the QR methods we implemented. We also describe which
optimizations we applied to each of them.

3.1. Jacobi Single-Threaded Sparse

OpenCL standard defines two different programming models [6]: data-parallel and task-parallel
programming model. Programmers must know both models, and consider which one is more suitable
for the underlying hardware. Data parallelism is suitable for single instruction, multiple data (SIMD);
this kind of parallelism is the basis for GPU acceleration. OpenCL API defines this programming model
through NDRange [6–9]. NDRange programming imposes some restrictions to the programmers,
different memory space for each group is one of them. Consequently, we are not able to compute the
vector norm since we cannot share memory. Considering this problem, we chose the task parallelism,
which works as a C to Hardware in OpenCL for FPGAs, where each loop represents a pipeline.

In Figure 2, we show our block diagram for Jacobi single sparse. Regarding loop pipelining,
the single linear solve kernel executes multiple rows in flight. Not all loops can be executed in a
pipelined fashion, as is the case with the outermost loop (A), for controlling the algorithm’s iterations.

We use the compressed sparse row (CSR) format, a sparse representation suitable for sparse
matrix-vector multiplication SpMV [10]. However, that format adds a complex loop exit condition in
the pipeline (B) as each row has a different number of non-zeros (NNZ); Note the red border square (D),
it means that it is necessarily two loads.

3.2. The QR Factorization Method
In this version, we implemented the QR factorization method based on Gram-Schmidt; we list it

in Algorithm 1. We have implemented three main optimizations in this algorithm when porting it to
hardware. The first version (QR) is a straightforward translation from C to OpenCL, without adding
specific code for parallelism.

In the first optimization (QR + SR), we used shift registers to improve pipeline parallelism and
remove data dependency on the multiply-accumulate inherited from the dot product operation. In a
second optimization (QR + SR + LM), we removed the use of global memory during QR decomposition,
that is, computations are performed with data residing in the local memory.

In a third version, we compiled the same algorithm with the -fp-relaxed flag, which uses a balanced
tree of floating operations by relaxing the order of the operations. Although useful for highly parallel
hardware, it may incur in numerical errors. We could not generate this hardware design, as it did not
fit on the FPGA.



Electronics 2020, 9, 843 5 of 14

Figure 2. Block diagram of Jacobi method with single thread.

Algorithm 1: QR method without reordering (herein identified as QR).
Data: Initial matrix A
Result: Matrix decomposed in matrix Q and matrix R
Q← A;
for k← 1 to n do

R(k, k)← norm(Q(1 : m, k));
for m← 1 to n do

Q(m, k)← Q(m, k)/R(k, k);
end
for j← k + 1 to n do

R(k, j)← dot(Q(1 : m, k), Q(1 : m, j))/R(k, k);
for m← 1 to n do

Q(m, j)← Q(m, j)− R(k, j)) ∗Q(m, k);
end

end
end

3.3. QR-Base Implementation

This implementation is a mapping to OpenCL and HARP of the main algorithm steps used in
the original Intel’s manual hardware implementation and presented in Algorithm 2. We opted by
Intel’s deeply pipelined version, using in our case double-precision floating-point data types (needed
for achieving the precision required by CCATT-BRAMS). We present three versions of this algorithm.



Electronics 2020, 9, 843 6 of 14

In our first version (QR-base + SR + LM), we applied all the optimizations previously considered
for the first QR algorithm, that is, we used shift registers and local memory without the specific
compiler options.

Algorithm 2: QR pipeline suitable implementation by Reference [2] (herein identified as
QR-base).

Data: Initial matrix A
Result: Matrix decomposed in matrix Q and matrix R
Q← A;
for k← 1 to n do

R2(k)← dot(Q(1 : m, k));
for j← k + 1 to n do

Rn(k, j)← dot(Q(1 : m, k), Q(1 : m, j));
end
for j← k + 1 to n do

for m← 1 to n do
Q(m, j)← Q(m, j)− ((Rn(k, j)/R2(k)) ∗Q(m, k));

end
end

end
for k← 1 to n do

R(k, k)← sqrt(R2(k));
for j← k + 1 to n do

R(k, j)← Rn(k, j)/R(k, k);
for m← 1 to n do

Q(m, k)← Q(m, k)/R(k, k);
end

end
end

In a second version (QR-base + SR + FPR), we applied the -fp-relaxed compiler option. This version
could fit on the FPGA, and we achieved improvements over the first version. The third version is
a variant of the second. As we use an Arria 10 device, we can remove the shift register and fully
unroll the dot product loop to make use of the floating-point DSPs. The compiler instantiates a
chain of floating-point DSPs, which allows us to perform the dot product with the same cost as a
single multiplication.

