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Abstract: Pointed at a problem that leads to the high complexity of the production management
tasks in the multi-stage spinning industry, mixed flow batch production is often the case in response
to a customer’s personalized demands. Manual handling cans have a large number of tasks,
and there is a long turnover period in their semi-finished products. A novel heuristic research was
conducted that considered mixed-flow shop scheduling problems with automated guided vehicle
(AGV) distribution and path planning to prevent conflict and deadlock by optimizing distribution
efficiency and improving the automation degree of can distribution in a draw-out workshop. In this
paper, a cross-region shared resource pool and an inter-regional independent resource pool, two AGV
predictive scheduling strategies are established for the ring-spinning combing process. Besides
completion time, AGV utilization rate and unit AGV time also analyzed with the bottleneck process
of the production line. The results of the optimal computational experiment prove that a draw frame
equipped with multi-AGV and coordinated scheduling optimization will significantly improve the
efficiency of can distribution. Flow-shop predictive modeling for multi-AGV resources is scarce in the
literature, even though this modeling also produces, for each AGV, a control mode and, if essential,
a preventive maintenance plan.

Keywords: smart spinning; mixed flow-shop; multi-AGV predictive modeling; cyber–physical
production system

1. Introduction

Spinning is the lifeblood industry of the textile industry, where the fiber is drawn-out, twisted,
and wrapped onto a bobbin by using state-of-the-art twisting techniques. The ring-spinning production
process includes opening and cleaning (opening, blending, and cleaning take place in a blow room),
carding, pre-combed drawing, lap forming, combing, post-combed drawing, simplex, ring-spinning,
and winding. The spinning process is dynamic, implicating multiple discrete workshops, and around
more than 80 production pieces of equipment are used during it. The spindle’s speed when spinning
can reach up to 25,000 r/min and the spindle is the leading apparatus of these extremely sophisticated
systems. Though these smart, or intelligent systems, are relatively efficient, they also suffer from
various problems; particularly in the draw-out workshop, manual handling can distribution has a
large number of demanding tasks, and there is a long turnover period in semi-finished products.
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Recent years have seen an increase in the amount of the flow-shops with identical counterpart
machines, like those in the spinning industry, that have gone through upgrades towards becoming
intelligent automation industries from labor-intense sectors [1]. As discussed in [2], a smart spinning
system is a system that contains multiple computing elements (sensors and actuators) and a processing
unit, all managed by restraining the data. Based on flow of information, the data are pre-processed and
a command is sent to the actuator to perform a pre-programmed action that can detect changes in their
surroundings and react to them to produce a practical outcome. Scheduling is inevitable in these smart
spinning cyber–physical production systems (CPPS). Due to their strong computational, analytical,
and processing capabilities, intelligent mechatronic systems like automated guided vehicles (AGVs) are
vital to assure stability and competence [3]. These smart transport systems equipped with radio waves,
vision cameras, magnets, or lasers for navigation (automatic guiding devices) that can walk-along a
preset guidance path to complete a series of horizontal transport operations. An approach developed
in [4] at a particular changing state of moving vehicles and production equipment had the feature
of processing multiple semi-finished products at the same time within the premises of production
logistics. A distributed method of discrete-event simulation for highly distributed manufacturing
systems was discussed in [5]. The required time to complete work orders, the amount of energy used
to transport the loads, and the utilization of work stations are the highest performance standards for
AGV material handling systems [6,7], all of which are widely used to relocate material in modern,
flexible manufacturing systems [8] and which affect the effectiveness of manufacturing processes by
enhancing their efficiency. Though the benefits of allowing for AGV job preemptions can be significant,
few studies have considered pre-emptive scheduling in the context of flow-shop predictive modeling.
For example, in [9,10], AGV dispatching and cooperative waterborne AGVs prediction models were
addressed, and a class of precedence constraints was proposed.

Various literature reviews have been proposed during the last decade about the impact of AGVs
in smart industries. AGVs have economic, environmental, and technical advantages. They also
come with three main problems: AGV scheduling, AGV path planning, and AGV control system
implementation [11–13]. AGVs scheduling of a more flexible, modular, and intelligent manufacturing
system does not require much time and budget for initial installation. Stetter et al. developed a virtual
diagnostic sensor design for production tasks to solve the problem of task scheduling and coordination
control by an AGV system [14]. A concise overview of guide-path design, estimating the number of
locations and parking, pickup, and delivery points that considered the number of required vehicles
was given by Małopolski [15], and a fault control strategy was given by Witczak [16]. There have
been fewer scholarly studies on the battery management of AGVs to obtain more productive hours
and increase the flexibility of manufacturing systems—still, an effort was made by Kabir et al. in
this regard [17]. A cooperative AGV-based production system depends on its efficiency, effectiveness,
availability, and reliability by predicting AGV-battery remaining useful life (RUL) [18–20]. CPPS-based
investigations and solutions, i.e., the bottleneck of supply chain management for material handling and
production manufacturing, have been presented for complex material flows [21–24]. When answering
this problem, one must cope with difficulties connected with flow-shop scheduling, as well as those
imposed by the resource constraints that must be satisfied in the whole system at every moment [25–27].

