
electronics

Article

SR-SYBA: A Scale and Rotation Invariant Synthetic
Basis Feature Descriptor with Low Memory Usage

Meng Yu 1 , Dong Zhang 1, Dah-Jye Lee 2,* and Alok Desai 3

1 School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China;
yumeng3@mail2.sysu.edu.cn (M.Y.); zhangd@mail.sysu.edu.cn (D.Z.)

2 Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
3 Cubiscan, Inc., Farmington, UT 84025, USA; alokdes1986@gmail.com
* Correspondence: djlee@byu.edu; Tel.: +1-801-422-5923

Received: 28 March 2020; Accepted: 12 May 2020; Published: 15 May 2020
����������
�������

Abstract: Feature description has an important role in image matching and is widely used for a variety
of computer vision applications. As an efficient synthetic basis feature descriptor, SYnthetic BAsis
(SYBA) requires low computational complexity and provides accurate matching results. However,
the number of matched feature points generated by SYBA suffers from large image scaling and
rotation variations. In this paper, we improve SYBA’s scale and rotation invariance by adding
an efficient pre-processing operation. The proposed algorithm, SR-SYBA, represents the scale of
the feature region with the location of maximum gradient response along the radial direction in
Log-polar coordinate system. Based on this scale representation, it normalizes all feature regions
to the same reference scale to provide scale invariance. The orientation of the feature region is
represented as the orientation of the vector from the center of the feature region to its intensity
centroid. Based on this orientation representation, all feature regions are rotated to the same reference
orientation to provide rotation invariance. The original SYBA descriptor is then applied to the scale
and orientation normalized feature regions for description and matching. Experiment results show
that SR-SYBA greatly improves SYBA for image matching applications with scaling and rotation
variations. SR-SYBA obtains comparable or better performance in terms of matching rate compared
to the mainstream algorithms while still maintains its advantages of using much less storage and
simpler computations. SR-SYBA is applied to a vision-based measurement application to demonstrate
its performance for image matching.

Keywords: feature description algorithm; log-polar coordinates; scale-invariance; rotation-invariance;
vision-based measurement

1. Introduction

The process of image matching looks for corresponding targets in two images by analyzing
the similarity and consistency of image contents, structures, features, relationships, textures and
gray scales [1]. Image matching plays an important role in many computer vision tasks, e.g., target
tracking, object detection, and visual petitioning. Image matching techniques can be categorized
into intensity-based and feature-based [2]. Intensity-based matching methods regard the image as
a two-dimensional signal and look for possible matching feature points using statistical means to
evaluate the similarity between the two image signals. Feature-based matching methods describe the
characteristics of images with high-level features, e.g., color, texture, space position, and shape, and find
correspondences by performing a matching process among the features. Compared with intensity-based
methods, feature-based matching methods are more robust to image perturbations including image
compression artifacts, illumination change, blurring, and perspective transformation [2].

Electronics 2020, 9, 810; doi:10.3390/electronics9050810 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-7472-1842
https://orcid.org/0000-0003-1752-8146
https://orcid.org/0000-0001-7726-8927
http://dx.doi.org/10.3390/electronics9050810
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/5/810?type=check_update&version=2

Electronics 2020, 9, 810 2 of 21

Feature detection, feature description, and feature matching are three basic steps for feature-based
image matching methods [3]. As the key to feature-based image matching algorithms, feature
description characterizes a small region surrounding the detected feature points in the image. A good
feature descriptor is required to be representative and exclusive [3], which ensures a distinct description
of a feature region. The performance of feature descriptors suffers from image transformations such
as scaling and rotation variations. Providing efficient descriptor invariant to scaling and rotation
variations is one of the critical challenges in image matching research.

The Scale-Invariant Feature Transform (SIFT) [4] and the Speeded-Up Robust Features (SURF) [5]
perform pyramid decomposition to images, and provide unique feature description at multiple scales
using gradient magnitude and orientation computations. Although they perform well on images with
rotation and scale variations, SIFT and SURF require extensive computations and storage. In order to
simplify computation and reduce storage of feature descriptor, binary feature descriptors like Binary
Robust Independent Elementary Features (BRIEF) [6] were developed. Then came the Binary Robust
Invariant Scalable Keypoints (BRISK) [7] and Oriented FAST and Rotated BRIEF (ORB) [8] algorithms,
as the improvements of BRIEF for scale and rotation invariance. These binary feature descriptors use
fewer bytes to describe the feature point and simplify the computations and reduce the size of storage.

In recent years, deep-learning approaches have demonstrated extraordinary performance in
replacing many image processing and computer vision techniques. Deep architecture-based feature
detectors and descriptors have emerged [9]. However, deep learning-based feature description
algorithms usually require effort to collect and label a large amount of training data. Their performance
may suffer without enough training samples. Additionally, the large model size of these deep learning
architectures limits their applications on resource-limited devices. Researchers are still interested in
hand-crafted feature descriptors, as they do not require the complicated and time-consuming training
process. SYnthetic BAsis (SYBA) [10] was developed for its low computational complexity and high
matching accuracy for real-time applications. Like BRIEF, the performance of SYBA is seriously
degraded when perturbations occur.

An improved version of SYBA called Scale- and Rotation-invariant SYBA or SR-SYBA is proposed
in this paper. Rather than constructing image pyramid to solve the scale invariance problem like
SIFT, we propose an efficient method to represent the scale of the feature region by the location of its
maximum gradient response along the radial direction in the Log-polar coordinate system. Using this
scale representation, all feature regions in the image can be normalized to the same reference scale
to provide scale invariance. After rescaling, the orientation of the feature region can be represented
as the orientation of the vector from the center of the feature region to its intensity centroid. Using
this orientation representation, all feature regions can be rotated to the same reference orientation to
provide rotation invariance. The original SYBA descriptor is then applied to the scale and rotation
normalized feature regions for description and matching.

The proposed SR-SYBA algorithm requires very small memory space compared to other classical
feature descriptors while still has favorable matching performance. A series of experiments were
conducted to verify SR-SYBA’s performance in providing scale and rotation invariance. SR-SYBA was
also tested for a vision-based measurement task to demonstrate its usability in real-world applications.

This paper is organized as follows: In Section 2, we review previous work on feature description
algorithms and the principle of SYBA. The details of SR-SYBA is presented in Section 3. Section 4
compares SR-SYBA algorithm with other well-known algorithms in the field of feature description in
terms of matching performance. In Section 5, we present the result of an application for vision-based
measurement to demonstrate the applicability of the SR-SYBA algorithm. At last, Section 6 summarizes
our work and conclusion.

2. Related Work

The Moravec corner detection algorithm [11] led to the emergence of feature-based image
matching algorithms. Then, Harris [12] proposed the Harris corner detection algorithm, which is

Electronics 2020, 9, 810 3 of 21

rotation-invariant but very sensitive to scaling variation. The SIFT [4] algorithm proposed by Lowe
performs extreme point detection and accurate interpolation by constructing the scale pyramid and
determines the rotation angle with the gradient histogram. Its superior matching performance and
robustness to illumination and geometric transformations make SIFT arguably the most popular
feature descriptor, while at the expense of complicated calculation and large memory usage. Some
improved algorithms based on SIFT like PCA-SIFT [13] reduces the memory usage by compressing
the dimension of feature descriptors. Rather than using multi-scaled images, the Speed-Up Robust
Features (SURF) [5] algorithm utilizes multi-scaled Gaussian kernels to generate Gaussian blurred
images and build the scale space. SURF achieves similar matching performance to the SIFT algorithm,
but still has a great demand for memory space.

In order to decrease memory usage, many binary descriptors were proposed for image matching.
Binary Robust Independent Elementary Features (BRIEF) [6] randomly selects several pairs of points
close to the feature point, and combines the intensity comparison results of these pairs to form a
binary feature descriptor of 256 bytes. This binary-coded descriptor not only greatly accelerates the
generation of feature descriptors, but also saves much time for feature matching. Some improved
versions of BRIEF, including Binary Robust Invariant Scalable Keypoints (BRISK) [7] and Oriented Fast
and Rotated BRIEF (ORB) [8], use image pyramids to provide scale invariance to the descriptor, which
increases memory usage.

The advance of deep learning and high-performance computing makes deep architecture-based
feature descriptors a popular research direction. Learned Invariant Feature Transform (LIFT) [14] was
proposed to automatically extract and describe features with convolutional neural networks, while the
training samples are still obtained using hand-crafted detectors. Super-point [15] is an end-to-end
network trained by means of self-supervising, but still requires the results from hand-crafted detectors
for initialization. Local Feature Network (LF-Net) [16] simplifies the training process with relative
pose and corresponding depth maps between image pairs. These auxiliary parameters are calculated
using traditional image processing techniques. In the work of deep graphical feature learning [17],
a graph neural network model is trained to transform coordinates of feature points into local features
for matching. It uses traditional feature point detectors to select feature points. The performance
of these deep learning-based feature descriptors is largely determined by the training samples used.
Their performance suffers without enough data for training. Besides, these deep architecture-based
feature descriptors require extensive memory storage because of the large size of deep learning model.

At the aim of handling real-time and resource-limited applications, Desai et al. [10] proposed
a new feature description method based on the theory of compressed sensing, the SYnthetic BAsis
Feature Descriptor Algorithm (SYBA). SYBA algorithm starts with the FRI (Feature Region of Interest)
binarization using the average intensity of the region as the threshold. The randomly generated SBIs
(Synthetic Basis Images) are overlaid onto the sub-regions of the binarized FRI, to perform a NOR
operation. The sum of all pixel-wise NOR results serves as an element of the feature descriptor. This
operation intends to measure the similarity between the sub-regions of FRI and the SBIs. The diagram
of the similarity measurement for SYBA algorithm is shown in Figure 1.

For the example in Figure 1, with nine SBIs of 5 × 5, the generated SYBA descriptor of a 30 × 30 FRI
requires 162 bytes. Compared to the descriptors of SIFT (512 bytes) and SURF (256 bytes), the SYBA
descriptor is smaller and requires less memory space. While enjoying the computational simplicity,
SYBA suffers from scaling and rotation variations. Effort has been made to address this challenge [18].
Similar to SIFT’s approach, this new version of robust SYBA (rSYBA) resizes the FRI to different scales
and uses the dominant gradient orientation to normalize the FRI orientation to achieve scale and
rotation invariance. Although these changes improved SYBA’s performance for rotation and scaling
variations, they increased the computational complexity and memory usage.

Electronics 2020, 9, 810 4 of 21
Electronics 2020, 9, x FOR PEER REVIEW 4 of 21

Figure 1. SYBA descriptor formation.

