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Abstract: A novel coherent integration method for the wideband radar is proposed in this paper
based on two-dimensional frequency correction. The method realizes the motion compensation
by data re-alignment in the fast time frequency-Doppler domain and can be implemented quickly
and efficiently based on chirp-Z transform. The proposed method is validated by simulation and
measured data. The work in this paper provides a new and effective way for coherent integration in
wideband radar.
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1. Introduction

Modern radars achieve high range resolution by transmitting wideband waveform. Compared
with the traditional low-resolution radar, there are many new features and advantages in anti-clutter
target detection, target recognition and low probability interception (LPI) [1–3]. On the other hand,
it is well known that pulse integration is an effective method to improve radar target detection
performance in a noise background, while coherent integration may obtain better performance than
incoherent integration by compensating phase fluctuation among different sampling pulses. With the
improvement of range resolution, the motion of target in the coherent processing intervals (CPI) will
cause the across range unit (ARU) effect in the wideband case which severely affects the coherent
integration performance of the target echo [4,5]. The traditional pulse-Doppler process requires the
ARU to be less than a half range unit in the CPI which means the CPI is limited by the target velocity.
Therefore, in the case of unknown target velocity, how to correct the ARU is a major problem to
be solved to achieve the coherent integration of wideband signals and also is a research hotspot in
wideband radar signal processing.

In this regard, time-frequency transform and the range-stretching algorithm is used to compensate
for the echo envelope in literature [6,7], and the Hough transform (HT)-based method is proposed
by Carlson [8–10]. In the HT algorithm, the problem of target detection is transformed into the line
detection in image processing, and the HT method of detecting straight lines in images is used for
target integration and detection. The complexity of these two methods is high and they are only
suitable for the case of high signal-to-noise ratio (SNR). Perry and Zhang have introduced the keystone
transform (KT) for radar target detection via long-time coherent integration [11,12]. KT may blindly
compensate the ARU effect but may be invalidated when the target Doppler is ambiguous. Li has
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proposed a modified KT method via simultaneous searching for the Doppler ambiguous integers and
frequency [13], but it needs high-complexity KT operators.

Based on the analysis of the influence of the target motion in CPI for wideband radar,
a coherent integration method through two-dimensional frequency correction is proposed in this paper.
The algorithm realizes the motion compensation of the target by re-aligning the echo data in a fast time
frequency-Doppler domain, and achieves the intra-pulse accumulation and the inter-pulse integration
in the transform domain. The paper is organized as follows. Section 2 discusses in depth the signal
model and the impacts of target motion in coherent integration for wideband radar. In Section 3,
the two-dimensional frequency domain method with its fast implementation method and computational
complexity comparison are proposed. The results of simulated data, as well as real data processing
used to evaluate the proposed method, are described in Section 4. Finally, the conclusion is drawn in
Section 5.

2. Signal Model

Suppose the wideband radar transmits linear frequency modulated (LFM) signal [14]:

p(t) = rect
(

t
Tp

)
exp

(
j2π f0t + jπγt2

)
, rect(u) =

{
1, |u| ≤ 1

2
0, others

(1)

where Tp is the pulse width, γ is the frequency rate of the LFM signal, B = γTp is the signal bandwidth,
and f0 is the carrier frequency. The two-dimensional baseband echo may be represented as:
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where A is the amplitude of the target echo, τ is fast-time corresponding to the sample in the range
domain of a single pulse, tn is slow-time used to mark different pulses during the pulse string process
with the interval of the pulse repetition interval (PRI), T is the coherent integration time, c is the light
speed, and R(tn) is the range walk of the moving target. Furthermore, suppose the target with slant
range R0 is moving at a radial velocity v, and then R(tn) may be approximated to:

R(tn) ≈ R0 + vtn (3)

After pulse compression, the target’s echo may be given as [15]:

sp(τ, tn) = Apsin c
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where Ap = ABTp. The ARU in the CPI (Tc = NTr) is determined by the range walk and the range
resolution, which may be given as:

lr =
v0NTr

(c/2B)
=

2v0TcB
c

(5)

where N is the number of coherent integration pulses, Tr is PRI. On the other hand, due to the
improvement of signal bandwidth, the target Doppler frequency is no longer fixed. The across Doppler
unit (ADU) is determined by the Doppler frequency variation and the Doppler resolution, which may
be given as:

l f =
2v0B

c
·

1
1/Tc

=
2v0TcB

c
(6)

Through comparative analysis, it can be seen that the ARU and ADU are the same phase term
in different processing methods and are equivalent. If the ARU and ADU compensation are not



Electronics 2020, 9, 840 3 of 11

performed, since the target is dispersed on multiple range units and Doppler units, it is impossible to
accumulate all the echo energy which leads to serious loss of SNR.