Unrolling the dot product significantly increases hardware utilization due to memory replication.
To avoid such a problem, we buffered one column of the matrix used for the dot product in another
private memory array. In this manner, the compiler creates a copy of a single column of the matrix.

In the third version (QR-base + LM + FPR + FPC), we used the -fpc flag that is responsible for
avoiding rounding operations. Both compiler flags incur in numerical errors, that is why we performed
accuracy tests. In Figure 3, we present the block diagram for the third version of this algorithm.



Electronics 2020, 9, 843 7 of 14

Figure 3. Block diagram of the third version of QR-base.

4. Implementation Results

In this section, we present experimental results regarding the implementation in hardware of
the computational structures that support iterative and direct linear solver methods. For the QR
methods, we also implemented their software counterpart. We summarize our results in Figure 4 for
execution time (using log base 2 scale), and Figure 5 for FPGA resources usage normalizing the results
by showing the percentage of usage of each type of resource on the FPGA, except for the maximum
clocking frequency.



Electronics 2020, 9, 843 8 of 14

Figure 4. Execution time for each design implementation.

Figure 5. Arria 10 field-programmable gate array (FPGA) resources usage and maximum clock
frequency of each design implementation.

4.1. Platforms

In this work, we considered two target hardware platforms. First, a hybrid CPU + FPGA board
including a Xeon E5-1607 (3.1 GHz) (Intel, Santa Clara, CA, USA), 32 GB main memory, and running
CentOS 6.7 coupled via PCIe to a Stratix V (Bittware S5HPQ_A7) FPGA. This first platform was used
to derive previous results and for profiling the CCATT-BRAMS application used in this research.

A second platform consisted of the Intel’s HARP hybrid computing system including a Xeon
(E5-2600 v4 2.0 GHz) processor, 68 GB of main memory running CentOS 7, and coupled to an Arria
10 GX FPGA (10AX115N2F40E2LG).

We used this second platform to derive the experimental results presented in this article for both
the modified Jacobi method and the QR decomposition. In any case, our HARP experiments use data
from the software version of the CCATT-BRAMS application.

4.2. Jacobi Method

In this section, we present an implementation of the same algorithm of our previous research [11],
but now targeting the HARP system. We present the results in Tables 1 and 2, Table 1 includes the cost
of communication between the CPU and the FPGA hardware design.



Electronics 2020, 9, 843 9 of 14

Table 1. Results for the Jacobi method.

Stratix V Arria 10

Send (µs) 92 29
Execution (µs) 912 3111
Receive (µs) 9 21
Total (µs) 1013 3161

In Table 2, we show the cost of the FPGA implementation in terms of 1-bit registers (Registers),
the overall amount of logic resources including the number of DSP blocks, and Block RAMs, along with
the percentage usage of each resource.

Table 2. Hardware resources for Jacobi method.

Stratix V Arria 10

Registers 153,046 (17%) 254,753 (15%)
Logic 80,837 (34%) 155,531 (36%)
DSPs 71 (28%) 64 (4%)
RAM blocks 686 (27%) 662 (24%)
Maximum Clock Frequency (MHz) 269.39 200

We observe that the Jacobi hardware design consumes more space on an Arria 10 than on a Stratix
V device, which in turn leads to a lower operating clock frequency. Regarding the DSPs and block
RAMs, both FPGA designs exhibit nearly identical figures. Although the Arria-10 implementation
could overcome the loop-carried dependency of the accumulator in the dot product. This improvement
is not enough to beat the performance of Stratix V implementation.

On the Stratix V, we did not have enough parallelism to exploit more registers. By unrolling the
dot product loop in Arria-10, we expose more concurrency, which demands more data per clock cycle.
Using more resources dropped the performance of our circuit.

In contrast to the computing performance, the communication improved by 50% in the HARP
environment. This improvement, resulting from the on-die communication between the CPU and the
FPGA hardware, is significant.

