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Abstract: Network intrusion detection is one of the main problems in ensuring the security of modern
computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to
develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets
are required. Despite several recent efforts, there is still a lack of real-world network-based datasets
which can capture modern network traffic cases and provide examples of many different types of
network attacks and intrusions. To alleviate this need, we present LITNET-2020, a new annotated
network benchmark dataset obtained from the real-world academic network. The dataset presents
real-world examples of normal and under-attack network traffic. We describe and analyze 85 network
flow features of the dataset and 12 attack types. We present the analysis of the dataset features by
using statistical analysis and clustering methods. Our results show that the proposed feature set can
be effectively used to identify different attack classes in the dataset. The presented network dataset is
made freely available for research purposes.

Keywords: benchmark dataset; network intrusion detection; network attack; cyber security

1. Introduction

Network attacks are a set of network traffic events which are aimed at undermining the availability,
authority, confidentiality, integrity, and other critical properties of networked computer systems [1].
Various types of cyber-attacks, such as IP spoofing [2,3] and Distributed Denial-of-Service (DDoS)
flooding attacks [4], have been recognized as a serious security problem. With the increased scope, type
and complexity of computer systems and communication networks, as well as with the emergence of
new types of distributed computing technologies (such as the Internet-of-Things (IoT), Edge Computing,
Fog Computing, etc.), new types of threats continue to arise against usual user requirements for
privacy, security, and trust [5–8]. Despite numerous research studies in intrusion detection [9,10],
there is still a large number of successful cyber-attacks registered each year, which affects the daily
operation of businesses and governments, but also can cripple critical infrastructures [11], cloud-based
IoT environments [12], cloud storage services [13], wireless sensor networks (WSN) [14], wireless
body are networks (WBAN) in telemedicine systems [15], wireless ad-hoc networks [16], in-vehicle
networks [17], software defined networks (SDN) [18,19], industrial IoT networks [20], cyber-physical
systems [21], Internet of Drones (IoD) [22], Industry 4.0 smart factories [23], Internet of Medical Things
(IoMT) such as implantable medical devices [24], IoT edge devices [25], vehicular ad hoc networks
(VANET) [26], fifth-generation (5G) mobile networks [27], fog computing services [28], and user
smartphones [29].
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The increasing trend of cyber-attacks demonstrates that current intrusion detection methods
still require improvement, and the development of new techniques is necessary for maintaining
defense against cyber-attacks. Traditional security technologies and techniques often do note cope with
emerging cybersecurity challenges in distributed, dynamic, heterogeneous, and wireless computing
environments. As a result, there is a need to create new network security methods and systems to
address the cybersecurity threats, as well as to collect, organize, and make openly available real-world
heterogenous benchmark datasets [30] which would allow the comparison and validations of the
capabilities of such systems in addressing the cybersecurity threats [31].

Network Intrusion Detection Systems (NIDS) are specifically designed to observe network
traffic flows in order to identify any attacks and provide protection for the sensitive network
infrastructure [32,33]. Each NIDS analyses network flows data, to check if there are any attacks. If there
are any suspicious activities, the NIDS trigger an alert. However, usually a huge number of alerts is
generated and deluges network security personnel [34]. The produced alerts often include irrelevant
and redundant features, which result in higher resource consumption and lower attack-recognition
accuracy. Moreover, uninformative features result in the reduction of attack-identification accuracy.
Therefore, the dataset should contain only relevant features, allowing for efficient network-attack
detection. The example of NIDS is a system for alarm correlation in Early Warning Systems (EWSs) [35]
that uses port numbers, source and destination IP addresses, intrusion type, attack severity, and time
stamp for alert generation.

The effectiveness of NIDS is evaluated based on their performance to recognize attacks, which
requires a network dataset that provides examples of both normal and abnormal network traffic [36].
Old benchmark datasets such as KDDCup’99 [37] and NSL-KDD [38] have been widely used for
evaluating the accuracy of network-attack recognition [39–42]. However, these datasets have become
obsolete due to the rapid development of network technologies and the emergence of new cybersecurity
threats and network attack types [33–45]. Many of the network flow benchmark datasets were created
artificially, or the data were collected from a highly controlled environment, making them not
representative of real-life network flows, while the methods trained on these datasets cannot cope
with real-world network attacks [36–50]. Moreover, as the real-life network traffic grows enormously,
manual data labeling of ever-increasing datasets becomes an infeasible task.