For the example in Figure 1, with nine SBIs of 5 × 5, the generated SYBA descriptor of a 30 × 30

FRI requires 162 bytes. Compared to the descriptors of SIFT (512 bytes) and SURF (256 bytes), the

SYBA descriptor is smaller and requires less memory space. While enjoying the computational

simplicity, SYBA suffers from scaling and rotation variations. Effort has been made to address this

challenge [18]. Similar to SIFT’s approach, this new version of robust SYBA (rSYBA) resizes the FRI

to different scales and uses the dominant gradient orientation to normalize the FRI orientation to

achieve scale and rotation invariance. Although these changes improved SYBA’s performance for

rotation and scaling variations, they increased the computational complexity and memory usage.

The goal of this work is to make SYBA scale and rotation invariant while maintaining its

advantage of low memory usage. To achieve this, rather than using pyramid decomposition as most

other feature description algorithms do, we represent the scale of the feature region in the logarithmic

polar coordinates. Given a feature region, the scale is represented by the location of the largest radial

gradient response in the Log-polar coordinates. The orientation of the feature region is represented

as the orientation of the vector from the center of feature region to its intensity centroid. Using the

proposed scale and orientation representations, all feature regions in the images are normalized to

the same reference scale and orientation before the original SYBA descriptor is used for description

and matching. In this way, SR-SYBA algorithm obtains higher matching performance even with the

presence of scale and rotation variations. Although SR-SYBA needs to save the scale and orientation

normalized version of the feature region, it still remains a memory-efficient approach.

3. SR-SYBA Algorithm

SYBA is an efficient and hardware friendly descriptor for real-time applications [10]. However,

it is very sensitive to image geometric variations. In order to make SYBA invariant to scaling and

rotation transformations, we propose a pre-processing step to normalize the scale and orientation of

the feature region. Rather than solving the scaling variation problem in the Cartesian coordinate

system, we transform the feature region into the Log-polar coordinate system to simplify the process

of finding the representation of the scale of the feature region.

A change in the scale of the feature region in the Cartesian coordinate system leads to a shift in

the transformed image in the radial direction in the Log-polar coordinate. The radius increases as the

feature region scaled up and decreases as the feature region scaled down. A good representation of

the scale can be used to normalize the feature region to the same reference size. The orientation of the

feature region can be represented as the orientation of the vector from the center of the feature region

to its intensity centroid. All feature regions must be normalized to have the same scale and orientation

Figure 1. SYBA descriptor formation.

The goal of this work is to make SYBA scale and rotation invariant while maintaining its advantage
of low memory usage. To achieve this, rather than using pyramid decomposition as most other feature
description algorithms do, we represent the scale of the feature region in the logarithmic polar
coordinates. Given a feature region, the scale is represented by the location of the largest radial
gradient response in the Log-polar coordinates. The orientation of the feature region is represented
as the orientation of the vector from the center of feature region to its intensity centroid. Using the
proposed scale and orientation representations, all feature regions in the images are normalized to
the same reference scale and orientation before the original SYBA descriptor is used for description
and matching. In this way, SR-SYBA algorithm obtains higher matching performance even with the
presence of scale and rotation variations. Although SR-SYBA needs to save the scale and orientation
normalized version of the feature region, it still remains a memory-efficient approach.

3. SR-SYBA Algorithm

SYBA is an efficient and hardware friendly descriptor for real-time applications [10]. However,
it is very sensitive to image geometric variations. In order to make SYBA invariant to scaling and
rotation transformations, we propose a pre-processing step to normalize the scale and orientation
of the feature region. Rather than solving the scaling variation problem in the Cartesian coordinate
system, we transform the feature region into the Log-polar coordinate system to simplify the process
of finding the representation of the scale of the feature region.

A change in the scale of the feature region in the Cartesian coordinate system leads to a shift in
the transformed image in the radial direction in the Log-polar coordinate. The radius increases as the
feature region scaled up and decreases as the feature region scaled down. A good representation of the
scale can be used to normalize the feature region to the same reference size. The orientation of the
feature region can be represented as the orientation of the vector from the center of the feature region
to its intensity centroid. All feature regions must be normalized to have the same scale and orientation
before calculating their SYBA descriptors for matching. The block diagram of SR-SYBA algorithm is
shown in Figure 2.

Electronics 2020, 9, 810 5 of 21

Electronics 2020, 9, x FOR PEER REVIEW 5 of 21

before calculating their SYBA descriptors for matching. The block diagram of SR-SYBA algorithm is

shown in Figure 2.

Figure 2. SR-SYBA block diagram.

3.1. Log-Polar Coordinate Transformation

Log-polar coordinate transformation is a widely used tool for image processing because of its

convenience for handling rotation and scaling changes [19]. Studies found that affine transformation

in Cartesian coordinate system corresponds to translation in the Log-polar coordinate system [20].

Specifically, scaling the image s times in the Cartesian coordinate system leads to a translation of

𝑙𝑜𝑔𝑡 𝑠 along the 𝑙𝑜𝑔𝑡 𝑟 (radius) coordinate in the Log-polar coordinate system. Measurement of the

translation in the Log-polar coordinate system can be used as a representation of scale change.

Suppose the coordinate origin is located in the center of the feature region. For a point 𝑃𝑐(𝑥, 𝑦)

in the Cartesian coordinate system, the corresponding point in the Log-polar coordinate system is

𝑃𝐿(𝜌, 𝜃). The coordinate mapping relation is shown in Equations (1) and (2),

{
𝜌 = 0.5 log𝑡(𝑥2 + 𝑦2)

𝜃 = arctan (
𝑦

𝑥
)

 (1)

{
𝑥 = 𝑡𝜌𝑐𝑜𝑠𝜃
𝑦 = 𝑡𝜌𝑠𝑖𝑛𝜃

, (2)

where 𝑡 is the logarithm base, (𝑥, 𝑦) denotes the pixel position in the Cartesian coordinates, and

(𝜌, 𝜃) denotes the log-radius and the angular position in the Log-polar coordinates. Equations (1) and

(2) show that a circular block of radius re in the Cartesian coordinate system (𝑥, 𝑦) can be mapped to

an 𝑚 × 𝑛 rectangular block in the Log-polar coordinate system (𝜌, 𝜃). The values of 𝑚 and 𝑛 are

determined by the logarithmic base 𝑡 and the angular sampling interval ∆𝜃. To ensure the adjacent

pixels on the circular edge (in the Cartesian coordinate system) to still be adjacent on the boarder of

the transformed image (in the Log-polar coordinate system), the following relationship among 𝑡, 𝑚,

∆𝜃, 𝑛 and 𝑟𝑒 can be obtained [21], shown in Equations (3) and (4).

{
𝑡 = 𝑟𝑒/(𝑟𝑒 − 1)

𝑚 = 𝑙𝑜𝑔𝑡 𝑟𝑒
 (3)

{
∆𝜃 = 2 arcsin(0.5/𝑟𝑒)

𝑛 = 360/∆𝜃
 (4)

Given the radius 𝑟𝑒 for coordinate transformation in the Cartesian coordinate system, the

corresponding logarithmic base 𝑡 and angular sampling interval ∆𝜃 can be obtained through

Equations (3) and (4). Then the transformed image size of 𝑚 × 𝑛 is also determined. Back-projection

strategy is used in actual implementation of this coordinate transformation. For a point in the Log-

polar coordinate system, we first calculate its corresponding location in the Cartesian coordinate

system, then use a bilinear interpolation algorithm to obtain its pixel value. Figure 3 shows an

example of this Log-polar coordinate transformation.

Figure 2. SR-SYBA block diagram.

3.1. Log-Polar Coordinate Transformation

Log-polar coordinate transformation is a widely used tool for image processing because of its
convenience for handling rotation and scaling changes [19]. Studies found that affine transformation
in Cartesian coordinate system corresponds to translation in the Log-polar coordinate system [20].
Specifically, scaling the image s times in the Cartesian coordinate system leads to a translation of logt s
along the logt r (radius) coordinate in the Log-polar coordinate system. Measurement of the translation
in the Log-polar coordinate system can be used as a representation of scale change.

Suppose the coordinate origin is located in the center of the feature region. For a point Pc(x, y)
in the Cartesian coordinate system, the corresponding point in the Log-polar coordinate system is
PL(ρ,θ). The coordinate mapping relation is shown in Equations (1) and (2), ρ = 0.5 logt

(
x2 + y2

)
θ = arctan

(y
x

) (1)

{
x = tρcosθ
y = tρsinθ

, (2)

where t is the logarithm base, (x, y) denotes the pixel position in the Cartesian coordinates, and (ρ,θ)
denotes the log-radius and the angular position in the Log-polar coordinates. Equations (1) and
(2) show that a circular block of radius re in the Cartesian coordinate system (x, y) can be mapped
to an m × n rectangular block in the Log-polar coordinate system (ρ,θ). The values of m and n are
determined by the logarithmic base t and the angular sampling interval ∆θ. To ensure the adjacent
pixels on the circular edge (in the Cartesian coordinate system) to still be adjacent on the boarder of the
transformed image (in the Log-polar coordinate system), the following relationship among t, m, ∆θ, n
and re can be obtained [21], shown in Equations (3) and (4).{

t = re/(re − 1)
m = logt re

(3)

{
∆θ = 2arcsin(0.5/re)

n = 360/∆θ
(4)

Given the radius re for coordinate transformation in the Cartesian coordinate system, the
corresponding logarithmic base t and angular sampling interval ∆θ can be obtained through
Equations (3) and (4). Then the transformed image size of m× n is also determined. Back-projection
strategy is used in actual implementation of this coordinate transformation. For a point in the Log-polar
coordinate system, we first calculate its corresponding location in the Cartesian coordinate system,
then use a bilinear interpolation algorithm to obtain its pixel value. Figure 3 shows an example of this
Log-polar coordinate transformation.

Electronics 2020, 9, 810 6 of 21

Electronics 2020, 9, x FOR PEER REVIEW 6 of 21

Figure 3. An example of Log-polar coordinate transformation. (a) a circular feature region of a 24-

pixel radius in the Cartesian coordinate system (the area in the dotted circle). (b) transformed

rectangular block (74 × 150 pixels) in the Log-polar coordinate system.

3.2. Scale Representation Estimation

The proposed method uses the location of the maximum gradient along the radial direction to

represent the scale of a feature region. The estimation of the scale representation of a feature region

is shown in Figure 4. First, we transform the circular feature region in a 24-pixel radius into Log-polar

coordinates using Equations (1) and (2). Second, we perform a one-dimensional gradient operation

on the transformed Log-polar image to obtain the horizontal gradient along the log-radius

(horizontal) axis. We sum the gradient values along the angular (vertical) axis for each log-radius to

form a one-dimensional accumulated gradient with the radius as its index. We locate the maximum

of the accumulated gradient and use its corresponding radius to represent the scale of the feature

region. In other words, we use the radius of one of the concentric circles that has the largest

accumulated radial gradient in the Cartesian coordinate system to represent the scale of the feature

region.