4.3. QR Method

A first implementation of the QR decomposition method, labeled as QR, corresponds to a
straightforward translation from C to OpenCL experimenting with transformations regarding the
efficient implementation of the square root operations. In a second version (QR + SR), we used
shift registers to remove data dependencies that caused pipeline stalls. That improves the algorithm
execution time by a factor of 8 over the first version. The third version (QR + SR + LM) performs the
entire computation over local memory instead of global memory. That required two copies, the first to
store the content of global memory into local memory, and the second to write the results back.

We also tried to unroll the loop that copies data from the global to the local memory. Full unroll is,
however, not advantageous as it cannot fetch all the necessary data in the same clock cycle. Partial
unrolling did not improve the results either.

Even though we declared auxiliary matrices for Q and R, the resulting hardware uses fewer RAM
blocks. We attribute this to the compiler’s ability to infer local memory based on the algorithm’s
behavior. In this version, we also avoided complex index computation in order to save DSPs.

Using local memory turned version QR + SR + LM 44% faster compared to the second version.
We could improve the QR method in 15× at the cost of 10% more area resources.

QR Method in Software

Although we achieved a significant improvement over the first version (QR), we still present a
hardware design 4× slower than the sequential software. Such results worsened when vectorization



Electronics 2020, 9, 843 10 of 14

was applied as enabled by ICC (“-O3” flag) to our software. Our hardware design becomes 22× slower
than the vectorized software.

Decomposing the matrix into Q and R is the most expensive part of the Ax = b linear system.
However, we still have to perform the backward substitution to get the results. That substitution is
inherently serial, which means that an FPGA cannot improve the running time.

In that manner, we implemented the backward substitution on C in our software side of the
codesign. We use QR-Software label to represent this software version.

4.4. QR Intel Baseline

Our first version of Algorithm 2 includes all the optimizations from the previous algorithm,
excluding compiler optimizations. We use the label QR-base + SR + LM to represent this version.

This QR Intel Baseline version (or just QR-base) did not improve the running time. We can justify
it with two main factors: lower clock frequency, and almost no increase in DSP usage. The new
arrangement of the algorithm incurred in more area resources, especially memory, that caused the
frequency drop. We also observed to be better to use floating-point DSPs rather than of shift registers.

In version QR-base + LM + FPR, we use the -fp-relaxed compilation flag. This improves the
execution time by a factor of 5× and uses 53% fewer RAM blocks. That was possible because we
replaced the shift registers by floating-point DSPs, and we reused the dot product critical datapath,
leading to an increase in clock frequency. While, -fp-relaxed incurs in numerical errors, we compared
the absolute error between the hardware and software solutions and found this absolute error to be
close to zero (0.002), prompting us to explore additional floating-point optimizations.

In version QR-base + LM + FPR + FPC, we use the -fpc compilation flag. That improved
performance in 18%, and decreased hardware resources in 23%. The numeric results exhibit the
same absolute error as the QR-base + LM + FPR version.

This third version is almost 5× better than the best QR implementation (label QR + SR + LM).
The results also reveal the availability of resources for design exploration. As such, we experimented
with full and partial unroll over other loops. Most of those experiments led to hardware designs that
are unfeasible as they exceed the number of available FPGA resources. On the other hand, the hardware
designs that fitted on the FPGA did not improve the overall computation performance.

This third hardware design version can process up to 102 matrices per second. However,
the HDL-based design proposed by Intel can process up to 50,853 matrices per second, an improvement
of 498×. We consider that this difference is mostly due to the way memory is used in both solutions,
the use of single-precision instead of double-precision, and the communication overhead.

In our implementations, data are stored in global memory. Thus, the initial matrix is copied
from global memory to the local memory to improve performance. When the computation finishes,
the results are copied back to the global memory so the CPU can access the results generated by
the FPGA.

Intel’s design relies exclusively on local memory, thus avoiding the latency of memory copies and
hence communication overhead. We consider this infeasible for our purposes as the FPGA used has
around 6 MB of block RAMS, which would fit at most thirteen 47× 47 matrices at a time, according to
our tests.

Regarding hardware logic, it uses around 4×more resources, which we attribute to the interface
with the processor and the memory hierarchy that supports DDR4 RAM, absent in the baseline.
We must also consider that we are using double precision, which incurs in additional latency due to
the fetching of double data types from global memory.

QR-Base in Software

For the same reason as before, we did not implement backward substitution in hardware.
In this section, we decided to compare only the vectorized software with our best hardware design.
According to our results, we still have a slowdown of 4×when compared with its software counterpart.