In supervised datasets, each observation in the dataset must have a label assigned to classify known
attacks [51]. Unsupervised network-intrusion detection aims at detecting abnormal network node
behavior, which can be attributed to a network intrusion or cyber-attack. For example, Casas et al. [52]
employed a change detection method to identify the malicious network behavior. The flows are
clustered, and the clusters are ranked by their abnormality; and the clusters exceeding the detection
threshold are labeled as malicious. Another approach [53] uses entropy and Principal Component
Analysis (PCA) to detect anomalies. Despite its successes, the unsupervised approach still requires
large and up-to-date network traffic datasets reflecting real-life behavior of network nodes [54].
Umer et al. [55] employed a two-stage model for intrusion detection, in which a one-class Support
Vector Machine (SVM) detects malicious flows, while a Self-Organizing Map (SOM) clusters of malicious
flows into specific attack clusters. Unsupervised methods can potentially recognize unknown attacks
with no prior knowledge, on which the supervised methods (which require datasets with data labeled
by attack type) fail miserably [11]. To tackle these problems, Fadllulah et al. [56] extracted features
for detecting attacks against encrypted protocols and generated normal-usage behavior profiles.
The deviations from these normal profiles, which were identified by using the nonparametric cusum
algorithm, were considered to be attacks. Zhang et al. [57] suggested using flow label propagation
based on a Nearest Cluster based Classifier (NCC) to label network flows from an unlabeled dataset to
convert the problem into supervised learning.

In order to develop new efficient network-intrusion-detection methods, the realistic and up-to-date
network flow benchmark datasets are required [58]. Here, we present a new benchmark dataset
collected from a real-world network and aimed at assessing the performance of NIDS in network-attack
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detection. Following the observation of Ring et al. [58], we aim to propose a dataset that is up-to-date,
correctly annotated, publicly available, has real-world network traffic with multiple types of network
attacks and examples of typical network behavior, and covers a considerable period of time. The dataset
was created at KTU LITNET network from 06/03/2019 to 31/01/2020. The nfcap tool was used to capture
network traffic. In order to create the traffic features, Nfsen, MeSequel, and Python script tools were
used for feature generation. The dataset was annotated, to provide the examples of network-attack
types. The key characteristics of the proposed dataset are a representation of real-world network traffic,
which contains both normal network traffic and many examples of network attacks on real-world
network infrastructure.

The remaining parts of the paper are structured as follows. Section 2 analyses the characteristics
of known benchmark datasets and discusses their advantages and disadvantages. The environment of
network data collection is described in Section 3. Section 4 presents a comprehensive comparison of
the proposed dataset with other recently published network-intrusion datasets. Section 5 provides a
detailed description of the files of the LITNET-2020 dataset. Finally, Section 6 presents conclusions and
discusses further research plans.

2. Overview of Similar Datasets

The usability of any NIDS dataset reflects its power to provide information necessary to training
the NIDS efficiently so that a high level of accuracy and reliability is achieved in detecting a diverse
(as much as possible) set of network attacks. In this section, we discuss the main features of known
network intrusion datasets (DDoS 2016 [43], UNSW-NB15 [59], CICIDS 2017 [60], UGR’16 [61],
NSL-KDD [38], and CSE-CIC-IDS2018 [62]). Recently, several new network datasets have been
proposed [63–66]. However, these have not yet been adopted by the research community as benchmark
datasets. Therefore, hereinafter, for analysis, we use only datasets that have been widely adopted and
used by the research community [58,67–69].

2.1. DDoS 2016

The dataset presents data collected in a controlled environment (using Network Simulator NS2),
which has four malicious kinds of network attack: HTTP Flood, UDP flood, DDOS Using SQL injection
(SIDDOS), and Smurf. The dataset has 27 features, 5 classes (4 attack classes and one normal traffic
class) and 734,627 records.

2.2. UNSW-NB15

The UNSW-NB 15 dataset was generated by the IXIA PerfectStorm tool in a small network
environment (only 45 unique IP addresses) over a short (31 h) period of time, and it includes a mix of
real typical activities and artificial attack behaviors of the network traffic, resulting in 175,341 records
for training and 82,332 records for testing. The IXIA tool simulated nine types of attacks. The dataset
provides 49 features for analysis, which include basic features, content features (based on the content of
packets), time features (based on time characteristics of packet flow), and additional generated features
based on the statistical characteristics of connections.

2.3. CICIDS 2017

The dataset was made public by the Canadian Institute for Cybersecurity. The creation
methodology used two types of usage profiles and multistage attacks, such as Heartbleed, and a
variety of DoS and DDoS attacks. It has 80 network traffic features that are extracted by using the
CICFlowMeter tool. User profiles were based on the abstract human behavior of 25 users working with
the HTTP, HTTPS, FTP, SSH, and email protocols, aiming to generate the background traffic. The traffic
was generated for a short (5 days) span of time.
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2.4. UGR’16

This dataset was originated by the University of Granada (Spain) and is aimed for the assessment
of cyclostationary NIDSs. The dataset was acquired from a tier-3 Internet Service Provider (ISP) over
four months and has 16,900 million single directional flows. The real network traffic was mixed with
synthetically generated malicious attack flows captured in a controlled network environment that
somewhat decreases the quality of the dataset. It has 13 types of malware, including annotated botnet,
SSH scan, and SPAM attacks, as well as background and normal network traffic, where background
assumes that it is not known whether it contains a malicious traffic. The dataset was labeled by using
the logs from the honeypot system.

2.5. NSL-KDD

NSL-KDD is an enhancement of the KDD dataset. In the KDD dataset, classification was biased
toward more recurring records. However, in the NSL-KDD dataset, redundant items were removed,
preventing the classifiers from achieving unreasonably high detection rates due to reoccurring records.
The dataset includes 4 classes of attack: Denial of Service (DoS), Probe, User to Root (U2R), and Remote
to Local (R2L). The training set has 4,898,431 records, and the testing set has 311,027 records.