The coherent integration algorithms for wideband radar in literature are mainly based on range
walk correction in the time domain. In the next section, a new method based on data re-alignment
in the two-dimensional frequency domain is proposed to realize motion compensation and coherent
integration by analyzing the intrinsic relationship between velocity measurements at different points
in a fast time frequency domain.

3. Coherent Integration Based on Two-Dimensional Frequency Correction

3.1. Proposed Algorithm

The echo data of a wideband radar containing N pulses and M range bins are represented in (2).
The coherent integration method based on data re-alignment in two-dimensional frequency domain is
as follows:

Step 1. Fast-time Fast Fourier Transform (FFT) operation is performed in range domain for N
pulses with the integration variable τ.

S1( fm, tn) =
A
√
γ

rect
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B
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f 2
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· rect
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where fm represents the fast time frequency units.
Step 2. The matching function is used to compensate the data of each pulse in the fast time

frequency domain [16].
S2( fm, tn) = S1( fm, tn)H( fm) (8)
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)
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where H(fm) is the frequency matching function of LFM signal. Then the compensated signal is
as follows:
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Step 3. Then slow time FFT operation is performed on N pulses of the same fast-time frequency
unit with the integration variable tn.

S3( fm, fn) ==
A
√
γ

rect
(
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B

)
exp
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c

]
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(11)

In the case of wideband radar, it can be seen that the Doppler frequencies of the same speed in
each fast time frequency unit fm are different, and the relative relationship is:

fdm

fd0
=

( fm + f0)
f0

(12)

where fd0 and fdm represent the Doppler frequencies based on the carrier frequencies fm + f0 and
f0 respectively.

Assuming B = 200 MHz and f0 = 3 GHz, the distribution of Doppler units corresponding to
different speeds at each fast-time frequency unit is shown in Figure 1, and each line represents the
Doppler bin number of the same velocity at different time-frequency units.
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Step 4. Doppler units re-alignment.
Taking the Doppler units fn corresponding to frequency point 0 as reference, the Doppler units

corresponding to frequency point m can be obtained:

fn′ = mod[ fn · ( fm + f0)/ f0, N] (13)

where mod[] corresponds to the residual function, N represents the integration pulses number. Each
oblique line in Figure 1 can be straightened by (13), which means Doppler units re-alignment is
achieved by data reconstruction in the two-dimensional frequency domain. Suppose that the number
of velocity search units is Nv:

Nv = round(
2vmax

∆v
)

The velocity search area is [−vmax,vmax]. The data re-alignment process can be expressed as:

S4( fm, fn′) = S3( fm, mod[ fn · ( fm + f0)/ f0, N]) (14)

where fn′ = −Nv/2 . . . Nv/2. Suppose λ is the wavelength, and the velocity search interval is determined
by the Doppler frequency resolution:

∆v =
λ

2T
=

c
2 f0T

(15)

The data matrix after Doppler units re-alignment is as follows:

S4( fm, fn′) =
A
√
γ

rect
(

fm
B

)
exp

[
−j

4π( fm + f0)R0

c

]
sin c

[
fn′ −
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]
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Step 5: Finally, Inverse Fast Fourier Transform (IFFT) operation is applied to the signal in the
fast-time frequency domain, thus the two-dimensional matching output of distance and velocity can
be realized.

S5(τ, fn′) = A′sin c
[
B(τ−

2R0

c
)
]
sin c

[
( fn′ −

2 f0v
c

)

]
(17)

The block diagram of the proposed algorithm is shown in Figure 2.
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3.2. Fast Approcah of the Proposed Method via Chirp-Z Transform

In Section 3.1, Step 3 and 4 realize the phase compensation and coherent integration for N pulses
of the same fast-time frequency unit. In order to reduce the loss of amplitude and phase in Doppler
unit re-alignment processing, it is necessary to fill zeros to the original data before slow-time FFT
in each fast-time frequency point to improve the Doppler resolution by interpolation which may
increase the computational complexity [17]. Furthermore, the data re-alignment process needs lots of
addressing operations, which is inefficient in real-time processing. In this section, an efficient approach
via chirp-Z transform [18] is proposed to reduce the computational complexity and is more suitable for
engineering application.