This work was inspired to resolve the confronting problems of scheduling in real-time can
distribution and path planning in the continuous production of spinning by using a mixed flow-shop
predictive modeling method. The related problems are as follows: (a) How to solve a general problem
of AGV scheduling and path planning to prevent conflict and deadlock in parallel machines flow-shop?
How does a spinning CPPS deal with scheduling tasks in mass production? Additionally, how to
deploy AGVs to work together to process real-time tasks?

The main contributions of this paper are as follows:

1. To effectively reduce the makespans and total completion time. To the best of our knowledge, this is
the first time a novel approach that handles both cross-region shared resource and inter-regional
independent resource pools.
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2. Based on the intended categories of scheduling tasks, an AGV transportation route strategy is
developed for mass production in spinning CPPS.

3. A mathematical model for real-time task processing for dissimilar cotton and polyester processing
in multi-AGV scheduling is designed to prevent conflict and deadlock by assigning different
tasks: AGV assignments, AGV sorting, and task sources.

Our results demonstrate the adequacy of the presented methods when the number of AGVs
intensifies to a certain extent, as increasing the of number AGVs decreased the completion time drop
sharply, which reduces the AGV utilization.

The paper is organized as follows: Section 2 imparts a comprehensive background of the analysis
of the production process of the spinning workshop, a mathematical model of multi-AGV scheduling,
model assumptions, object function, and the uniqueness constraint. Section 3 concentrates on the
explanation of the multi-AGV scheduling simulation modeling, simulation model construction, and the
AGV resource pool strategy-based bottleneck analysis. Section 4 emphasizes the results by doing a
comparative study of two AGV resource pool strategies and a comprehensive analysis of multi-AGV
scheduling in the process flow. Finally, conclusions are summarized in Section 5.

2. Analysis of the Production Process of the Spinning Workshop

We tried to examine previously-discussed drawing shops to improve our earlier presented
approach in two key areas: First, the series structure, where the raw materials for each process only
depend on one process and the same processed products used for another process, is shown in Figure 1.
The second parallel structure, in which the raw material of each procedure depends on multiple
processes or the product of one process used as the raw material of other various processes, is shown
in Figure 2.
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A traditional draw shop has a low-level of automation, and semi-finished products in various
processes mainly rely on manual transportation. On the other hand, the efficiency of manual handling
is poor, and it cannot meet the demand for rapid response, which has become a bottleneck for speeding
up production lines, which causes higher labor costs and a more significant workload for employees,
thus resulting in insufficient production. The usage of an AGV instead of manual handling between
traditional production processes can effectively improve the automation level of a workshop [28–30].
By relying on information technology to enhance the accurate response capabilities of an AGV, it can
achieve precisely guided tasks such as advanced stocking and rapid shipment, which avoid the
traditional experience of employees [31,32]. The ability to rely on AGVs can effectively improve the
production efficiency of a workshop.
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A spinning workshop is a mixed-flow workshop. A typical production line contains multiple
operational processes that involve various workshops. The corresponding process sequence must be
satisfied with numerous methods. Therefore, a spinning workshop is regarded as a multi-stage parallel
production assembly-line system. Figure 3 illustrates the ring-spinning production process of a spinning
workshop, the first stage explains the opening and cleaning of the cotton bales and then the carding,
mainly to remove impurities from cotton or polyester and to produce strip-shaped semi-finished
products. The second stage is primarily to pre-draw and to draw after carding. The density of cotton or
polyester is not uniform. Pre-drawing and drawing further mix the raw materials evenly, and mixing
the two raw materials of cotton and polyester produces semi-finished products with different ratios.
Phase 3 is thickness and thinness, and the purpose of it is further processing that makes the final
products ready for the customer’s demands according to the desired radius size. It can be observed
from the figure that each stage in the flow-process includes multiple processes, each process performed
by one machine or numerous identical machines, and each process relies on semi-finished products of
one or more operations as raw materials. The mixing process in a spinning and drawing workshop uses
cotton slivers produced in the combing process and polyester slivers produced in the polyester process
as the raw materials. In contrast, the mixing process uses the products from the first process as raw
materials. This article mainly studies the two-stage workshop in the production stage. For convenience,
it is called the drawing-out flow-shop.Electronics 2020, 9, x FOR PEER REVIEW 5 of 34 
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2.1. Mathematical Model of Multi-AGV Scheduling