2.6. CSE-CIC-IDS2018

The dataset covers six types of network attacks: Botnet, brute-force, Denial of Service (DoS),
Distributed DoS (DDoS), infiltration, and web attacks. The dataset was generated based on the
synthetic user profiles, which capture abstract representations of network events and behaviors.
Fifty network nodes were used to organize an attack on the victim infrastructure with 420 computers
and 30 servers. The dataset includes 84 network traffic features extracted from the network traffic,
using the CICFlowMeter-V3 tool.

2.7. Summary

The comparison of the analyzed datasets by examples of attack types represented are summarized
in Table 1. Here, Fuzzer aims to cause a network node suspended by transmitting to it the random
data. Virus is a self-replicating malicious program that intrudes on the computer system without the
knowledge of the user. Worm spreads through the network without the user’s permission, while
consuming network bandwidth resources. Trojan is a malicious program that causes the security
problems in the network, while masquerading as a useful program. DoS aims to reject access to network
nodes or resources for other users. Network Attack is an attempt to endanger network security from
the data link layer to the application layer. Physical Attack attempts to cripple the physical units of
computers or networks. Password Attack aims to obtain a password by login, and can be discovered
by several login failures. Information Gathering Attack searches for known security holes by scanning
or probing network nodes. User to Root (U2R) attack aims to take advantage of vulnerabilities of a
network system in order to gain privileges as the super-user of the system. Remote to Local (R2L)
attack dispatches packets to a remote computer system, without having a valid account on that system,
aiming to obtain access either as a user or as a root. Probe attack scans the networks aiming to find
valid IP addresses and to collect private data about the host, in order to start an attack on a selected set
of systems and services.

The comparison of old reference (DARPA’98 [70] and KDDCup’99 [71]) datasets and more recent
network intrusion datasets is presented in Table 2.

2.8. Conclusion of Dataset Analysis

New cyberthreats and types of attack continue to emerge. As a result, new realistic network
datasets are needed to keep the development and benchmarking of network intrusion methods
up-to-date. This has motivated us to collect network flow data from real-world network and to
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present it as an open benchmark dataset to be used freely for the research community in the cyber
security domain.

Table 1. Types of attacks supported by the analyzed network-intrusion datasets.

Network Attack
Datasets

DDoS 2016
[43]

UNSW-NB15
[59]

CICIDS
2017 [60]

UGR’16
[61]

NSL-KDD
[38]

CSE-CIC-IDS2018
[62]

Fuzzers No Yes No No No No
Generic No Yes Yes No No Yes

Virus No No No No No No
Worm No Yes No No No No
Trojan No Yes No No No No
DoS Yes Yes Yes Yes Yes Yes

DDoS Yes No Yes No No Yes
Network Attack No No No No No No
Physical Attack No No No No No No

Information Gathering Attack No Yes No Yes No No
User to Root (U2R) No Yes No No Yes No

Remote to Local (R2L) No No No No Yes No
Probe Yes No No Yes Yes No

Brute-force No No Yes No No Yes
Web No No Yes No No Yes

Infiltration No Yes Yes No No Yes
Botnet No No Yes Yes No Yes

Table 2. Comparison of reference and recent network intrusion datasets.

Data-Set
Reference Datasets More-Recent Datasets

DARPA’98
[70] KDD Cup’99 [71] DDoS 2016 [43] UNSW-NB15 [59] CICIDS 2017 [60] UGR’16

[61]

Year 1998 1999 2016 2018 2017 2016

Type of
traffic

Synthetic
network

traffic

Synthetic
network

traffic

Randomized to
obtain realistic

results

Synthetic
network

traffic
B-Profile system Real network traffic

with realistic attacks

Raw binary
Data 4GB n/a n/a 100 GB of the

raw traffic n/a 14 GB

How it was
col-lected tcpdump built from the

DARPA’98 dataset
A network

simulator (NS2)

tcpdump and IXIA
traffic generator

PerfectStorm

user behavior
based on FTP,
email, HTTP,

HTTPS, and SSH
protocols

netflow traces

Col-lection
time 7 weeks n/a n/a 31 h 5 days more than 4 months

No. of
records 5M records

4.9M single
connection

vectors
734,627 records 2 Million n/a 16,900 M

Label-ed
attack types n/a

DoS, User to Root
(U2R), Remote to
Local (R2L) and
Probing Attack

DDoS attack
(HTTP Flood,
SIDDOS, UDP

Flood, and Smurf)

Fuzzers,
Backdoors, DoS,

Exploits, Generic,
ReconnaissAnce,

Shellcode, Worms

Botnet, Brute
Force SSH, DoS,

DDoS, FTP,
Infiltration,

Heartbleed, Web
Attack

DoS, Scan,
Botnet (synthetic),

IP in blacklist,
UDP Scan,
SSH Scan,

SPAM, anomaly

3. Proposed Dataset

In this section, we describe the network environment used for the collection of network traffic
data, provide the description of network attacks that are present in the dataset, provide the descriptive
characteristics of the dataset, and discuss dataset preprocessing and availability.