To realize the phase compensation and coherent integration, the following calculations can be
performed to (10):

S6( fm, vk) =
N−1∑
n=0

S2( fm, tn) · exp[ j
4π( f0 + fm)vk · nTr

c
] =

N−1∑
n=0

S2( fm, tn) ·Zkn
m (18)

Zm = exp[ j
4π∆v( f0 + fm)Tr

c
] (19)

where tn = nTr, vk = k∆v, ∆v is the velocity unit step, Nv is the number of velocity units, k = −Nv/2
. . . Nv/2, and Zm is the phase compensation coefficient. The coherent integration results of (10) with
different parameters k can be realized based on chirp-Z transform as follows:

S6( fm, k) = Z
1
2 k2

m

N−1∑
n=0

[S2( fm, tn)Z
1
2 n2

n ]Z
−

1
2 (n−k)2
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1
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m [(S2( fm, tn)Z
1
2 n2
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−
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where ⊗ represents linear convolution which can be implemented by FFT. So the realization process of
(20) is as follows:

S6( fm, k) = Z
1
2 k2

m · IFFT[FFT(S2( fm, tn)Z
1
2 n2

m ) · FFT(Z
−

1
2 n2

m )] (21)

The proposed algorithm based on two-dimensional frequency domain corrections has changed
the conventional coherent integration process, which requires intra-pulse processing before inter-pulse
processing, and achieves two-dimensional integrations in the transform domain. The efficient approach
proposed in this section equates the time-delay addressing operation in the fast-time frequency-Doppler
domain with the phase compensation in the fast-time frequency-slow time domain. It resolves the
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requirement that the time-delay addressing operation in two-dimensional matrix cannot be processed
into row or column regularization, and avoids the computational burden of interpolation introduced
to improve the accuracy of integer operation.

3.3. Computation Complexity Analysis

In this section, computational complexity of the proposed algorithm is discussed, and the
engineering application evaluation is carried out based on the processing ability of a typical modern
digital signal processor (DSP).

Suppose that Nr and Nv are the range unit number and velocity unit number respectively, then
the computing load may be given in Table 1 where P = M + Nv, where Im represents the complex
multiplication operation and Ia represents the complex addition operation.

Table 1. Computing load analysis.

Processing Computation Complexity

Fast-time FFT [(1/2Nrlog2(Nr))Im + (Nrlog2(Nr))Ia]Na
Frequency domain matching NrNaIm

Chirp-Z Transform (CZT) [(2P + 3/2Plog2(P))Im + (3Plog2(P))Ia]Nr
Fast-time IFFT [(1/2Nrlog2(Nr))Im + (Nrlog2(Nr))Ia]Nv

Then the quantity of floating-point operations is used to evaluate the computing load.
The computing load for different pulse numbers M are shown in Figure 3. It can be seen that
the fast implementation of the proposed method can reduce the computational complexity significantly.
When M = 2048, the computing load of the fast implementation approach is only about 3.2% of the
original proposed method.
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Suppose that Nr = 1024, M = 2048, the velocity unit number Nv is equal to M, Tr = 20 µs, and the
CPI = 41 ms. The computation amount of a real floating-point operation is 1.2 × 109. Taking the typical
DSP, TMS320C6678 from Texas Instruments, as an example, the floating-point computing ability is 160
GFLOPS [19], only 7.3 ms are needed to implement the above processing, which is sufficient to meet
the real-time processing requirements.

In some radar using the median pulse-repetition frequency (MPRF) or low pulse-repetition
frequency (LPRF), the target velocity is usually ambiguous and then Nv is often Q times as M. The real
operation number increases with the expansion of the velocity matching range. Taking Q = 4 as
an example, the range of velocity matching can be increased 4 times by only increasing 30% of the
computation. Therefore, the proposed fast method cannot only effectively reduce the computational
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complexity, but also achieve the coherent integration for wideband radar with a larger range of
matching velocity at a smaller cost.