Denote the feature region as 𝑓𝐶(𝑥, 𝑦) and its corresponding transformed image in the Log-polar

coordinate system as 𝑓𝐿(𝜌, 𝜃). The one-dimensional gradient of the transformed image is calculated

as:

𝑔𝑟𝑎𝑑(𝜌, 𝜃) = 𝑓𝐿(𝜌 + 1, 𝜃) − 𝑓𝐿(𝜌 − 1, 𝜃). (5)

The accumulated gradient for each log-radius (the blue curve shown in Figure 4) is

Figure 4. Scale representation estimation of a circular feature region.

𝑅(𝜌) = ∑ 𝑔𝑟𝑎𝑑(𝜌, 𝜃)𝜃 = ∑ [𝑓𝐿(𝜌 + 1, 𝜃) − 𝑓𝐿(𝜌 − 1, 𝜃)]𝜃 .
(6)

Figure 3. An example of Log-polar coordinate transformation. (a) a circular feature region of a 24-pixel
radius in the Cartesian coordinate system (the area in the dotted circle). (b) transformed rectangular
block (74 × 150 pixels) in the Log-polar coordinate system.

3.2. Scale Representation Estimation

The proposed method uses the location of the maximum gradient along the radial direction to
represent the scale of a feature region. The estimation of the scale representation of a feature region is
shown in Figure 4. First, we transform the circular feature region in a 24-pixel radius into Log-polar
coordinates using Equations (1) and (2). Second, we perform a one-dimensional gradient operation on
the transformed Log-polar image to obtain the horizontal gradient along the log-radius (horizontal)
axis. We sum the gradient values along the angular (vertical) axis for each log-radius to form a
one-dimensional accumulated gradient with the radius as its index. We locate the maximum of the
accumulated gradient and use its corresponding radius to represent the scale of the feature region.
In other words, we use the radius of one of the concentric circles that has the largest accumulated
radial gradient in the Cartesian coordinate system to represent the scale of the feature region.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 21

Figure 3. An example of Log-polar coordinate transformation. (a) a circular feature region of a 24-

pixel radius in the Cartesian coordinate system (the area in the dotted circle). (b) transformed

rectangular block (74 × 150 pixels) in the Log-polar coordinate system.

3.2. Scale Representation Estimation

The proposed method uses the location of the maximum gradient along the radial direction to

represent the scale of a feature region. The estimation of the scale representation of a feature region

is shown in Figure 4. First, we transform the circular feature region in a 24-pixel radius into Log-polar

coordinates using Equations (1) and (2). Second, we perform a one-dimensional gradient operation

on the transformed Log-polar image to obtain the horizontal gradient along the log-radius

(horizontal) axis. We sum the gradient values along the angular (vertical) axis for each log-radius to

form a one-dimensional accumulated gradient with the radius as its index. We locate the maximum

of the accumulated gradient and use its corresponding radius to represent the scale of the feature

region. In other words, we use the radius of one of the concentric circles that has the largest

accumulated radial gradient in the Cartesian coordinate system to represent the scale of the feature

region.

Denote the feature region as 𝑓𝐶(𝑥, 𝑦) and its corresponding transformed image in the Log-polar

coordinate system as 𝑓𝐿(𝜌, 𝜃). The one-dimensional gradient of the transformed image is calculated

as:

𝑔𝑟𝑎𝑑(𝜌, 𝜃) = 𝑓𝐿(𝜌 + 1, 𝜃) − 𝑓𝐿(𝜌 − 1, 𝜃). (5)

The accumulated gradient for each log-radius (the blue curve shown in Figure 4) is

Figure 4. Scale representation estimation of a circular feature region.

𝑅(𝜌) = ∑ 𝑔𝑟𝑎𝑑(𝜌, 𝜃)𝜃 = ∑ [𝑓𝐿(𝜌 + 1, 𝜃) − 𝑓𝐿(𝜌 − 1, 𝜃)]𝜃 .
(6)

Figure 4. Scale representation estimation of a circular feature region.

Denote the feature region as fC(x, y) and its corresponding transformed image in the Log-polar
coordinate system as fL(ρ,θ). The one-dimensional gradient of the transformed image is calculated as:

grad(ρ,θ) = fL(ρ+ 1,θ) − fL(ρ− 1,θ). (5)

The accumulated gradient for each log-radius (the blue curve shown in Figure 4) is

R(ρ) =
∑
θ

grad(ρ,θ) =
∑
θ
[fL(ρ+ 1,θ) − fL(ρ− 1,θ)]. (6)

Electronics 2020, 9, 810 7 of 21

The location of the maximum gradient of the accumulated gradient is

ρmax_pos = argmax
ρ

R(ρ) = argmax
ρ

∑
θ

[fL(ρ+ 1,θ) − fL(ρ− 1,θ)]. (7)

We represent the scale of the feature region by transferring the location of the maximum gradient
into the Cartesian coordinate system, as shown in Equation (8),

scale = tρmax_pos , (8)

where t is the base of the Log-polar coordinate transformation defined in Equation (3).
Further investigation on the scaling and rotation transformation demonstrates the effectiveness

of our method. We denote gC(x′, y′) as the scaled and rotated image of fC(x, y), with scale factor a
and rotation angle α degrees. The relationship between (x′, y′) and (x, y) is shown in Equations (9)
and (10). [

x′

y′

]
=

[
acosα −asinα
asinα acosα

][
x
y

]
(9)

x′ = axcosα− aysinα, y′ = axsinα+ aycosα (10)

Denote the corresponding image of gC(x′, y′) in the Log-polar coordinate system as gL(ρ′,θ′),
we have

ρ′ = 0.5 logt

(
x′2 + y′2

)
= 0.5 logt

[
(axcosα− aysinα)2 + (axsinα+ aycosα)2

]
. (11)

According to Equation (2), we can obtain

ρ′ = 0.5 logt

[
(atρcosθcosα− atρsinθsinα)2 + (atρcosθsinα+ atρsinθcosα)2

]
= 0.5 logt

{
[atρ cos(θ+ α)]2 + [atρ sin(θ+ α)]2

}
= 0.5 logt

(
a2t2ρ

)
= logt a + ρ,

(12)

θ′ = tan−1
(

y′

x′

)
= tan−1

(
axsinα+ aycosα
axcosα− aysinα

)
= tan−1

(tρcosθsinα+ tρsinθcosα
tρcosθcosα− tρsinθsinα

)
= θ+ α. (13)

Equation (12) shows that the scale change of a feature region in the Cartesian coordinate system
leads to a shift along the radial axis in the Log-polar coordinate system. Equation (13) shows the
rotation transformation in the Cartesian coordinate system corresponds to translation along the angular
axis in the Log-polar coordinate system. For scaled and rotated image, we can estimate the location or
the radius of the maximum accumulated gradient by Equation (14).

ρ′max_pos = argmax
ρ′

∑
θ′
[gL(ρ′ + 1,θ′) − gL(ρ′ − 1,θ′)]

= argmax
ρ+logt a

∑
θ+α

[fL(ρ+ 1,θ) − fL(ρ− 1,θ)]

= argmax
ρ

∑
θ
[fL(ρ+ 1,θ) − fL(ρ− 1,θ)] + logt a = ρmax_pos + logt a

(14)

And the detected scale representation for gC(x′, y′) is

scale′ = tρ
′
max_pos = tρmax_pos+logt a = tρmax_pos ·tlogt a = a·scale. (15)

Equation (14) shows that, for a scaled and rotated feature region, the translation of the maximum
accumulated gradient is proportional to the scale factor a. An example of the translation of the maximal
accumulated gradient is shown in Figure 5. Figure 5a shows a feature region from an actual image.
Figure 5c is the same region but enlarged by 1.5 times and cropped to have the same size as Figure 5a.
The accumulated gradient of the original region and the enlarged region are plotted separately and

Electronics 2020, 9, 810 8 of 21

shown in Figure 5b,d. The maximum gradient shifts to the right along the logt r axis because of the
scale factor 1.5.Electronics 2020, 9, x FOR PEER REVIEW 8 of 21

Figure 5. The accumulated gradients for the original and enlarged feature regions.

Equation (15) indicates that the scale factor between the two feature regions can be calculated as

the ratio of their estimated scale representations. For example, the obtained scale representation of

the original feature region is 3.79748 (Figure 5b), while the scale representation of the scaled feature

region is 5.72002 (Figure 5d). The estimated scale factor of between the two feature regions is 1.50734,

which is nearly the actual scale factor of 1.5. This simple experiment proves that the location of the

maximum accumulated gradient can be used as a good representation of the scale of the feature

region. All feature regions will be normalized to the same reference size before their SYBA descriptors

can be calculated for matching. This scale normalization makes the SR-SYBA algorithm scale

invariant.

3.3. Orientation Representation Estimation

Study shows that the location of intensity centroid of an image also experiences corresponding

conversion in image transforms due to scaling and rotation [22]. In other words, the length of the line

connecting the center of the feature region and its intensity centroid increases proportionally to the

increase of the scale, and its orientation rotates the same amount as the rotation of the image. With

the detected scale of the feature region, we can determine what size of the feature region to calculate

the intensity centroid and further represent the region’s orientation by calculating the orientation of

the line connecting the feature region center and the intensity centroid. Assuming s is the estimated

scale, we crop the feature region of the size of the multiples of 𝑠 × 𝑠 to calculate the intensity

centroid. The intensity centroid is calculated using the moment of the neighborhood 𝐼(𝑥, 𝑦) [23], as

shown in Equations (16) and (17),

𝐶 = (
𝑚10

𝑚00
,
𝑚01

𝑚00
) (16)

𝑚𝑝𝑞 = ∑ 𝑥𝑝𝑦𝑞𝐼(𝑥, 𝑦)

𝑥,𝑦

 (17)

where (𝑥, 𝑦) denotes the pixel of the feature region in the Cartesian coordinates, and 𝑚𝑝𝑞 is the

image moment of order (𝑝 + 𝑞). The orientation representation of this feature region is calculated as

the direction of the vector from the feature region center to the intensity centroid,

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑚01

𝑚00
/

𝑚10

𝑚00
) = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑚01/𝑚10). (18)

Figure 5. The accumulated gradients for the original and enlarged feature regions.

Equation (15) indicates that the scale factor between the two feature regions can be calculated as
the ratio of their estimated scale representations. For example, the obtained scale representation of
the original feature region is 3.79748 (Figure 5b), while the scale representation of the scaled feature
region is 5.72002 (Figure 5d). The estimated scale factor of between the two feature regions is 1.50734,
which is nearly the actual scale factor of 1.5. This simple experiment proves that the location of the
maximum accumulated gradient can be used as a good representation of the scale of the feature region.
All feature regions will be normalized to the same reference size before their SYBA descriptors can be
calculated for matching. This scale normalization makes the SR-SYBA algorithm scale invariant.