3.1. Network Environment

Infrastructure consists of connecting nodes with operating equipment and communication
lines connecting those exporters (CAPACITY, CYTI1, KTU UNIVERSITY 1, KTU UNIVERSITY
2, and FIREWALL). The LITNET NetFlow topology consists of two main parts (senders and
collector). The NetFlow sender are Cisco (Cisco Systems Inc., CA, USA) routers. Fortige (FG-1500D)
high-performance-next generation firewalls analyze the data that has passed through it, process the
data, and send it to one or more NetFlow server collectors. The NetFlow server (collector) is a server
with appropriate software (nfcapd, nfdump, nfexpire, nfprofile, nfreplay, and nftrack. Version: 1.6.15),



Electronics 2020, 9, 800 6 of 23

which is responsible for receiving, storing, and filtering data. We are used 4.9.0-11-amd64 #1 SMP
Debian 4.9.189-3+deb9u2 x86_64 GNU/Linux operating system; 4 core Intel Xeon Processor (Skylake,
IBRS) CPU processor; 10GB for system and 30T hard disks for collecting data; and 8 GB of RAM.

Each of the NetFlow Exporters (CAPACITY, CYTI1, KTU UNIVERSITY 1, KTU UNIVERSITY 2,
and FIREWALL) continuously monitors the flows passing through it (this is a sequence of previous
data packets in one direction from a specific sender to a specific recipient) and caches them when it
receives new traffic. The main ring connects the five largest Lithuanian cities (see Figure 1), which
are as follows: (CITY1) Kaunas–Vytautas Magnus University and Kaunas Technological University,
which is administrator of Lithuanian Research and Education Network (LITNET) and maintenance
and development connecting nodes and Vilnius University (CAPACITY); Vilnius Gediminas Technical
University (CAPACITY); Klaipeda University (CITY2); Siauliai University (CITY3); and KTU Panevezys
Faculty of Technologies and Business (CITY4). For efficiency reasons, the NetFlow sender only scans
the first packet of the new stream, which saves the corresponding values, and then subsequent packets
of the same stream are processed according to the same policy, thus reducing the load on the network
device. Kaunas University of Technology (FIREWALL) has a high availability infrastructure and a
perimeter Fortigate 1500D with FortiOS operating system, 80 Gbps network, IPS (intrusion prevention
system) 13 Gbps, NGFW (next-generation firewall) 7 Gbps, and Threat Protection 5 Gbps bandwidth,
firewall. CITY1 has an exit to broadband networks NORDUNET, and GEANT. CITY1 and CITY2 have
a peering connection, and this is a process by which two Internet networks connect and exchange traffic.
CITY1 and CITY2 can transfer data traffic directly between each other’s LITNET users. Every other
city (CITY2, CITY3, and CITY4) has end users. These are schools, municipalities, other organizations.
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We used a 5 min time interval to make a nfcap (KTU UNIVERSITY1, KTU UNIVERSITY2, CITY1,
and CAPACITY) file (nfcap is an application programming interface (API) for capturing network traffic
with the format nfcapd.YYYYMMDDHHMM) and sent it to the NetFlow server to process information.
In this time interval, we counted the number of packets, which satisfied the attack rules to distinguish
the type of attack.

3.2. Description of Network Attacks

We describe the attack types in the proposed dataset as follows.
Smurf attack keeps sending the Internet Control Message Protocol (ICMP) broadcast requests to

the network on behalf of the target node, aiming to flood the node with network traffic in order to slow
down the targeted node.

An Internet Control Message Protocol (ICMP) flood attack is a DoS attack which aims to overwhelm
a targeted network node with ICMP echo-requests (pings).

UDP-flood attack is a DoS attack using the User Datagram Protocol (UDP). A DNS Flood Attack
(DNS Flooding) is an application-specific variant of a UDP flood, which is characterized by network
packets sent to any IP address, using UDP protocol and port 53 as the target.

TCP SYN-flood attack is a Distributed DoS (DDoS) attack that misuses a part of the ordinary
Transmission Control Protocol (TCP) three-way handshake to drain resources on the victim node and
make it unresponsive. The attack packets packages have S flags but do not have the AFRPU flags.

HTTP-flood attack is a DDoS attack, which exploits seemingly legitimate Hyper Text Transfer
Protocol (HTTP) GET or POST requests to assail a web server or application. In a complex Layer 7
attack, HTTP floods do not use ill-formed packets, spoofing, or reflection and need less bandwidth
than other types of attacks, in order to disable the victim server or site. The attack packets are directed
only to 80 port.

LAND attack is a Layer 4 DoS attack in which the malicious node sets the same source and
destination data of a TCP segment. The attack packets have S flags and use the TCP protocol.
An attacked node will hang due to the same packet being repeatedly processed by the TCP stack.

W32.Blaster Worm attack spreads by utilizing the Buffer Overrun Vulnerability of Microsoft
Windows DCOM RPC Interface. The attacks are directed only to 135, 69 (TFTP), and 4444
(Kerberos) ports.