Electronics 2020, 9, 843 11 of 14

However, we are comparing an FPGA design running at 230 MHz (our best hardware design) with
a Xeon processor that can operate at clock frequencies between 2.3 GHz and 3.6 GHz. We consider that
the current FPGA implementation is interesting enough to be considered as part of a heterogeneous
solution where the matrices to be computed are distributed among CPUs and FPGAs.

We also noticed that the C implementation of QR-base (presented in Algorithm 2) does not
perform as well in CPU. It is 38% slower than the best software implementation of QR (presented in
Algorithm 1). This slower performance is related to the number of loops in the QR-base algorithm—The
version represented as QR-base-Software .

4.5. Final Remarks

In this section, we summarize our results. As seen in Figure 4, the hardware designs are still much
slower than the software version. We believe that high-level synthesis plays a critical role in those poor
results; converting software to hardware is still challenging.

At first, Jacobi-Stratix V seems to be one of the fastest versions among the hardware designs
(https://github.com/caosjr/qrmethod_opencl_intel_fpga). However, since Jacobi is an iterative
method, there is no advantage of its application in settings where this method needs to be used
multiple times over the same matrix A. Instead, methods that carry out decomposition have a clear
advantage as the decomposition of the A matrix can be reused.

In the case of the Rosenbrock method, we need to assess the performance of executing the Jacobi
method 4 times versus a single QR decomposition.

Also, the Jacobi algorithm uses a sparse-matrix format, since CCATT-BRAMS matrices have
around 10% of non-zero values, while our QR implementation is using dense matrices. We did not
improve Intel’s results, but we realized that their algorithm reordering could also improve high-level
synthesis results.

We also performed an experiment where we measured the execution time between the global and
local memory copies. Both these copy operations require 204 µs to complete, which is around 21% of
the execution time of the best QR-base solution (QR-base + LM + FPR + FPC).

4.6. Discussion

While the data communication rate is improved in the HARP system, the results reveal that
updating from Stratix V to Arria 10 in support of implementations of the Jacobi Method does not yield
performance gains. The performance degrades as the resulting solutions required more resources,
thus lowering the design clock frequency.

The experiments with the QR factorization reveal that using OpenCL HLS can generate a
design that exhibits a performance that is several orders of magnitude lower than a manual design.
We attribute this to the more efficient local memory management of a manual solution, which only uses
block RAM. Our design considers a complete system with communication between CPU and FPGA,
whereas the manual version requires all data to be present in FPGA block RAM.

Still, and using several transformations, our best QR solution is 4× faster than the best QR design
without code transformations. Using Intel’s reordering of the algorithm was critical for improving
performance, and area usage. That also allowed us to explore floating-point optimization on the
compiler side. We could not explore such floating-point optimizations with the QR implementation;
they did not fit on the FPGA.

5. Related Work

Several researchers explored ways to boost linear system solver performance using concurrency
and algorithmic transformations. In this description, we focus exclusively on efforts that leverage
FPGA-based accelerators either stand-alone or by the adoption of hybrid solutions where a CPU and
its coupled FPGA cooperatively work towards the computation.

https://github.com/caosjr/qrmethod_opencl_intel_fpga


Electronics 2020, 9, 843 12 of 14

In our previous research [11], we developed a hardware design for the implementation of the
iterative Jacobi method using a Stratix-V FPGA using double-precision arithmetic. Since this FPGA
does not have native floating-point

DSP blocks, we had to use part of the FPGA area to implement them.
Kapre and DeHon [12] provide a Parallel Sparse Matrix Solver for SPICE (Simulation Program
with Integrated Circuit Emphasis), where they replace the existing library, Sparse 1.3a, with KLU as
Sparse 1.3a was not suitable for FPGA parallelism due to the frequent change of matrices non-zero
pattern. Both of these two libraries are LU-based and use double-precision.

Their solution achieves a range from 300 MFlop/s to 1300 MFlop/s on a Xilinx Virtex-5, while
the processor (Intel Core i7 965) achieved 6 MFlop/s to 500 MFlops/s. However, this work does not
explore a hybrid solution as the sparse matrix is stored inside the DDR2 memory attached to the
FPGA board.