3.3. Orientation Representation Estimation

Study shows that the location of intensity centroid of an image also experiences corresponding
conversion in image transforms due to scaling and rotation [22]. In other words, the length of the line
connecting the center of the feature region and its intensity centroid increases proportionally to the
increase of the scale, and its orientation rotates the same amount as the rotation of the image. With the
detected scale of the feature region, we can determine what size of the feature region to calculate
the intensity centroid and further represent the region’s orientation by calculating the orientation of
the line connecting the feature region center and the intensity centroid. Assuming s is the estimated
scale, we crop the feature region of the size of the multiples of s× s to calculate the intensity centroid.
The intensity centroid is calculated using the moment of the neighborhood I(x, y) [23], as shown in
Equations (16) and (17),

C =

(
m10

m00
,

m01

m00

)
(16)

mpq =
∑
x,y

xpyqI(x, y) (17)

Electronics 2020, 9, 810 9 of 21

where (x, y) denotes the pixel of the feature region in the Cartesian coordinates, and mpq is the image
moment of order (p + q). The orientation representation of this feature region is calculated as the
direction of the vector from the feature region center to the intensity centroid,

θ = arctan(
m01

m00
/

m10

m00
) = arctan(m01/m10). (18)

The SR-SYBA algorithm uses this angle to perform orientation normalization for the feature
region to achieve rotation invariance. Figure 6 gives an illustration of this orientation representation
estimation process. Figure 6a shows the representation of the orientation θ as the orientation of the
vector from the center of the region to the intensity centroid. Figure 6b shows the orientation of the
feature region after being normalized to θ = 0 degree.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 21

The SR-SYBA algorithm uses this angle to perform orientation normalization for the feature

region to achieve rotation invariance. Figure 6 gives an illustration of this orientation representation

estimation process. Figure 6a shows the representation of the orientation as the orientation of the

vector from the center of the region to the intensity centroid. Figure 6b shows the orientation of the

feature region after being normalized to = 0 degree.

(a) (b)

Figure 6. (a) Orientation representation estimation with intensity centroid and (b) orientation

normalization to horizontal.

3.4. Scale and Orientation Normalization

Using the estimated scale and orientation representations, all feature regions can be normalized

to the same reference scale and orientation before matching. For example, suppose the reference scale

is 15 and the reference orientation is 0°, given a feature region with a scale representation s and an

orientation representation 𝜃, the feature region is normalized using Equation (10) with scale factor

𝑎 = 15/𝑠 and rotation angle 𝛼 = −𝜃. The FRI (Feature Region of Interest) is then extracted in the

normalized feature region for SYBA description. This pre-processing ensures the SR-SYBA to have

image scale and rotation invariance. Figure 7 presents an example of scale and rotation normalization

and FRI extraction.

3.5. SR-SYBA Algorithm

Compared to the original SYBA algorithm, our SR-SYBA algorithm only requires a little

additional memory to store the feature region after Log-polar coordinate transformation for scale

representation estimation. It obtains invariance to scaling and rotation transformations at the cost of

storing an additional small image patch. Compared to the methods that determine the scale using

image pyramid, our SR-SYBA algorithm is quite storage-efficient and applicable to embedded

devices.

(a) (b) (c)

Figure 7. An example of scale and rotation normalization. (a) is the original feature region (70 × 70

pixels), with a scale representation of 16.6 and orientation representation of 45°. The normalized

feature region based on the estimated scale and orientation representations is shown in (b). (c) is the

FRI of 30 × 30 pixels extracted from the normalized feature region for SYBA description.

Figure 8 shows the flowchart of the SR-SYBA algorithm. The ORB (Oriented FAST and Rotated

BRIEF) algorithm is used to detect feature points in the grayscale image. A small circular feature

region surrounds each feature is transformed to the Log-polar coordinate system. The transformed

Figure 6. (a) Orientation representation estimation with intensity centroid and (b) orientation
normalization to horizontal.

3.4. Scale and Orientation Normalization

Using the estimated scale and orientation representations, all feature regions can be normalized to
the same reference scale and orientation before matching. For example, suppose the reference scale
is 15 and the reference orientation is 0◦, given a feature region with a scale representation s and an
orientation representation θ, the feature region is normalized using Equation (10) with scale factor
a = 15/s and rotation angle α = −θ. The FRI (Feature Region of Interest) is then extracted in the
normalized feature region for SYBA description. This pre-processing ensures the SR-SYBA to have
image scale and rotation invariance. Figure 7 presents an example of scale and rotation normalization
and FRI extraction.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 21

The SR-SYBA algorithm uses this angle to perform orientation normalization for the feature

region to achieve rotation invariance. Figure 6 gives an illustration of this orientation representation

estimation process. Figure 6a shows the representation of the orientation as the orientation of the

vector from the center of the region to the intensity centroid. Figure 6b shows the orientation of the

feature region after being normalized to = 0 degree.

(a) (b)

Figure 6. (a) Orientation representation estimation with intensity centroid and (b) orientation

normalization to horizontal.

3.4. Scale and Orientation Normalization

Using the estimated scale and orientation representations, all feature regions can be normalized

to the same reference scale and orientation before matching. For example, suppose the reference scale

is 15 and the reference orientation is 0°, given a feature region with a scale representation s and an

orientation representation 𝜃, the feature region is normalized using Equation (10) with scale factor

𝑎 = 15/𝑠 and rotation angle 𝛼 = −𝜃. The FRI (Feature Region of Interest) is then extracted in the

normalized feature region for SYBA description. This pre-processing ensures the SR-SYBA to have

image scale and rotation invariance. Figure 7 presents an example of scale and rotation normalization

and FRI extraction.

3.5. SR-SYBA Algorithm

Compared to the original SYBA algorithm, our SR-SYBA algorithm only requires a little

additional memory to store the feature region after Log-polar coordinate transformation for scale

representation estimation. It obtains invariance to scaling and rotation transformations at the cost of

storing an additional small image patch. Compared to the methods that determine the scale using

image pyramid, our SR-SYBA algorithm is quite storage-efficient and applicable to embedded

devices.

(a) (b) (c)

Figure 7. An example of scale and rotation normalization. (a) is the original feature region (70 × 70

pixels), with a scale representation of 16.6 and orientation representation of 45°. The normalized

feature region based on the estimated scale and orientation representations is shown in (b). (c) is the

FRI of 30 × 30 pixels extracted from the normalized feature region for SYBA description.

Figure 8 shows the flowchart of the SR-SYBA algorithm. The ORB (Oriented FAST and Rotated

BRIEF) algorithm is used to detect feature points in the grayscale image. A small circular feature

region surrounds each feature is transformed to the Log-polar coordinate system. The transformed

Figure 7. An example of scale and rotation normalization. (a) is the original feature region
(70 × 70 pixels), with a scale representation of 16.6 and orientation representation of 45◦. The normalized
feature region based on the estimated scale and orientation representations is shown in (b). (c) is the
FRI of 30 × 30 pixels extracted from the normalized feature region for SYBA description.

Electronics 2020, 9, 810 10 of 21

3.5. SR-SYBA Algorithm

Compared to the original SYBA algorithm, our SR-SYBA algorithm only requires a little additional
memory to store the feature region after Log-polar coordinate transformation for scale representation
estimation. It obtains invariance to scaling and rotation transformations at the cost of storing an
additional small image patch. Compared to the methods that determine the scale using image pyramid,
our SR-SYBA algorithm is quite storage-efficient and applicable to embedded devices.

Figure 8 shows the flowchart of the SR-SYBA algorithm. The ORB (Oriented FAST and Rotated
BRIEF) algorithm is used to detect feature points in the grayscale image. A small circular feature region
surrounds each feature is transformed to the Log-polar coordinate system. The transformed image is
then used to estimate its scale and orientation representations. The original rectangular feature region
in the Cartesian coordinate system is resized to a reference scale and rotated to a reference orientation
(horizontal) according to its scale and orientation representations. After the scale and orientation
normalization, the SYBA algorithm is applied to the normalized feature region to calculate a feature
descriptor for matching.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 21

image is then used to estimate its scale and orientation representations. The original rectangular

feature region in the Cartesian coordinate system is resized to a reference scale and rotated to a

reference orientation (horizontal) according to its scale and orientation representations. After the

scale and orientation normalization, the SYBA algorithm is applied to the normalized feature region

to calculate a feature descriptor for matching.

Figure 8. Flowchart of the SR-SYBA algorithm.

4. Experiments and Discussion

4.1. Verification of Scale Representation Estimation

We performed this experiment with standard Lena image to demonstrate the effectiveness of

the proposed scale representation estimation method. We detected 150 feature points of Lena using

the ORB (Oriented FAST and Rotated BRIEF) algorithm. To verify the accuracy of our scale

representation estimation, we calculated the scale representations of these 150 feature points and

selected 10 that have distinct scale representations ranging from 4.14 to 18.85. We cropped a region

of 35 × 35 and resized it by 0.7–3.0 at a 0.1 interval to generate 24 resized feature regions for each of

these 10 feature points for experiment. The scale representations of these 240 resized regions were

estimated using our method outlined in Section 3.2. The scale factor was calculated as the ratio of the

scale representation of the original feature region to the scale representations of it corresponding 24

resized regions. The parameter 𝑟𝑒 was set to 24 in this experiment. We plotted the relationship

between the calculated scale factors and the ground truth scale factors in Figure 9. The ground truth

is on the 𝑦 = 𝑥 𝑙𝑖𝑛𝑒, the solid line in Figure 9.

Figure 9 shows the effectiveness of our scale representation estimation algorithm as most of the

points were very close to the ground truth. Some scale factors calculated for feature regions with a

large-scale representation fell far from the ground truth. This was due to the fixed radius of 24 pixels,

as scale representation estimation limited the allowable scale factor. The maximum allowable scale

factor is 24/𝑠 for a feature region with a scale representation s. For example, for a large-scale

representation s = 18.85, the largest allowable scale factor is 24/18.85 = 1.27. Our scale representation

estimation algorithm failed when the scale factor exceeded its limit.

As shown in Figure 9, for the feature region with a scale representation of 8.048 (blue star), the

last two scale factors (2.9 and 3.0) were very close to its allowable limit and were slightly off of the

ground truth. For the feature region with a 9.54 scale representation (orange circle), the last six scale

factors exceeded its detectable limit of 2.51 (24/9.54) and were not estimated corrected. Similarly, for

scale representations 12.05 (yellow triangle) and 18.85 (purple cross), their respective allowable limit

was 1.99 and 1.27. Only twelve yellow triangles (scale factors 0.7–1.8) and six purple crosses (scale

Figure 8. Flowchart of the SR-SYBA algorithm.