Code Red Worm attack aims to cause a buffer overflow problem on a target node, so that it begins
to overwrite the adjacent memory. The packets are directed to source IP and only to 80 (no Secure
Sockets Layer (SSL)) ports; this is how the HTTP GET method is applied.

Spam bot’s attack dispatches spam messages or posts spam in social media platforms or forums.
The packets are directed only to 25 (no SSL) port. The attack is characterized by the presence of an
excessively large number of SMTP connections from one address.

Reaper Worm attack begins its last phase of scanning once the IP is passed to the exploit process.
Reaper attack is directed at TCP ports 81, 82, 83, 84, 88, 1080, 3000, 3749, 8001, 8060, 8080, 8081, 8090,
8443, 8880, and 10,000. An attack is only recorded when the package contains the TCP stream and
have not UDP or ICMP or ICMP6 protocols.

Port Scanning/Spread attack dispatches client requests to some server port addresses, aiming to
discover an active port and taking of advantage of a known security hole. An abnormal number of
connections from one host to one or more other hosts is as follows: several ports, one address; single
port, multiple addresses.

Packet fragmentation attack is a kind of DoS attack, in which the attacker overloads a network by
taking advantage of the datagram fragmentation.

3.3. Descriptive Characteristics

The traffic analysis is described for the cumulative flows while generating the dataset.
The descriptive characteristics of the dataset are given in Table 3.
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Table 3. Descriptive characteristics of dataset.

Characteristic Smurf ICMP Flood UDP Flood SYN flood HTTP Flood LAND W32.Blaster Code Red SPAM Reaper Worm Scan Frag-mentation

No of flows 59,479 11,628 93,583 3,725,838 22,959 52,417 24,291 1,255,702 747 1176 6232 477
Source bytes 15,471,966 2,217,910 18,506,962 2,195,053,120 15,138,945 30,257,200 11,636,600 433,310,270 1,247,220 276,960 1,893,620 116,883,130

Source packets 96,884 38,523 191,746 54,827,825 194,350 756,430 290,915 9,850,280 10,555 6924 36,410 149,595

Protocol type

TCP 0 0 0 3,725,838 22,959 52,417 24,291 1,255,702 727 1176 6323 0
UDP 0 0 93,583 0 0 0 0 0 0 0 0 477
IPv6 0 0 1 0 0 0 0 0 0 0 0 0

ICMP 59,479 11,628 0 0 0 0 0 0 0 0 0 0
Others 0 0 0 0 0 0 0 0 0 0 0 0

Unique IPs Source 3865 1 8 7 1 3 1 873,211 1 1 1 5
Destination 1 4900 5708 76,188 1 38,815 24,001 1 23 1153 6229 273

Unique ports Source 1 1 46,531 4117 17,239 4 1 1 727 1128 6231 1
Destination 5 3 1 230 1 6254 3 64,511 1 1 2 1
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Table 4 represents the distribution of all data instances of the proposed dataset. All instances are
categorized into ordinary data and attack data. The attack instances are further categorized into nine
classes, according to the type of the network attack.

Table 4. Distribution of attacks in the dataset.

Type of Attack Number of Flows Number of Attacks (Flows)

Smurf 3,994,426 59,479
ICMP-flood 3,863,655 11,628
UDP-flood 606,814 93,583

TCP SYN-flood 14,608,678 3,725,838
HTTP-flood 3,963,168 22,959

LAND attack 3,569,838 52,417
Blaster Worm 2,858,573 24,291

Code Red Worm 5,082,952 1,255,702
Spam bot’s detection 1,153,020 747

Reaper Worm 4,377,656 1176
Scanning/Spread 6687 6232

Packet fragmentation attack 1,244,866 477
TOTAL 45,330,333 5,328,934

A DoS attack with SYN packet can be explained in a simple way as the flow of illegal traffic to
network resources from an IP address or the flow of IP addresses that results in a lack of network
resources. The attackers disrupt the three-way click sequence by not responding to the SYN-ACK
from the server, or they will constantly send a SYN packet from a non-existent IP, the server actually
supports the queue set to which the SYN-ACK is sent because there will be no response from the
clients, the queue will overflow, and the server will no longer be available. This is called a SYN Attack
or Flood. The example of network traffic flows is shown in Figure 2.
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data stored in the collector (NetFlow server), we used flow-tools, nfstat, flowd, nfsen 1.3.6p1, php 
version-7.4.1, and Apache-2.4.25. MySQL database: version-10.1.41 (with 45 492 310 table records). 

Table 4. Distribution of attacks in the dataset. 

Type of Attack Number of Flows Number of Attacks (flows) 

Smurf 3,994,426 59,479 
ICMP-flood 3,863,655 11,628 
UDP-flood 606,814 93,583 

TCP SYN-flood 14,608,678 3,725,838 
HTTP-flood 3,963,168 22,959 

LAND attack 3,569,838 52,417 
Blaster Worm 2,858,573 24,291 

Code Red Worm 5,082,952 1,255,702 
Spam bot’s detection 1,153,020 747 

Figure 2. Example of network traffic flow.
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Here, we can see that there is an obvious anomaly in sending SYN packets on the Kaunas (CITY1)
channel. As you can see in the graph, this attack lasts two days (started from 2019-10-05 and ended on
2019-10-07). We also see that this attack occupies 14 Mb/s data traffic on the Kaunas (CITY1) channel.
According to the presented real case, we can see that, on 2019-10-07 at 09:30, there was an attack peak
of TCP SYN packets. This is evidenced by the huge number of packets in the data stream layout and
the exceptional increase in data traffic on the graph.