2.1.1. Processing Equipment Definition

Multiple parallel processes at the same level represent multiple production lines of different
semi-finished products, and a production line of semi-finished products is composed of multiple serial
processes. Keep in mind that the workshop has ith level operations, Zi is the number of product lines
under the ith-level operations, and Piz represents the number of continuing operations of the z-product
line. Under each process, there are Kpiz identical pieces of processing equipment for processing, and kpiz

denotes the kth machine that executes the process piz. Each piece of processing equipment has different
attributes: in addition to the production efficiency of the processing equipment, there is the production
time per unit of product, the type and quantity of raw material required for processing, the batch
produced the number of products processed in one batch, starting processing time, and processing
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completion time. Among these, the production efficiency of the equipment, the type and quantity of
raw materials, and the number of products obtained in one processing are the input of the model,
and the other variables are the amounts of decisions.

2.1.2. Raw Material and Product Definition

Considering the particularity of assembly line production, the processing raw material of one
device is a semi-finished product produced by another device, so the total number of products are
represented by j+PizP′i′z′; p′i′z′ is the process required for the process piz processing, indicating the process
piz comes from the Jth raw material of the process; p′i′z′ represents the total number of finished products
processed by the process piz; and J−Piz

represents the Jth finished product of the process piz.
In addition to the initial raw materials of the assembly line, all raw materials contain two attributes:

one is the p′i′z′ processing completion time of the process, and piz is the transportation cut-off time of
the process. The state of the material after the start of processing becomes the product status; therefore,
one does not need to consider the initial processing properties of the material.

2.1.3. AGV Definition

Considering that there are V identical AGVs in a spinning draw frame, each AGV transports
between any two machines, and the transportation time depends on the actual physical distance and
road conditions between the two machines.

An AGV car has two walking states in its scheduling system. One is without-load when the
car receives a transportation task and it needs to travel from the current position to the starting
position of the transport task without-load. The car is currently in the initial position of transportation
without-load, and the distance covered by it is 0. The second is with-load, that is, the trolley runs from
the initial position of the transportation task to the end position of the transportation task. Each AGV
contains different attributes, including with-load start time, without-load end time, the without-load
starting point for a transport task, load start time, load end time, load line for a transport task,
and specific raw materials for means of transport.

2.1.4. Overall Variable Definition

Table 1 shows that the process piz for each machine must start processing after collecting the
number of raw materials, that is, the process piz must collect all the required raw materials before it can
be processed once, and this is recorded as a processing batch. When p = 1, it is the first sub-process of
each level process. The raw materials of this sub-process may depend on a variety of semi-finished
products of the previous level process where i = i′+ 1; when p > 1, it means that it depends on the same
level. The semi-finished products of the same product line in the process are used as raw materials,
and, at this time, i = i′, p = p′ + 1, and z = z′. Table 2 shows the definition of time decision variables:

2.2. Model Assumptions

2.2.1. Processing Equipment and Processing Assumptions

• There is only one product per piece of processing equipment, considering that some machines
process different proportions of raw materials to produce various products. This article defines
them as separate machines, i.e., each machine is set to handle one type of product. In an actual
environment, the parameters of a machine are different when producing different products. During
the production process of an assembly line, the machine does not automatically adjust settings.

• The processing equipment responsible for the same process has the same processing performance.
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Table 1. Symbol definitions. AGV: automated guided vehicle.

Symbol Meaning

I Process level
i Number of process levels

Zi Number of product types output by the ith operation to the next operation
zi The z product on the ith process; when i = 0, it means this is the starting process

NzI Final product type z quantity
Piz The number of operations owned by the z product line of the ith operation
piz The p operation of the ith level operation of z product line

R+
pizp′i′z′

The number of products from the operation p′i′z′ required to process the operation of a batch piz

R−piz Number of products produced in one processing batch of the process piz
Lpiz A total batch of operations piz
lpiz The Ith of the operation piz

J+pizp′i′z′
The total number of products piz required for the operation p′i′z′

j+pizp′i′z′

The process piz comes from the jth raw material of the process p′i′z′ . When p = 1, it is represented
as the entrance process of each stage of the process. At this time, there are a variety of products
that depend on the previous process. Where i = i′ + 1 and when p > 1, it means that the process
is relying on the products in the same process as that of the raw materials; at this time, i = i′,
p = p′ + 1, and z = z′

J−piz Total number of finished products processed by the operation piz
j−piz The jth finished product of the process piz
Kpiz Total number of execution machines piz operations
kpiz Machine k in process piz
V Total AGV
tpiz The time required for a machine on the piz to process unit raw materials

Table 2. Variable definitions.