4. Experiments and Discussion

4.1. Verification of Scale Representation Estimation

We performed this experiment with standard Lena image to demonstrate the effectiveness of the
proposed scale representation estimation method. We detected 150 feature points of Lena using the
ORB (Oriented FAST and Rotated BRIEF) algorithm. To verify the accuracy of our scale representation
estimation, we calculated the scale representations of these 150 feature points and selected 10 that have
distinct scale representations ranging from 4.14 to 18.85. We cropped a region of 35 × 35 and resized it
by 0.7–3.0 at a 0.1 interval to generate 24 resized feature regions for each of these 10 feature points for
experiment. The scale representations of these 240 resized regions were estimated using our method
outlined in Section 3.2. The scale factor was calculated as the ratio of the scale representation of the
original feature region to the scale representations of it corresponding 24 resized regions. The parameter
re was set to 24 in this experiment. We plotted the relationship between the calculated scale factors
and the ground truth scale factors in Figure 9. The ground truth is on the y = x line , the solid line in
Figure 9.

Figure 9 shows the effectiveness of our scale representation estimation algorithm as most of the
points were very close to the ground truth. Some scale factors calculated for feature regions with a

Electronics 2020, 9, 810 11 of 21

large-scale representation fell far from the ground truth. This was due to the fixed radius of 24 pixels,
as scale representation estimation limited the allowable scale factor. The maximum allowable scale
factor α is 24/s for a feature region with a scale representation s. For example, for a large-scale
representation s = 18.85, the largest allowable scale factor is 24/18.85 = 1.27. Our scale representation
estimation algorithm failed when the scale factor exceeded its limit.

As shown in Figure 9, for the feature region with a scale representation of 8.048 (blue star), the last
two scale factors (2.9 and 3.0) were very close to its allowable limit and were slightly off of the ground
truth. For the feature region with a 9.54 scale representation (orange circle), the last six scale factors
exceeded its detectable limit of 2.51 (24/9.54) and were not estimated corrected. Similarly, for scale
representations 12.05 (yellow triangle) and 18.85 (purple cross), their respective allowable limit was
1.99 and 1.27. Only twelve yellow triangles (scale factors 0.7–1.8) and six purple crosses (scale factors
0.7–1.2) were estimated correctly. The larger the scale representation, the smaller the number of correct
scale factors that can be estimated correctly.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 21

factors 0.7–1.2) were estimated correctly. The larger the scale representation, the smaller the number

of correct scale factors that can be estimated correctly.

Figure 9. Scale factor calculation verification.

Removing those scale factors that exceed their allowable limits, the scale representation

estimation algorithm performed perfectly. Increasing the circular feature region radius will increase

its allowable range. However, the larger the radius, the more likely the algorithm is to be affected by

interferences, e.g., spurious local maxima and random noise. Based on our experiments, 24 was the

most suitable radius for scale representation estimation and was chosen for all our experiments.

4.2. Performance Comparison with the Original SYBA

We compared SR-SYBA’s matching performance with the original SYBA under the same

experimental settings to demonstrate its scale and rotation invariance. We selected three standard

images that are commonly used for image processing: Lena, Baboon and Pepper, as shown in Figure

10.

Figure 10. Three images (from left to right: Lena, Baboon, and Pepper) used for comparison between

the SR-SYBA and the original SYBA algorithms.

4.2.1. Scaling Variation

As for performance comparison under scaling variation, we first resized the image by 0.7–5.0 at

a 0.1 interval, and tested the performance of these two algorithms for matching the resized image

with the original. For a fair comparison, the same feature detector ORB was used for both SR-SYBA

and SYBA. Brute Force matching [24] was performed for feature matching. Correct matches were

filtered through the real affine matrix from which the error bound was set to 5 pixels. We define the

Figure 9. Scale factor calculation verification.

Removing those scale factors that exceed their allowable limits, the scale representation estimation
algorithm performed perfectly. Increasing the circular feature region radius will increase its allowable
range. However, the larger the radius, the more likely the algorithm is to be affected by interferences,
e.g., spurious local maxima and random noise. Based on our experiments, 24 was the most suitable
radius for scale representation estimation and was chosen for all our experiments.

4.2. Performance Comparison with the Original SYBA

We compared SR-SYBA’s matching performance with the original SYBA under the same
experimental settings to demonstrate its scale and rotation invariance. We selected three standard
images that are commonly used for image processing: Lena, Baboon and Pepper, as shown in Figure 10.

Electronics 2020, 9, 810 12 of 21

Electronics 2020, 9, x FOR PEER REVIEW 11 of 21

factors 0.7–1.2) were estimated correctly. The larger the scale representation, the smaller the number

of correct scale factors that can be estimated correctly.

Figure 9. Scale factor calculation verification.

Removing those scale factors that exceed their allowable limits, the scale representation

estimation algorithm performed perfectly. Increasing the circular feature region radius will increase

its allowable range. However, the larger the radius, the more likely the algorithm is to be affected by

interferences, e.g., spurious local maxima and random noise. Based on our experiments, 24 was the

most suitable radius for scale representation estimation and was chosen for all our experiments.

4.2. Performance Comparison with the Original SYBA

We compared SR-SYBA’s matching performance with the original SYBA under the same

experimental settings to demonstrate its scale and rotation invariance. We selected three standard

images that are commonly used for image processing: Lena, Baboon and Pepper, as shown in Figure

10.

Figure 10. Three images (from left to right: Lena, Baboon, and Pepper) used for comparison between

the SR-SYBA and the original SYBA algorithms.

4.2.1. Scaling Variation

As for performance comparison under scaling variation, we first resized the image by 0.7–5.0 at

a 0.1 interval, and tested the performance of these two algorithms for matching the resized image

with the original. For a fair comparison, the same feature detector ORB was used for both SR-SYBA

and SYBA. Brute Force matching [24] was performed for feature matching. Correct matches were

filtered through the real affine matrix from which the error bound was set to 5 pixels. We define the

Figure 10. Three images (from left to right: Lena, Baboon, and Pepper) used for comparison between
the SR-SYBA and the original SYBA algorithms.

4.2.1. Scaling Variation

As for performance comparison under scaling variation, we first resized the image by 0.7–5.0 at a
0.1 interval, and tested the performance of these two algorithms for matching the resized image with
the original. For a fair comparison, the same feature detector ORB was used for both SR-SYBA and
SYBA. Brute Force matching [24] was performed for feature matching. Correct matches were filtered
through the real affine matrix from which the error bound was set to 5 pixels. We define the matching
rate as the ratio of the number of correct matches to the number of detected feature points. Suppose
that the number of feature points detected for two matching pictures is N1, N2, and the number of
correct matches founded is M. The matching rate R is defined as Equation (19),

R =
M

min(N1, N2)
(19)

where min(·) takes the smaller one of the two values. The performance curves of SR-SYBA and SYBA
under scaling variation corresponding to the three images are shown in Figure 11.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 21

matching rate as the ratio of the number of correct matches to the number of detected feature points.

Suppose that the number of feature points detected for two matching pictures is 𝑁1, 𝑁2, and the

number of correct matches founded is 𝑀. The matching rate 𝑅 is defined as Equation (19),

𝑅 =
𝑀

𝑚𝑖𝑛(𝑁1, 𝑁2)
 (19)

where 𝑚𝑖𝑛(·) takes the smaller one of the two values. The performance curves of SR-SYBA and

SYBA under scaling variation corresponding to the three images are shown in Figure 11.

The overall performances of both algorithms declined with the increasing scale factor. This held

truth for both the SR-SYBA and the SYBA algorithms, as shown in Figure 11. However, SR-SYBA

showed significant performance improvement over the SYBA algorithm, manifested by the gap

between the two curves of matching rate of the three charts in Figure 11. Overall, the experiment

results showed that the SR-SYBA algorithm improved the matching performance of SYBA in terms

of matching rate with scaling variations.

4.2.2. Rotation Variation

Experimental settings for rotation variation were similar to those for scaling variation. We

rotated the three select images shown in Figure 10 by 10–350 degrees at a 10-degree interval and

tested the performance of these two algorithms by matching features from the rotated image with

features in the original image. Figure 12 shows the performance curves of SR-SYBA and SYBA under

rotation variations for all three select images.

Figure 11. Matching rate comparison between SR-SYBA and SYBA with scaling variations.

Figure 12 shows the matching rate of SR-SYBA with rotation variations was also superior to

SYBA. SYBA’s performance exhibited a dramatic fall after the rotation angle became greater than 20

degrees, while SR-SYBA maintained the matching rate above 0.5 in all cases. We noticed that there

was an interesting 90-degree cycle for SR-SYBA’s matching rate. The reason was that the pixels within

Figure 11. Matching rate comparison between SR-SYBA and SYBA with scaling variations.

Electronics 2020, 9, 810 13 of 21

The overall performances of both algorithms declined with the increasing scale factor. This held
truth for both the SR-SYBA and the SYBA algorithms, as shown in Figure 11. However, SR-SYBA
showed significant performance improvement over the SYBA algorithm, manifested by the gap
between the two curves of matching rate of the three charts in Figure 11. Overall, the experiment
results showed that the SR-SYBA algorithm improved the matching performance of SYBA in terms of
matching rate with scaling variations.

4.2.2. Rotation Variation

Experimental settings for rotation variation were similar to those for scaling variation. We rotated
the three select images shown in Figure 10 by 10–350 degrees at a 10-degree interval and tested the
performance of these two algorithms by matching features from the rotated image with features in
the original image. Figure 12 shows the performance curves of SR-SYBA and SYBA under rotation
variations for all three select images.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 21

the square region rotated by 90, 180, 270, and 360 degrees are the exact replicas of the original pixels

without interpolation.

Figure 12. Matching rate comparison between SR-SYBA and SYBA with rotation variations.

4.3. Performance Comparison with rSYBA

We compared the proposed SR-SYBA feature descriptor with our previous work of rSYBA

following the same experiment settings in [18]. Experiments were conducted on the BYU Scaling and

Rotation Dataset [18], which contains an original picture and its eight scaled and rotated versions.

We matched the scaled and rotated images to the original image. Correct matches were filtered

through the real affine matrix from which the error bound was set to 5 pixels. Matching rate was

applied for evaluating the performance of rSYBA and SR-SYBA. The comparison results of rSYBA

and SR-SYBA are shown in Table 1.

Table 1. Matching rate comparison between rSYBA and SR-SYBA.

Image Transformation Feature Count
Matching Rate (%)

rSYBA SR-SYBA

Scale factor = 0.8 300 55.33 57.64

Scale factor = 0.9 300 70.33 69.67

Scale factor = 1.05 300 79.00 75.67

Scale factor = 1.1 300 73.67 74.67

Scale factor = 1.2 300 67.00 72.33

Rotation degree = 5 300 63.33 78.33

Rotation degree = 7 300 46.33 75.67

Rotation degree = 10 300 54.00 70.00

Rotation degree = 15 300 45.67 56.67

As shown in Table 1, rSYBA had higher matching rates than SR-SYBA in the case that scale factor

is 0.9 and 1.05. SR-SYBA performed better when the scale difference between the two images

Figure 12. Matching rate comparison between SR-SYBA and SYBA with rotation variations.