For visualization of NetFlow, based on our proposed attack detection, the rules (see Figure 2;
Profile: SYN) were developed for automatic notification of a possible cyber incident. For analysis of
data stored in the collector (NetFlow server), we used flow-tools, nfstat, flowd, nfsen 1.3.6p1, php
version-7.4.1, and Apache-2.4.25. MySQL database: version-10.1.41 (with 45 492 310 table records).

3.4. Dataset Availability and Preprocessing

For the collection of data, we use a methodology suggested in [61]. The network traffic data are
captured in the nfcapd binary format files. The nfcapd files are collected in a single file per week for
two capture periods. The mean size of files is about 1.35 GB (compressed). The nfcapd files have all
NetFlow features, extended with 19 custom attack detection features which starts from 2019-03-06 first
flow and 2020-01-31 last flow. The IP addresses of network nodes have been anonymized. Information
from senders (NetFlow raw data files) to the collector is received in NetFlow v9 format (rfc3954).
All values are transferred to the MySQL database (NetFlow database SQL server).

All dataset files can be freely downloaded from our website: https://dataset.litnet.lt.
The dataset formation is summarized in Figure 3. The data preprocessor selects 49 attributes that

are specific to the NetFlow v9 (RFC 3954) protocol to form a dataset. The Data extender expands the
generated dataset with additional fields of time, tcp flags, which are later used to identify attacks.
The Extended dataset is supplemented by a set of 15 attributes. The generator creates additional
19 attributes for attack type recognition (see Table 5). The combinations of these and NetFlow attributes
are used to detect attacks. We also added two additional fields to separate in the dataset, where the
record is assigned to the attack and what specific type of attack, and where the normal network traffic
is. Therefore, we have a total of 85 attributes.
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Table 5. Flow additional attributes for attack identification.

No. Name of Features Attribute Description

1 icmp_dst_ip_b icmp_smf Flooding network broadcast with ICMP packets
2 icmp_src_ip icmp_f Flooding target with ICMP packets
3 udp_dst_p udp_f Ddos’ing with UDP traffic
4 tcp_f_s tcp_syn_f Flooding attack with SYN packets
5 tcp_f_n_a tcp_syn_f Flooding attack with SYN packets
6 tcp_f_n_f tcp_syn_f Flooding attack with SYN packets
7 tcp_f_n_r tcp_syn_f Flooding attack with SYN packets
8 tcp_f_n_p tcp_syn_f Flooding attack with SYN packets
9 tcp_f_n_u tcp_syn_f Flooding attack with SYN packets

10 tcp_dst_p http_f Ddos’ing with HTTP traffic
11 tcp_src_dst_f_s tcp_land Landing type of attack to any port with SYN packets
12 tcp_src_tftp tcp_w32_w Flooding TFTP service
13 tcp_src_kerb tcp_w32_w Flooding Kerberos service
14 tcp_src_rpc tcp_w32_w Flooding RPC service
15 tcp_dst_p_src tcp_red_w Uses a vulnerability in a HTTP server
16 smtp_dst smtp_b Flooding with SMTP connections from one host

17 udp_p_r_range udp_reaper_w Scans on UDP ports 80, 8080, 81, 88, 8081, 82, 83, 84, 1080,
3000, 3749, 8001, 8060, 8090, 8443, 8880, and 10,000.

18 p_range_dst tcp_udp_win_p Several ports, one address; single port, multiple addresses,
ports NBT, Samba, MS-SQL-S, VNC, RDP, 2222

19 udp_src_p_0 udp_0 Ddos’ing with UDP fragmented traffic

3.5. Summary

The proposed dataset was collected in the real-world network, over an extended period of time
(10 months), and contains real network attacks over the country-wide network infrastructure with
servers in four geographically distributed locations (cities). As such, the proposed network flow
dataset is more advantageous than some of its counterparts (such as UNSW-NB 15 dataset [59]), which
generated the attacks artificially and thus do not contain realistic data.

4. Description and Statistical Analysis of Dataset Features

This section presents the description and analysis of dataset features. First, we formulate the
requirements for dataset features. Then, we present the description of different classes of features.
Next, we analyze the statistical distribution of the feature values and illustrate the results by figures.
Finally, we summarize the results.

4.1. Requirements for A Dataset and Its Features

We formed the dataset by using the requirements for NIDS evaluation datasets outlined in [61]
as follows. The dataset features should include network flow characteristics, such as IP addresses
and port numbers, number of packets and bytes, flow duration, and flags. The dataset records
should be correctly labeled as malicious or not, and in case of attack records, they should also include
the type of attack. The dataset should cover several different periods of network activity, such as
daytime/nighttime and weekdays/weekends.