4. Numerical Experiment

4.1. Simulation Results

The simulation parameters are listed in Table 2. The radar signal bandwidth B = 100 MHz and the
corresponding range resolution is 1.5 m. As shown in Figure 4a, the ARU is 6.1 m across 4 range units
in the CPI of 512 pulses while the ADU is also 4 Doppler units and equivalent to the ARU.

Table 2. Simulation parameters.

Parameters Value

Carrier frequency (fc) 3.0 GHz
Signal bandwidth (B) 100 MHz

pulse repetition interval (PRI) 40 µs
Number of range units (M) 3072

Number of pulses (N) 512
Target velocity (vc) 300 m/s
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The integration result based on the conventional FFT process is shown in Figure 4b. The integration
performance decreases seriously without compensation for ARU and ADU, and the target amplitude
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after coherent integration is only 13.7 × 104. The integration results based on the two-dimensional
frequency correction and its fast implementation are shown in Figure 4c,d respectively. The velocity
search range is [−625 m/s, 625 m/s] with interval of 2.44 m/s, and it can be seen that the target peaks
appear at 300 m/s accurately with the amplitude of 5.1 × 105 and 5.0 × 105, which are nearly equal to
the theoretical value.

The comparison of the target’s Doppler profile and range profile are shown in Figure 5 to clarify
the integration results, and the amplitude is converted into logarithmic representation. It can be seen
that the target is broadened in the result of conventional FFT. The results of the proposed methods prove
that the ARU and ADU of the target can be corrected by the two-dimensional frequency correction
and achieve coherent integration effectively, and the improvements to SNR are 10.9 dB and 11.1 dB,
respectively. The integration result of the fast implementation is slightly higher than that of the direct
method for avoiding the loss of amplitude and phase in Doppler unit re-alignment processing.
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range profiles.

4.2. Measured Data Results

The proposed algorithm is further validated by the measured data. The parameters of the real
radar and the target aircraft for the experiment are shown in Table 3.

Table 3. Experiment parameters.

Parameters Value

Carrier frequency (fc) 10.0 GHz
Signal bandwidth (B) 200 MHz

Pulse repetition interval (PRI) 150 µs
Number of range units (M) 2500

Number of pulses (N) 256
Target velocity (vc) 131 m/s

The result of conventional FFT is shown in Figure 6. The target is significantly broadened in the
range-velocity plane due to the influence of ARU and ADU which are about 7 units and match the
theoretical value approximately. The Doppler frequency has been converted to the corresponding
velocity value for comparison. The result based on the proposed fast implementation method is shown
in Figure 7. The velocity search range is [50 m/s, 150 m/s] and the velocity search interval is 0.39 m/s
corresponding to the Doppler resolution. It can be seen that coherent integration is effectively achieved
with great SNR improvement compared to that of the conventional method.
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The high-resolution range profile (HRRP) and the Doppler profile of the target are shown
in Figure 8a,b respectively. The evaluation the integration results are listed in Table 4. The SNR
improvement of the proposed integration method is up to 9.6 dB compared with that of the conventional
integration method. The HRRP of the target is nearly distributed over 38 range units and the
corresponding radial length is about 28 m.
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Table 4. Evaluation of the integration results.

Range Resolution Velocity Resolution
Signal-to-Noise Ratio (SNR) Comparison

Conventional FFT Proposed Method Improvement

0.75 m 0.39 m/s 20.2 dB 29.8 dB 9.6 dB

5. Conclusions

A coherent integration method for the wideband radar is proposed in this paper based on
two-dimensional frequency correction. The algorithm realizes the motion compensation by the data
re-alignment in the fast-time frequency-Doppler domain, and achieves the intra-pulse accumulation
and the inter-pulse integration in the transform domain. The simulation and measured data results
show that the proposed method can compensate the target motion and achieve coherent integration
for wideband signals without any prior information of the number and velocities of the targets in
the case of velocity ambiguity. An efficient approach is also proposed which equates the time-delay
addressing operation in fast-time frequency-Doppler domain with the phase compensation in the
fast-time frequency-slow time domain. It resolves the requirement that the time-delay addressing
operation in the two-dimensional matrix cannot be processed into row or column regularization,
and avoids the computational burden of interpolation introduced to improve the accuracy of integer
operation. The work in this paper provides a new and effective way for the coherent integration of
wideband radar signals and is easy to implement in engineering.
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