Figure 12 shows the matching rate of SR-SYBA with rotation variations was also superior to SYBA.
SYBA’s performance exhibited a dramatic fall after the rotation angle became greater than 20 degrees,
while SR-SYBA maintained the matching rate above 0.5 in all cases. We noticed that there was an
interesting 90-degree cycle for SR-SYBA’s matching rate. The reason was that the pixels within the
square region rotated by 90, 180, 270, and 360 degrees are the exact replicas of the original pixels
without interpolation.

4.3. Performance Comparison with rSYBA

We compared the proposed SR-SYBA feature descriptor with our previous work of rSYBA
following the same experiment settings in [18]. Experiments were conducted on the BYU Scaling and
Rotation Dataset [18], which contains an original picture and its eight scaled and rotated versions.

Electronics 2020, 9, 810 14 of 21

We matched the scaled and rotated images to the original image. Correct matches were filtered through
the real affine matrix from which the error bound was set to 5 pixels. Matching rate was applied for
evaluating the performance of rSYBA and SR-SYBA. The comparison results of rSYBA and SR-SYBA
are shown in Table 1.

Table 1. Matching rate comparison between rSYBA and SR-SYBA.

Image Transformation Feature Count
Matching Rate (%)

rSYBA SR-SYBA

Scale factor = 0.8 300 55.33 57.64
Scale factor = 0.9 300 70.33 69.67

Scale factor = 1.05 300 79.00 75.67
Scale factor = 1.1 300 73.67 74.67
Scale factor = 1.2 300 67.00 72.33

Rotation degree = 5 300 63.33 78.33
Rotation degree = 7 300 46.33 75.67
Rotation degree = 10 300 54.00 70.00
Rotation degree = 15 300 45.67 56.67

As shown in Table 1, rSYBA had higher matching rates than SR-SYBA in the case that scale factor
is 0.9 and 1.05. SR-SYBA performed better when the scale difference between the two images increased.
Specifically, rSYBA was limited to scale factors between 0.8 and 1.2. SR-SYBA’s performance also
surpassed rSYBA for all rotation angles. Overall, SR-SYBA achieved better performance than rSYBA
on the BYU Scaling and Rotation Dataset for large scale factors and rotation angles.

We compared the processing time of these two methods using the same parameters above. This
experiment was carried out using a computer system equipped with an Intel i5-8400 CPU@2.80 GHz
and 8 GB RAM running 64-Bit Windows 10 operating system. The whole feature description and
matching process can be divided into three steps: scale invariance, rotation invariance, and SYBA
calculation and matching. SR-SYBA achieves scale invariance by calculating the scale representation
and then normalizing the FRI to the reference scale, whereas rSYBA rescales the FRI into multiple sizes
for matching. The number of sizes depends on the desired scaling range and scaling accuracy. Both
methods achieve rotation invariance in one shot by calculating the FRI’s dominant orientation and
rotate it once to a reference orientation. rSYBA requires more time for SYBA calculation and matching
than SR-SYBA because it has to process more FRI’s.

Table 2 shows the processing time for each step between the two methods. We started with
300 features but 5 scales for rSYBA. SR-SYBA took 6.57 milliseconds to calculate one FRI’s scale
representation and rescale it to the reference scale, whereas rSYBA took only 0.78 milliseconds to
rescale one FRI to five different scales. SR-SYBA was much more efficient (0.012 millisecond per FRI)
in providing rotation invariance than rSYBA (6.24 milliseconds per FRI). For SYBA calculation and
matching, rSYBA took 9.33 milliseconds to compute the SYBA descriptor for 300 FRI’s and perform
brute force matching 300 × 300 times, whereas rSYBA took 5 times as long to calculate the SYBA
descriptor for 1500 FRI’s and perform matching 300 × 1500 times. rSYBA took nearly 5 times longer
than SR-SYBA. Note that in Table 2, the rotation invariance for rSYBA was performed after rescaling.
Even if calculating the dominant orientation for each FRI before rescaling, all 1500 FRI’s would still
need to be rotated to the reference orientation. More than five scales would be needed to increase the
scaling variation range and scaling invariance accuracy, which would slow rSYBA even further.

Table 2. Processing time comparison between rSYBA and SR-SYBA (in milliseconds).

Scaling Invariance Rotation Invariance SYBA & Matching Total

SR-SYBA 300 × 6.57 = 1971 300 × 0.012 = 3.6 9.33 for 300 × 300 1983.93
rSYBA 300 × 0.78 = 234 1500 × 6.24 = 9360 46.65 for 1500 × 300 9640.65

Electronics 2020, 9, 810 15 of 21

4.4. Performance Comparison with Other Feature Fescription Algorithms

We compared our SR-SYBA feature descriptor with other feature description algorithms in the
cases of scaling and rotation variations. The experiment settings were similar to the ones in Section 4.2.
Lena was used for these experiments. We tested the matching performance of each algorithm after
the image was resized by 0.7–5.0 at a 0.1 interval. Similarly, Brute Force matching and matching rate
were applied. ORB feature detection was again used for SR-SYBA feature detection. SIFT, SURF,
BRISK, ORB, and SR-SYBA were included in this comparison. The original SYBA and the improved
rSYBA were not included in this experiment because the comparisons in Sections 4.2 and 4.3 already
demonstrated SR-SYBA’s superior performance. The experimental results are shown in Figure 13.
Electronics 2020, 9, x FOR PEER REVIEW 15 of 21

Figure 13. Comparison with scaling variations.

Figure 14. Comparison with rotation variations.

4.5. Memory Usage Comparison with Other Feature Description Algorithms

We also measured the memory usage for feature detection and description for each algorithm.

The test was performed with varying image sizes, ranging from 397 × 298 to 3968 × 2976, in order to

evaluate how memory usage changes as the image size increases. The memory usage for each

algorithm was monitored using the debugging tools of Visual Studio 2017. All algorithms were tested

on the same system. To eliminate the bias from different number of feature points, all algorithms

were set to detect and describe 500 feature points. Considering ORB needs to construct image-

pyramid for feature point detection, SR-SYBA algorithm collocates with FAST [25] feature detection

algorithm. Table 3 shows that our SR-SYBA algorithm required much less space than other classical

feature description algorithms. SR-SYBA only required 0.1MB more memory than SYBA, while

achieving much better scale and rotation invariance. Table 3 also presents that as the image size

increased, the memory usage for each algorithm also increased. The memory usage for other

algorithms was around 4 to 1000 times that of SR-SYBA, and the gap of memory usage between SR-

SYBA and other algorithms increased with the increasing image size. Although ORB and SR-SYBA

had similar performance in the experiments shown in Section 4.3, SR-SYBA utilized less than a

quarter of ORB’s memory space. This experiment demonstrated that SR-SYBA is more suitable for

applications using embedded systems where memory resources are scarce.

Figure 13. Comparison with scaling variations.

As shown in Figure 13, SIFT, SURF and BRISK performed better under such experimental settings.
The performances of SR-SYBA and ORB were close, while SR-SYBA was better for smaller scale factors
and ORB was better for larger scale factors. Similar test for rotation variation was also performed for
these algorithms. The Lena image was rotated by 10–350 degrees at a 10-degree interval. Figure 14
shows that most feature description algorithms provide rotation invariance. SR-SYBA provided the
best rotation invariance. Its matching rate curve reached the highest peak and dropped slower than
other algorithms when rotation angle moved away from 90, 180, 270, and 360 degrees.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 21

Figure 13. Comparison with scaling variations.

Figure 14. Comparison with rotation variations.

4.5. Memory Usage Comparison with Other Feature Description Algorithms

We also measured the memory usage for feature detection and description for each algorithm.

The test was performed with varying image sizes, ranging from 397 × 298 to 3968 × 2976, in order to

evaluate how memory usage changes as the image size increases. The memory usage for each

algorithm was monitored using the debugging tools of Visual Studio 2017. All algorithms were tested

on the same system. To eliminate the bias from different number of feature points, all algorithms

were set to detect and describe 500 feature points. Considering ORB needs to construct image-

pyramid for feature point detection, SR-SYBA algorithm collocates with FAST [25] feature detection

algorithm. Table 3 shows that our SR-SYBA algorithm required much less space than other classical

feature description algorithms. SR-SYBA only required 0.1MB more memory than SYBA, while

achieving much better scale and rotation invariance. Table 3 also presents that as the image size

increased, the memory usage for each algorithm also increased. The memory usage for other

algorithms was around 4 to 1000 times that of SR-SYBA, and the gap of memory usage between SR-

SYBA and other algorithms increased with the increasing image size. Although ORB and SR-SYBA

had similar performance in the experiments shown in Section 4.3, SR-SYBA utilized less than a

quarter of ORB’s memory space. This experiment demonstrated that SR-SYBA is more suitable for

applications using embedded systems where memory resources are scarce.

Figure 14. Comparison with rotation variations.

Electronics 2020, 9, 810 16 of 21

4.5. Memory Usage Comparison with Other Feature Description Algorithms

We also measured the memory usage for feature detection and description for each algorithm.
The test was performed with varying image sizes, ranging from 397 × 298 to 3968 × 2976, in order
to evaluate how memory usage changes as the image size increases. The memory usage for each
algorithm was monitored using the debugging tools of Visual Studio 2017. All algorithms were tested
on the same system. To eliminate the bias from different number of feature points, all algorithms were
set to detect and describe 500 feature points. Considering ORB needs to construct image-pyramid
for feature point detection, SR-SYBA algorithm collocates with FAST [25] feature detection algorithm.
Table 3 shows that our SR-SYBA algorithm required much less space than other classical feature
description algorithms. SR-SYBA only required 0.1MB more memory than SYBA, while achieving
much better scale and rotation invariance. Table 3 also presents that as the image size increased, the
memory usage for each algorithm also increased. The memory usage for other algorithms was around
4 to 1000 times that of SR-SYBA, and the gap of memory usage between SR-SYBA and other algorithms
increased with the increasing image size. Although ORB and SR-SYBA had similar performance in the
experiments shown in Section 4.3, SR-SYBA utilized less than a quarter of ORB’s memory space. This
experiment demonstrated that SR-SYBA is more suitable for applications using embedded systems
where memory resources are scarce.

Table 3. The memory usage (MB) of each algorithm at runtime.