4.2. Description of Features

In describing the features, we follow the description scheme suggested in [72] that considers the
flow, basic, content, general purpose time slice, and connection features. These are summarized in
Tables 5–7. The source_IP, target_IP, and time are noted as key for intrusion detection [73]. Source
and destination ports, source and destination IP addresses, and time were mentioned as the most
informative features for intrusion alerting [19]. Similar time-slice features based on the calculation
of unique IP addresses within a time window were successfully used for network-attack detection
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before [74]. Additionally, we provide two network-attack attributes labeled by the network security
experts, in Table 8.

Table 6. Additional generated attributes.

No. Type of Attack Action Attribute Description

1 Smurf Flood icmp_smf Broadcast requests to the network on behalf of the victim computer
2 ICMP-flood Flood icmp_f Large traffic of ICMP packets
3 UDP-flood Flood udp_f Large traffic flow to DNS
4 TCP SYN-flood Flood tcp_syn_f Large traffic of TCP traffic with SYN attack
5 HTTP-flood Flood http_f High traffic with HTTP protocol

6 LAND attack Attack tcp_land

The IP address of the target is indicated in the header of such an IP
packet as the destination and departure addresses, and any open

port on the system under attack is indicated as the destination and
departure ports

7 W32.Blaster Worm Worm tcp_w32_w Large volume of traffic on Remote Procedure Call (RPC) port, for
TFTP port, Kerberos authentication port

8 Code Red Worm Worm tcp_red_w Uses a vulnerability in a web server
9 SAPM bots Bots smtp_b The presence of an excessively large number of SMTP connections

10 Reaper Worm Worm udp_reaper_w Reaper is a botnet that uses the HTTP-based exploits of known
vulnerabilities in IoT

11 Scanning/Spread Attack tcp_udp_win_p An abnormal number of connections from one host to one or more
other hosts

12 Packet fragmentation Attack udp_0 Denial of service attacks are based on the use of many
fragmented packets

Table 7. Time-slice-based connection features.

No. Description

1 No. of unique source IP addresses in previous 10,000 connections
2 No. of unique destination IP addresses in previous 10,000 connections
3 No. of unique source ports in previous 10,000 connections
4 No. of unique destination ports in previous 10,000 connections
5 The largest count of connections from the same source IP address in previous 10,000 connections

6 The largest count of connections from the same destination IP address port in previous
10,000 connections

7 The largest count of connections from the same source port in previous 10,000 connections
8 The largest count of connections from the same destination port in previous 10,000 connections

9 The average count of connections from the same destination IP address and port in previous
10,000 connections

10 The average count of connections from the same source port in previous 10,000 connections

11 No. of connections with unique source IP–destination IP address pairs in previous
10,000 connections

12 The largest count of connections with the same pair of source IP–destination IP addresses in
previous 10,000 connections

Table 8. Labeled attributes.

Name of Features Description

attack_t
(attack type) nine types: Smurf, ICMP-flood, UDP-flood, TCP SYN-flood,

HTTP-flood, LAND attack, W32.Blaster Worm, Code Red Worm, SAPM bots,
Reaper Worm, Scanning/Spread, Packet fragmentation or none

attack_a (attack action) 0 for typical (background) traffic and 1 for network attack

4.3. Analysis of Features

Following [75], we calculated the mean and standard deviation of all features. We studied the
feature variance, using the cumulative distribution function (CDF), as was suggested in [76]. The results
are shown in Figure 4.
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destination ports.

These feature distributions are heavy tailed, and the smaller values make most cases. Moreover,
95% of source network nodes connect to fewer than 29 unique destination IPs, only 1% of source nodes
may connect to more than 185 unique IPs, and only 0.1% connect to more than 2900 unique IPs (SYN
attack subset of the dataset). Such outliers help in identifying the malicious behavior in the network.
Feature value distributions also reveal possible correlations between features. For example, the Pearson
correlation between input packets and input bytes is 0.92, when an attacker performs the SYN attack.
Such high levels of correlation allow us to identify features containing duplicate information.

To analyze the dynamical changes in the network flows, we applied window slices and observed
the change of unique source and destination IPs over time. Here, we used a window of 10,000 NetFlows
moved with a step of 5000 NetFlows. The results are presented in Figure 5 for the IP addresses and in
Figure 6 for the port connections. One can see sharp changes in the behavior of network nodes, which
may be indicative of the network attack.

The distribution of data according to the protocol types is presented in Figure 7. The most common
protocols in the dataset are TCP and UDP.

The temporal frequency of the source and destination ports in the NetFlow connections are
presented in Figure 8. As a baseline, a reference frequency is given, if the distribution of connections
to ports would be uniform. Note that connections from/to some ports are much more frequent,
e.g., the most frequent source ports are 54,438 and 444, while the most frequent destination ports are
444 and 54.
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The statistical distribution of the connection flags in the TCP SYN-flood subset of the dataset is
presented in Figure 9. It shows that most of the network connections had the S (TCP SYN) flag.