Decision Variables Meaning

Spizlk The Ith batch of the operation piz starts on the machine kpiz

Tpizlk The end time of the Ith batch of operation piz is processed on the machine kpiz

T jpizk Processing completion time j−piz
on kpiz

C jpizp′i′z′
Raw materials j+pizp′i′z′

shipping to the piz of the process

tpizp′i′z′ AGV transit time between operation piz and operation p′i′z′
S′C jpizp′

i′z′
v

Car v starts C jpizp′i′z′
, the transportation task of the without-load phase

T′C jpizp′
i′z′

v
Car v starts C jpizp′i′z′

) the end time of the without-load phase of the transportation mission

SC jpizp′
i′z′

v Car v starts C jpizp′i′z′
the start time of the load phase of the transportation mission

TC jpizp′
i′z′

v Car v starts C jpizp′i′z′
the end time of the load phase of the transportation mission

xC jpizp′
i′z′

v =

1, C jpizp′i′z′
By car v transport

0, other

yklpiz =

1, Ith batch on operation pit is processed on a machine kpiz

0, other

2.2.2. AGV Transportation Route Assumptions

1. The transportation efficiency of each AGV cart is the same, and the speed remains the same
during transportation [33].

2. The capacity of each AGV can only transport unit quantities of raw materials, and the mass and
volume of each unit of raw materials does not exceed the AGVs rated load.

3. There is sufficient avoidance space at intersections and around the equipment, and the AGV
avoidance passage time is negligible.

4. AGV loading and unloading time are included in the transportation time.
5. The vehicle has no faults during transportation [34,35].
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6. The model only considers the process that requires AGV transportation and simplifies the
process that does not require AGV transportation. The first-stage process is the first-stage
process that requires an AGV to participate in shipping, and the last-stage process is what
happens subsequently.

2.3. Object Function

In this study, the AGV scheduling plan with the highest production efficiency in the drawing
shop was studied. The objective function was to minimize the time required for the drawing shop
to complete all finished products, i.e., to reduce the maximum completion time. Here, Equation (1)
defines U as the complete set.

Tmax = min
{

max
jpiz∈∪,k∈[1,kPIz ]

T
iPIzk

}
(1)

2.4. Uniqueness Constraint

Unique constraints include those on processing materials, production equipment, and the AGV.

2.4.1. Raw-Material Processing Uniqueness

Each processing raw material corresponds one-to-one with the process, batch, and production
equipment. In this case, only the goods to be transported by the AGV cart can be determined to
determine the transport route of the cart and a set that restricts one batch under one process on one
machine. Equation (2) defines the input raw materials of a specified process that can only be attributed
to one batch under the procedure for processing. Equation (3) represents the constraint on the batch to
which raw materials belong in the first step of each stage of the production line. Equation (4) indicates
that the batch belongs to the raw material constraint in other levels of each stage of the production line.
The products of a specified process can only be produced by a batch under this process, as shown in
Equation (5).

kPiz∑
k=1

yklpiz = 1 (2)

∀i ∈ [1, I], z ∈ [1, Z], p ∈ [1, Piz], l ∈
[
1, LPiz

]
LPiz∑
l=1

u jlpizp′
i′z′

= 1 (3)

p = 1, p′ = Pi′z′ = i− 1, ∀i ∈ [1, I], z ∈ [1, Z], z′ ∈ [1, Zi′ ]

LPiz∑
l=1

u jlpizp′
i′z′

= 1 (4)

p > 1, p′ = Piz − 1, i′ = i, z′ = z, ∀i ∈ [1, I], z ∈ [1, Z], p ∈ [1, Piz]

LPiz∑
l=1

w jlpiz = 1 (5)

∀i ∈ [1, I], z ∈ [1, Zi], p ∈ [1, Piz], j ∈
[
1, Jpiz

]
2.4.2. AGV Uniqueness Constraint

Raw material j is transported only in one AGV transportation process, as shown in Equations (6)
and (7). Since the first process of each stage of the production line is different from other means,
the situation of p is discussed separately in Equations (6) and (7).
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V∑
v=1

xC jPizP′i′z′v = 1 (6)