Image Size SIFT SURF BRISK ORB SR-SYBA SYBA

397 × 298 34.0 28.2 52.5 27.4 7.6 7.5
794 × 595 114.0 52.1 56.4 28.8 7.9 7.8

1587 × 1190 443.1 130.4 61.2 36.0 9.4 9.3
2381 × 1786 965.6 262.8 72.0 48.2 11.6 11.5
3174 × 2381 1.7 × 103 446.4 87.1 63.5 14.7 14.6
3968 × 2976 2.6 × 103 682.5 106.8 83.2 18.7 18.6

4.6. Performance for Real Sscenes

In the previous section, we compared different feature-based image matching algorithms by
matching the original image to its own scaled and rotated version. In this section, we conducted the
same experiments but with the images from real scenes that have real scaling and rotation changes not
through interpolation.

4.6.1. The Oxford Affine Dataset

We used the boat image sequence from Oxford Affine dataset [26] for evaluation. This image
sequence has six images of the same scene with increasing shooting distance and angle, as shown in
Figure 15. The first image was used as the reference image, and the other five images were matched to
the reference image individually. The correct matching points were filtered through the affine matrix
provided by the dataset. We used the same matching rate defined in Section 4.2 as the criteria for
evaluation. The results obtained by SIFT, SURF, BRISK, ORB, and SR-SYBA algorithms respectively
are plotted in histograms in Figure 16. The vertical axis (matching rate) was scaled to logarithmic for
ease of comparison.

As shown in Figure 16, SR-SYBA obtained the best overall performance, maintaining the best or
second-best matching rate for all image pairs. The matching performance of all five algorithms was
quite comparable for the first four pairs. For the last pair, SR-SYBA’s performance surpassed all other
algorithms by almost an order of magnitude.

Electronics 2020, 9, 810 17 of 21

Electronics 2020, 9, x FOR PEER REVIEW 16 of 21

Table 3. The memory usage (MB) of each algorithm at runtime.

Image Size SIFT SURF BRISK ORB SR-SYBA SYBA

397 × 298 34.0 28.2 52.5 27.4 7.6 7.5

794 × 595 114.0 52.1 56.4 28.8 7.9 7.8

1587 × 1190 443.1 130.4 61.2 36.0 9.4 9.3

2381 × 1786 965.6 262.8 72.0 48.2 11.6 11.5

3174 × 2381 1.7×103 446.4 87.1 63.5 14.7 14.6

3968 × 2976 2.6×103 682.5 106.8 83.2 18.7 18.6

4.6. Performance for Real Sscenes

In the previous section, we compared different feature-based image matching algorithms by

matching the original image to its own scaled and rotated version. In this section, we conducted the

same experiments but with the images from real scenes that have real scaling and rotation changes

not through interpolation.

4.6.1. The Oxford Affine dataset

We used the boat image sequence from Oxford Affine dataset [26] for evaluation. This image

sequence has six images of the same scene with increasing shooting distance and angle, as shown in

Figure 15. The first image was used as the reference image, and the other five images were matched

to the reference image individually. The correct matching points were filtered through the affine

matrix provided by the dataset. We used the same matching rate defined in Section 4.2 as the criteria

for evaluation. The results obtained by SIFT, SURF, BRISK, ORB, and SR-SYBA algorithms

respectively are plotted in histograms in Figure 16. The vertical axis (matching rate) was scaled to

logarithmic for ease of comparison.

Figure 15. The boat image sequence in the Oxford Affine dataset.

As shown in Figure 16, SR-SYBA obtained the best overall performance, maintaining the best or

second-best matching rate for all image pairs. The matching performance of all five algorithms was

quite comparable for the first four pairs. For the last pair, SR-SYBA’s performance surpassed all other

algorithms by almost an order of magnitude.

Figure 15. The boat image sequence in the Oxford Affine dataset.
Electronics 2020, 9, x FOR PEER REVIEW 17 of 21

Figure 16. Matching rate comparison with the Boat image sequence.

4.6.2. Statistical t-test using the BYU Feature Matching dataset

We used the BYU Feature Matching dataset [10] to perform a more thorough statistical t-test to

further compare SIFT, SURF, BRISK, ORB, and SR-SYBA. This dataset was created specifically for the

statistical t-test [10]. Similar to the Oxford Graffiti dataset, it includes six images in each image

sequence with increasing image perturbations. The first image was used as the reference image, and

the other five images were matched to the reference image individually. It has 20 sets of these image

sequences for each image perturbation instead of just one in the Oxford dataset. With 20 times the

amount of data, we were able to perform a meaningful statistical t-test. Experiments were conducted

in a similar manner as those in Sections 4.6.1 and 4.6.2.

ORB was again used for feature detection. We detected 6000 features from each image for

matching. The ground truth perspective transformation was calculated from four manually selected

matching feature pairs. The distance between the matched feature point and the ground truth must

be no greater than 5 pixels to be considered a correct match. Table 4 shows the average matching

rates of all methods and the p-values between SR-SYBA and other methods. SR-SYBA had the highest

average matching rate of all methods. The p-values from Image pair 1|3 for SURF and BRISK were

larger than 0.05, which indicated the image pair failed to provide a statistically meaningful

comparison between SR-SYBA and the other two methods. All other p-values were significantly

smaller than 0.05 and most of them were much smaller than 0.01.

Table 4. Average matching rate and the p-values between SR-SYBA and other methods.

Image Pair Data SIFT SURF BRISK ORB
SR-

SYBA

1|2

Average Matching Rate

%
31.01 42.17 45.80 30.14 52.58

P-value 6.75 × 10−8 7.91 × 10−5 0.0083
1.25 ×

10−8
/

1|3

Average Matching Rate

%
25.96 38.13 38.82 25.66 39.27

P-value 4.77 × 10−4 0.3822 0.4602 0.0021 /

1|4

Average Matching Rate

%
19.17 28.97 28.64 18.17 33.83

P-value 1.25 × 10−4 0.0368 0.0203
2.27 ×

10−5
/

1|5
Average Matching Rate

%
18.96 29.84 28.18 17.96 36.17

Figure 16. Matching rate comparison with the Boat image sequence.

4.6.2. Statistical t-Test Using the BYU Feature Matching Dataset

We used the BYU Feature Matching dataset [10] to perform a more thorough statistical t-test to
further compare SIFT, SURF, BRISK, ORB, and SR-SYBA. This dataset was created specifically for
the statistical t-test [10]. Similar to the Oxford Graffiti dataset, it includes six images in each image
sequence with increasing image perturbations. The first image was used as the reference image, and
the other five images were matched to the reference image individually. It has 20 sets of these image
sequences for each image perturbation instead of just one in the Oxford dataset. With 20 times the
amount of data, we were able to perform a meaningful statistical t-test. Experiments were conducted
in a similar manner as those in Sections 4.6.1 and 4.6.2.

ORB was again used for feature detection. We detected 6000 features from each image for matching.
The ground truth perspective transformation was calculated from four manually selected matching
feature pairs. The distance between the matched feature point and the ground truth must be no greater
than 5 pixels to be considered a correct match. Table 4 shows the average matching rates of all methods
and the p-values between SR-SYBA and other methods. SR-SYBA had the highest average matching
rate of all methods. The p-values from Image pair 1|3 for SURF and BRISK were larger than 0.05, which
indicated the image pair failed to provide a statistically meaningful comparison between SR-SYBA and
the other two methods. All other p-values were significantly smaller than 0.05 and most of them were
much smaller than 0.01.

Electronics 2020, 9, 810 18 of 21

Table 4. Average matching rate and the p-values between SR-SYBA and other methods.

Image Pair Data SIFT SURF BRISK ORB SR-SYBA

1|2 Average Matching Rate % 31.01 42.17 45.80 30.14 52.58
p-value 6.75 × 10−8 7.91 × 10−5 0.0083 1.25 × 10−8 /

1|3 Average Matching Rate % 25.96 38.13 38.82 25.66 39.27
p-value 4.77 × 10−4 0.3822 0.4602 0.0021 /

1|4 Average Matching Rate % 19.17 28.97 28.64 18.17 33.83
p-value 1.25 × 10−4 0.0368 0.0203 2.27 × 10−5 /

1|5 Average Matching Rate % 18.96 29.84 28.18 17.96 36.17
p-value 3.14 × 10−5 0.0012 7.16 × 10−4 2.28 × 10−6 /

1|6 Average Matching Rate % 16.13 25.88 26.28 15.02 31.18
p-value 1.35 × 10−4 0.0130 0.0266 3.29 × 10−5 /

5. Application for Vision-Based Measurement

Vision-based measurement refers to the measurement of the size or distance of an object based on
the picture taken by a camera [27]. In most cases, vision-based measurement requires a known object
as the reference, and image matching is required to locate the position and size of the reference object.
We tested our SR-SYBA algorithm for this real-world application.

One good example of this vision-based measurement application is an online shopping App
for mobile devices. The App provides a function for rough measurement of an object using phone
camera [28]. Suppose a customer wanted to order a suitable cover for his computer monitor.
The customer would be asked to take a picture of the monitor together with a known reference object,
e.g., an ID card. Then the customer would need to frame his monitor to be measured. The App
will report the estimated height and width. This helps the customer get the recommended size of
the product. This function requires image matching. We demonstrated the whole process with our
SR-SYBA algorithm.

First, we took a picture of the reference object, i.e., the ID card, and measured its actual height
and width. Then, we took another picture containing both the reference object and the object to be
measured and framed the object to be measured. Next, the SR-SYBA algorithm was used to match the
two images to obtain an affine matrix fitted by the RANSAC [29] algorithm. With the affine matrix, the
reference image can be mapped to the measuring image [30]. Assuming the point before and after
the mapping is (x, y) and (x1, y1), respectively, the mapping relation with a 2 × 3 affine matrix H is in
Equation (20).

[
x1

y1

]
= H·

x
y
1

 =
[

h00 h01 h02

h10 h11 h1

]
·

x
y
1

 =
[

h00x + h01y + h02

h10x + h11y + h12

]
(20)

Thus, based on the ratio of occupied pixels for the mapped reference and the object to be measured,
together with the actual size of the reference object, the actual size of the object can be estimated.

Six objects with different aspect ratio are chosen for measurement and the results are recorded in
Table 5. An example image matching result with SR-SYBA algorithm is shown in Figure 17, where the
dashed rectangle is the frame of the object to be measured.

Table 5 shows that all error rates of SR-SYBA algorithm for this vision-based measurement
task were less than 3%, whether the object was much larger than or similar to the reference object.
Considering the existence of the manually framing error and the camera distortion, such accurate
results confirm the effectiveness of the SR-SYBA algorithm for practical applications. This vision-based
measurement technique can be applied to either object measurement estimation in daily life [30] or
industrial instrumentation [31].

Electronics 2020, 9, 810 19 of 21

Table 5. The vision-based measurement results with SR-SYBA.