In another work, Daga et al. [13] implement an LU decomposition in double-precision in FPGA.
They consider only non-singular matrices to avoid costly pivoting. They compare their results with a
general-purpose processor, and their speedups range from 19 to 23. The entire solution is decoupled
from the CPU, including the initial data.

In a similar FPGA-only design approach, Zhuo and Prasanna [14], also report substantial
performance improvements over their own earlier versions making extensive use of block RAMs.

In a genuinely hybrid design solution, Wu et al. [15] propose a solution for sparse matrices, where
the preprocessing is carried out in the CPU, and the factorization in the FPGA. Their simulated
performance results rely on counting the cycles of factorization and the clock frequency of the
processing element (PE) but exclude the data communication overhead.

Ruan et al. [16] present a similar approach to our previous research with Jacobi. They use a
Java high-level synthesis (the MaxJ compiler) to implement the Jacobi method targeting a hybrid
architecture including a Virtex-6 FPGA and a CPU. They also explored software parallelism with MPI
and multi-threading. Their hybrid solution is the fastest among their results, although it does not
support matrices bigger than 200× 200.

Regarding the implementation of QR decomposition, Parker et al. [2] describe a pipelined
implementation of the QR decomposition in single-precision targeting an Arria 10 FPGA and making
heavy use of DSP Builder Tools. Their solution, with a peak performance rate of 78 Gflops, is not
hybrid, as all the input data resides in FPGA block RAMs.

Recent work by Langhammer and Pasca [17] describes an implementation of a QR decomposition
based on the modified Gram-Schmidt in a core generator in C++, with the math operations
implemented by the DSP Builder Tools. They present some modifications to the pipeline and the
square-root operation using the reciprocal square-root, the same operation we exploited in this article.
Still, this work uses single-precision, which requires fewer cycles for divisor and reciprocal square-root
operations. According to their results, they achieved three times the performance of Parker et al. [2].

6. Conclusions

In this paper, we explored FPGA implementations for solving the linear systems that arise from the
Rosenbrock Stiff ODE solver. Our experiments target the Intel’s HARP architecture with the OpenCL
programming environment and are focused on the QR decomposition stages. Each proposed version
uses a different approach to improve the hardware pipeline implementation on the FPGA. Our best
QR FPGA design implementation is 4× faster than the unmodified original QR design. The Intel’s
algorithm reordering, previously proposed, was critical for improving performance and area usage,
also enabling the exploration of floating-point optimizations by the OpenCL compiler. Ongoing work
is addressing further algorithm reordering and optimizations regarding data distribution/replication.
Future plans include the use of sparse formats and other variants of the QR decomposition, in particular
Householder, and Givens Rotation. Lastly, we also intend to consider a solution where both CPU and
FPGA execute concurrently.



Electronics 2020, 9, 843 13 of 14

Author Contributions: Conceptualization, C.A.O.d.S.J., and J.B.; Methodology, C.A.O.d.S.J., and J.B.; Software,
C.A.O.d.S.J.; validation, C.A.O.d.S.J.; Writing—review & editing, C.A.O.d.S.J., J.B., J.M.P.C., E.M., and P.C.D.
All authors have read and agreed to the published version of the manuscript.

Acknowledgments: The authors would like to thank CAPES, and process nº 2017/14268-6 and 2019/08153-7,
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for supporting our research. João Bispo
acknowledges the support provided by Fundação para a Ciência e a Tecnologia, Portugal, under Post-Doctoral
grant SFRH/BPD/118211/2016. Research (partially) carried out using the computational resources of the Center
for Mathematical Sciences Applied to Industry (CeMEAI) funded by FAPESP (grant 2013/07375-0). The presented
results were (partially) obtained on resources hosted at the Paderborn Center for Parallel Computing (PC2) in the
Intel Hardware Accelerator Research Program (HARP2).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kreyszig, E. Advanced Engineering Mathematics; John Wiley & Sons: Hoboken, NJ, USA, 2010.
2. Parker, M.; Mauer, V.; Pritsker, D. QR decomposition using FPGAs. In Proceedings of the 2016 IEEE National

Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS), Dayton, OH, USA,
25–29 July 2016; pp. 416–421.