In case of the scan spread attack, the attacker scans for new IPs in the network. As a result,
the number of unique destination IPs in a NetFlow window slice grows steadily during the attack
(see Figure 10, left). Moreover, the attacker performs the port scan on the attack nodes, which can be
seen from the distribution of port numbers in time (see Figure 10, right).
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Figure 10. Unique IPs versus flow number and Ports addressed during the Scan spread attack.

The values of the time-slice-based connection features are presented in Figure 11. Note the
sharp changes and peaks in the values, which may be indicative of network attacks. The statistical
distribution of feature values is highly skewed and shows a considerable difference between the values.
We used the violin plot, which was already used to visualize the distribution of network-traffic features
before, in [58]. See the violin plot of feature-value distribution presented in Figure 12.
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For the analysis and unsupervised clustering, we first performed the normalization of the dataset
features. For the analysis of unsupervised datasets, the dimensionality reduction methods, such as
Principal Component Analysis (PCA), are often used [77]. Here, we applied the t-stochastic Neighbor
Embedding (t-SNE) method [78] to reduce the dimensionality to two dimensions. The resulting
low-dimensional embedding has clusters assigned by the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm [79]. As a result, we obtained 12 clusters corresponding
to different network-attack types, which are shown in Figure 13.
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using the t-stochastic Neighbor Embedding (t-SNE) method.

To analyze the differences between clusters, we adopted a pairwise two-sample multivariate
Kolmogorov–Smirnov (KS) test, which is used to determine whether two sets of data arise from the
same or different distributions. The null hypothesis was that the data in both pairs of compared
clusters are drawn from the same continuous distribution. We used a two-dimensional version of the
KS test because the low-dimensional embedding was two-dimensional. The hypothesis was rejected
(p < 0.001) for all pairs of clusters.

The distribution of feature values according to the attack-behavior clusters in time can be seen in
Figure 14. To allow for better comparison, all feature values were normalized to (0,1).
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To evaluate the significance of each feature, we used two tests. First, we applied the t-test-based
feature, ranking using each cluster vs. all other clusters as a dependent variable. In another test, we
used the split-half approach by splitting the set of clusters in half randomly and performing feature
ranking, while the procedure was repeated N (N = 1000) times. The results of feature ranking were
analyzed by using the non-parametric ranking-based Friedman test, and the result was statistically
significant (p < 0.05). Finally, the post hoc Nemenyi test was applied, and its results were presented
by using the significance diagram [80] (see Figure 15). Note that, according to the one-versus-all
splitting, there is no statistically significant difference between the feature ranks (Figure 15a); therefore,
all features are significant and contribute to the constructions of clusters. We also performed the
split-half testing. The feature-ranking results (Figure 15b) show that features F6, F9, F1, and F10 have
the highest rank among all features, which is statistically significant (p < 0.001).
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4.4. Conclusions of Dataset Analysis

The statistical analysis of the features included in the proposed dataset shows that the features can
be to for detecting various types of network attacks. In particular, the time slice connection features
can be embedded to lower dimensional space, where clustering methods can be applied to map the
low-dimensional representation of features to network attack classes.

5. Comparison with Other Datasets

Table 9 shows a comparative analysis with the analyzed datasets, according to the number of
networks, number of unique IP address, period of the data collection, attack vectors, and the number
of features for each dataset.

The proposed network dataset was collected for a longer period of time (10 months) than
other analyzed datasets; it covers more network-attack classes (12) and contains more features (85).
Therefore, the proposed dataset could present a valuable contribution to the research community and
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enrich the available set of datasets for the development and improvement of new network-attack
recognition methods.

Table 9. Comparison of benchmark network datasets.

Para-meter DDoS
2016 [28]

UNSW-NB15
[42]

CICIDS
2017 [43]

UGR’16
[44]

NSL-KDD
[23]

CSE-CIC-IDS2018
[45]

Pro-Posed
Dataset

No. of
network nodes

Network
simulator

(NS2)
3 2 10M different

(sub)networks n/a 5 subnets 1,395,951
IPs

Number of
unique IPs n/a 45 21 higher than 600 M n/a 500 7,394,481

Period of data
collection n/a 15/16 h 5 days

calibration set
—100 days,

test set—1 month
7 weeks 17 days 10 months

Attack classes 5 9 7 7 4 7 12
No. of features 27 49 80 12 41 80 85

6. Conclusions

Known network-intrusion benchmark datasets usually do not provide the realistic case of the
modern network-traffic and network-attack scenarios. In contrast, the proposed dataset contains
real-world network traffic data and annotated attack examples, rather than artificially simulated attacks
executed in the sandbox network environment.

To facilitate the improvement of existing network-intrusion-detection methods, and the
development of new, we have suggested a new network flow dataset. The dataset has 85 features
that can be used to recognize 12 different types of network attacks. We provided an analysis and
comparison of the proposed dataset with two classical and four other modern datasets by key features
and described its advantages and limitations. Our dataset contains real network traffic captured over
10 months. This provides an advantage over synthetically generated datasets, because an artificial
synthesis of network traffic might lead to incorrect network-attack models and behaviors.

In the future, we expect that the proposed dataset can be helpful to researchers working the
cybersecurity domain and can be used as a modern benchmark network-intrusion dataset.
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