Object Actual Size (mm) Measurement Result (mm) Error (%)

Student card
Length 85 84.223 0.914
Width 54.5 53.972 0.969

Packing box Length 105 103.621 1.313
Width 105 106.466 1.396

Bookmarker
Length 144 145.030 0.715
Width 40 39.958 0.105

Book
Length 210 206.426 1.702
Width 235 229.328 2.414

A4 paper Length 210 215.541 2.639
Width 297 298.314 0.442

Computer
monitor

Length 537.6 552.450 2.762
Width 314.3 311.946 0.749

Electronics 2020, 9, x FOR PEER REVIEW 19 of 21

Figure 17. An example of the matching result for a vision-based measurement task.

Table 5 shows that all error rates of SR-SYBA algorithm for this vision-based measurement task

were less than 3%, whether the object was much larger than or similar to the reference object.

Considering the existence of the manually framing error and the camera distortion, such accurate

results confirm the effectiveness of the SR-SYBA algorithm for practical applications. This vision-

based measurement technique can be applied to either object measurement estimation in daily life

[30] or industrial instrumentation [31].

Table 5. The vision-based measurement results with SR-SYBA.

Object Actual Size (mm) Measurement Result(mm) Error (%)

Student card
Length 85 84.223 0.914

Width 54.5 53.972 0.969

Packing box
Length 105 103.621 1.313

Width 105 106.466 1.396

Bookmarker
Length 144 145.030 0.715

Width 40 39.958 0.105

Book
Length 210 206.426 1.702

Width 235 229.328 2.414

A4 paper
Length 210 215.541 2.639

Width 297 298.314 0.442

Computer monitor
Length 537.6 552.450 2.762

Width 314.3 311.946 0.749

6. Conclusions

This paper proposes an algorithm called SR-SYBA to solve the scale and rotation invariance

problem for the SYBA feature description algorithm. The main advantage of the SR-SYBA algorithm

is its small memory usage, which is critical for resource-limited devices. SR-SYBA adds scale and

orientation normalization as pre-processing before using SYBA for description and matching. The

scale representation is determined by converting the feature region to Log-polar coordinates to

ensure the high stability required for scale representation estimation. The orientation of the feature

region is determined by the orientation of the vector connecting the feature region center to the

intensity centroid in Cartesian coordinates. The proposed SR-SYBA algorithm is a scale-invariant and

Figure 17. An example of the matching result for a vision-based measurement task.

6. Conclusions

This paper proposes an algorithm called SR-SYBA to solve the scale and rotation invariance
problem for the SYBA feature description algorithm. The main advantage of the SR-SYBA algorithm
is its small memory usage, which is critical for resource-limited devices. SR-SYBA adds scale and
orientation normalization as pre-processing before using SYBA for description and matching. The scale
representation is determined by converting the feature region to Log-polar coordinates to ensure the
high stability required for scale representation estimation. The orientation of the feature region is
determined by the orientation of the vector connecting the feature region center to the intensity centroid
in Cartesian coordinates. The proposed SR-SYBA algorithm is a scale-invariant and rotation-invariant
feature description algorithm with computational simplicity and small memory usage.

Experiment results show that the SR-SYBA algorithm successfully addresses the original SYBA’s
shortcomings for image matching applications with scaling and rotation variations, and significantly
boosts its matching accuracy. The SR-SYBA algorithm was compared with other commonly used
feature description algorithms: SIFT, SURF, BRISK, and ORB. Experimental results show that the
SR-SYBA algorithm achieved comparable or better performance than ORB, while only using less than

Electronics 2020, 9, 810 20 of 21

a quarter of its memory usage. Besides, SR-SYBA gave the best matching results for images from
real scenes. Finally, this paper demonstrates the feasibility of the SR-SYBA algorithm for a practical
application of vision-based measurement.

Author Contributions: Conceptualization, M.Y. and D.Z.; methodology, M.Y.; software, M.Y. and A.D.; validation,
M.Y. and D.Z.; formal analysis, M.Y.; investigation, M.Y., D.Z. and D.-J.L.; resources, M.Y. and D.Z.; data curation,
M.Y.; writing—original draft preparation, M.Y.; writing—review and editing, D.Z. and D.-J.L.; visualization, M.Y.;
supervision, D.Z.; project administration, D.Z.; funding acquisition, D.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Guangzhou Municipal People’s Livelihood Science and Technology Plan
(201903010040), the Science and Technology Planning Project of Guangdong Province of China (2019B070702004),
and Science and Technology Program of Guangzhou, China (202007030011).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Krishnan, R.; Anil, A.R. A survey on image matching methods. Int. J. Latest Res. Eng. Technol. 2016, 22, 58–61.
2. Yao, J. Image registration based on both feature and intensity matching. In Proceedings of the 26th IEEE

International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May
2001; pp. 1693–1696.

3. Hassaballah, M.; Abdelmgeid, A.A.; Alshazly, H.A. Image Feature Detection and Descriptor, 1st ed.; Springer:
Heidelberg, Germany, 2016; pp. 11–45.

4. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

5. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded up robust features. In Proceedings of the 7th European
Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 404–417.

6. Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary robust independent elementary features.
In Proceedings of the 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September
2010; pp. 778–792.

7. Leutenegger, S.; Chli, M.; Siegwart, R. BRISK: Binary robust invariant scalable keypoints. In Proceedings of
the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2548–2555.

8. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of
the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.

9. Theodoros, G.; Yu, L.; Wei, C.; Micheal, L. A survey of traditional and deep learning-based feature descriptors
for high dimensional data in computer vision. Int. J. Multimed. Info. Retr. 2019, 1–36. Available online:
https://doi.org/10.1007/s13735-019-00183-w (accessed on 22 November 2019).

10. Desai, A.; Lee, D.J.; Ventura, D. An efficient feature descriptor based on synthetic basis functions and
uniqueness matching strategy. Comput. Vis. Image Underst. 2016, 142, 37–49. [CrossRef]

11. Moravec, H.P. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover; Technical Report;
Stanford University: Stanford, CA, USA, 1980.

12. Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference,
Manchester, UK, 31 August–2 September 1988; pp. 147–151.

13. Ke, Y.; Sukthankar, R. PCA-SIFT: A more distinctive representation for local image descriptors. In Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington,
DC, USA, 27 June–2 July 2004; p. ii.

14. Kwang, M.Y.; Eduard, T.; Vincent, L.; Pascal, F. LIFT: Learned invariant feature transform. In Proceedings
of the 14th European Conference on Computer Vision, Amsterdam, Netherlands, 8–16 October 2016;
pp. 467–483.

15. Daniel, D.; Tomasz, M.; Andrew, R. SuperPoint: Self-supervised Interest Point Detection and Description.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
Salt Lake City, UT, USA, 17 December 2018; pp. 337–349.

http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/s13735-019-00183-w
http://dx.doi.org/10.1016/j.cviu.2015.09.005

Electronics 2020, 9, 810 21 of 21

16. Ono, Y.; Eduard, T.; Pascal, F.; Kwang, M.Y. LF-Net: Learning local features from images. In Proceedings of
the 32nd Neural Information Processing System, Montreal, QC, Canada, 3–8 December 2018; pp. 1–11.

17. Zhen, Z.; Wee, S.L. Deep graphical feature learning for the feature matching problem. In Proceedings
of the 2019 International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 5087–5096.

18. Zhang, D.; Raven, L.A.; Lee, D.J.; Meng, Y.; Desai, A. Hardware friendly robust synthetic basis feature
descriptor. Electronics. 2019, 8, 847. [CrossRef]

19. Matungka, R. Studies on Log-Polar Transform for Image Registration and Improvements Using Adaptive
Sampling and Logarithmic Spiral. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2016.

20. Araujo, H.; Dias, J.M. An introduction to the log-polar mapping. In Proceedings of the II Workshop on
Cybernetic Vision, Sao Carlos, Brazil, 9–11 December 1996; pp. 139–144.

21. Tao, T.; Zhang, Y. Detection and description of scale-invariant keypoints in log-polar space. J. Image Graph.
2015, 20, 1639–1651.

22. Schneider, P.J.; Eberly, D.H. Geometric Tools for Computer Graphics, 1st ed.; Morgan Kaufmann: Burlington,
MA, USA, 2002; pp. 98–103.

23. Rosin, P.L. Measuring corner properties. Comput. Vis. Image Underst. 1999, 73, 291–307. [CrossRef]
24. Noble, F.K. Comparison of OpenCV’s feature detectors and feature matchers. In Proceedings of the 23rd

International Conference on Mechatronics and Machine Vision in Practice, Nanjing, China, 28–30 November
2016; pp. 1–6.

25. Trajković, M.; Hedley, M. Fast corner detection. Image Vision Comput. 1998, 16, 75–87. [CrossRef]
26. Affine Covariant Features. Available online: http://www.robots.ox.ac.uk/~{}\protect\T1\textbraceleft\protect\

T1\textbracerightvgg/research/affine/ (accessed on 22 March 2020).
27. Shirmohammadi, S.; Ferrero, A. Camera as the instrument: The rising trend of vision based measurement.

IEEE Instrum. Meas. Mag. 2014, 17, 41–47. [CrossRef]
28. What You See and Think—Requirements and Scenarios. Available online: www.muflyguo.com/archives/1557

(accessed on 22 March 2020).
29. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to

image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
30. Brown, L.G. A survey of image registration techniques. ACM Comput. Surv. 1992, 24, 325–376. [CrossRef]
31. Santos, E.S.F.; Xavier, W.B.; Rodrigues, R.N.; Botelho, S.S.C.; Werhli, A.V. Vision based measurement applied

to industrial instrumentation. In Proceedings of the 20th World Congress of the International Federation of
Automatic Control, Toulouse, France, 9–14 July 2017; pp. 788–793.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/electronics8080847
http://dx.doi.org/10.1006/cviu.1998.0719
http://dx.doi.org/10.1016/S0262-8856(97)00056-5
http://www.robots.ox.ac.uk/~{}\protect \T1\textbraceleft \protect \T1\textbraceright vgg/research/affine/
http://www.robots.ox.ac.uk/~{}\protect \T1\textbraceleft \protect \T1\textbraceright vgg/research/affine/
http://dx.doi.org/10.1109/MIM.2014.6825388
www.muflyguo.com/archives/1557
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1145/146370.146374
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	SR-SYBA Algorithm
	Log-Polar Coordinate Transformation
	Scale Representation Estimation
	Orientation Representation Estimation
	Scale and Orientation Normalization
	SR-SYBA Algorithm

	Experiments and Discussion
	Verification of Scale Representation Estimation
	Performance Comparison with the Original SYBA
	Scaling Variation
	Rotation Variation

	Performance Comparison with rSYBA
	Performance Comparison with Other Feature Fescription Algorithms
	Memory Usage Comparison with Other Feature Description Algorithms
	Performance for Real Sscenes
	The Oxford Affine Dataset
	Statistical t-Test Using the BYU Feature Matching Dataset

	Application for Vision-Based Measurement
	Conclusions
	References