3. Moreira, D.; Freitas, S.; Bonatti, J.; Mercado, L.; Rosário, N.; Longo, K.; Miller, J.; Gloor, M.; Gatti, L.
Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model
(JULES-CCATT-BRAMS1.0): Applications to numerical weather forecasting and the CO2 budget in South
America. Geosci. Model Dev. 2013, 6, 1243–1259. [CrossRef]

4. Graham, S.L.; Kessler, P.B.; Mckusick, M.K. Gprof: A call graph execution profiler. ACM Sigplan Not.
1982, 17, 120–126. [CrossRef]

5. Longo, K.M.; Freitas, S.R.D.; Pirre, M.; Marecal, V.; Rodrigues, L.F.; Panetta, J.; Alonso, M.F.; Rosario, N.E.;
Moreira, D.S.; Gacita, M.S.; et al. The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): A regional
atmospheric model system for integrated air quality and weather forecasting and research. Geosci. Model Dev.
2013. [CrossRef]

6. Khronos OpenCL Working Group. The OpenCL Specification; In Proceedings of the IEEE Hot Chips 21
Symposium (HCS), Stanford, CA, USA, 23–25 August 2009.

7. Munshi, A.; Gaster, B.; Mattson, T.G.; Ginsburg, D. OpenCL Programming Guide; Pearson Education:
London, UK, 2011.

8. Buchty, R.; Heuveline, V.; Karl, W.; Weiss, J.P. A survey on hardware-aware and heterogeneous computing
on multicore processors and accelerators. Concurr. Comput. Pract. Exp. 2012, 24, 663–675. [CrossRef]

9. Tsuchiyama, R.; Nakamura, T.; Iizuka, T.; Asahara, A.; Son, J.; Miki, S. The OpenCL Programming Book;
Fixstars: Tokyo, Japan, 2012.

10. Bell, N.; Garland, M. Efficient Sparse Matrix-Vector Multiplication on CUDA; Technical Report, Nvidia Technical
Report NVR-2008-004; Nvidia Corporation: Santa Clara, CA, USA, 2008.

11. De Souza, C.A.O.; Pereira, E.D.S.; Marques, E. A Hardware/Software Codesign for the Chemical Reactivity
of BRAMS. In Proceedings of the 2017 Euromicro Conference on Digital System Design (DSD), Vienna,
Austria, 30 August–1 September 2017; pp. 70–77.

12. Kapre, N.; DeHon, A. Parallelizing sparse matrix solve for SPICE circuit simulation using FPGAs.
Field-Programmable Technology, 2009. In Proceedings of the 2009 International Conference on
Field-Programmable Technology, Sydney, Australia, 9–11 December 2009; pp. 190–198.

13. Daga, V.; Govindu, G.; Prasanna, V.; Gangadharapalli, S.; Sridhar, V. Efficient floating-point based block lu
decomposition on fpgas. In Proceedings of the International Conference on Engineering of Reconfigurable
Systems and Algorithms, Las Vegas, NV, USA, 21–24 June 2004; pp. 21–24.

14. Zhuo, L.; Prasanna, V.K. High-performance and parameterized matrix factorization on FPGAs.
In Proceedings of the 2006 International Conference on Field Programmable Logic and Applications, Madrid,
Spain, 28–30 August 2006; pp. 1–6.

15. Wu, W.; Shan, Y.; Chen, X.; Wang, Y.; Yang, H. FPGA accelerated parallel sparse matrix factorization
for circuit simulations. In International Symposium on Applied Reconfigurable Computing; Springer: Berlin,
Germany, 2011; pp. 302–315.

http://dx.doi.org/10.5194/gmd-6-1243-2013
http://dx.doi.org/10.1145/872726.806987
http://dx.doi.org/10.5194/gmd-6-1389-2013.
http://dx.doi.org/10.1002/cpe.1904


Electronics 2020, 9, 843 14 of 14

16. Ruan, H.; Huang, X.; Fu, H.; Yang, G. Jacobi Solver: A Fast FPGA-based Engine System for Jacobi Method.
Res. J. Appl. Sci. Eng. Technol. 2013, 6, 4459–4463. [CrossRef]

17. Langhammer, M.; Pasca, B. High-performance qr decomposition for fpgas. In Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 25–27
February 2018; pp. 183–188.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.19026/rjaset.6.3452
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	CCATT-BRAMS Application Characterization
	Methods for Solving Linear Systems
	Jacobi Single-Threaded Sparse
	The QR Factorization Method
	QR-Base Implementation

	Implementation Results
	Platforms
	Jacobi Method
	QR Method
	QR Intel Baseline
	Final Remarks
	Discussion

	Related Work
	Conclusions
	References