P = 1, P′ = Pi′z′ , i′ = i− 1

∀i ∈ [1, I], z ∈ [1, Zi], z′ ∈ [1, Zi′ ], j ∈
[
1, Jpizp′i′z′

]
V∑

v=1

xC jPizP′i′z′v = 1 (7)

P > 1, P′ = Piz − 1, i′ = i, z′ = z

∀i ∈ [1, I], z ∈ [1, Zi], p ∈ [1, Piz], j ∈
[
1, Jpizp′i′z′

]
2.4.3. Unique Constraints of Production Equipment

Concerning the limitation on processing equipment, a machine processes only one raw material
at a time, and this constraint is determined by the attributes of the processing equipment for different
processes in the drawing shop, as shown in Equations (8) and (9). When p = 1, the raw materials for
machining may come from different production lines. When p > 1, the raw materials for machining
come from the same production line. Additionally, one machine can only produce one product at a time.
Equation (10) defines the processing equipment of the same process that provides the same number
of products in one operation, and the number of products produced by the processing equipment of
different methods is not necessarily the same.

J+PizP′i′z′∑
j=1

u jlpizp′i′z′ = R+
pizp′i′z′ (8)

p = 1, p′ = Pi′z′ , i′ = i− 1

∀i ∈ [1, I], z ∈ [1, Zi], z′ ∈ [1, Zi′ ], l ∈
[
1, Lpiz

]
J+PizP′i′z′∑

j=1

u jlpizp′i′z′ = R+
pizp′i′z′ (9)

p > 1, p′ = Piz − 1, i′ = i, z′ = z

∀i ∈ [1, I], z ∈ [1, Zi], p ∈ [1, Piz], l ∈
[
1, Lpiz

]
J−piz∑
j=i

w jlpiz = R−piz
(10)

∀i ∈ [1, I], z ∈ [1, Zi], p ∈ [1, Piz], l ∈
[
1, Lpiz

]
3. Multi-AGV Scheduling Simulation Modeling

The case-study used here was mainly based on a multi-AGV scheduling mathematical model
and an optimal batch distribution strategy. Based on the Jingwei Wuxi ring spinning production
process, Siemens Plant Simulation was used to establish a multi-AGV scheduling simulation model for
the drawing shop. The scheduling strategy built a simulation scenario and analyzed the impact of
different AGV numbers on scheduling performance, i.e., completion time and some factors that affect
the configuration of AGV numbers.
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3.1. Production Operation Drawing Workshop Simulation Input

By exploiting state-of-the-art mechanical technology, we considered the production of two
product types:

The first was the 55%/45% product, which comprises 55% cotton and 45% polyester in a mixed
process. The second was the 60%/40% product, which comprised 60% cotton and 40% polyester in
a mixed process. Table 3 shows the cotton production process parameters, and Table 4 shows the
polyester production process parameters. The process parameters of product one (55%/45%), are shown
in Table 5. The process parameters of product two (60%/40%) are shown in Table 6. Table 7 shows
the raw material requirements for each device (regardless of the binocular device). Table 8 shows the
processing time of each device.

In our simulation, each region initialized an AGV resource pool. Depending on the set policy,
the regions where the AGV could operate were different. AGVs ran differently between different
areas. Table 9 shows the connectivity and running time between different areas. The drawing shop
layout was divided into four areas, and the first area was pre-combined for combing, lap-forming,
and combine combing; this was called ‘Region A.’

Table 3. Cotton processing parameters.

Equipment Quantity Speed (m/min) Tampons Specification (m)

Pre-drawing combs 2 400 800
Drawing Roller 1 120 10

Combs 5 350 700

Table 4. Polyester processing parameters.

Equipment Quantity Speed (m/min) Tampon Spec. in Cotton Barrels (m)

Polyester strip 2 288 560

Table 5. 55%/45% product process parameters.

Equipment Quantity Speed (m/min) Thread Specification (m)

First Mixing 1 380 650
Second Mixing 1 380 750
Third Mixing 1 380 850

Table 6. 60%/40% product process parameters.

Equipment Quantity Speed (m/min) Thread Specification (m)

First Mixing 1 380 4000
Second Mixing 1 380 4500
Third Mixing 1 380 5000

Table 7. Equipment processing batch information.

Equipment Quantity of Raw
Materials Required

A Single Batch OF
Semi-Finished Products/Total

Polyester strip 5 Barrels 1 barrel/5 in total
Pre-drawing combs 5 Barrels 1 barrel/5 in total

Drawing roller 24 Barrels One lap/30 in total
Combing Frame 8 Laps 1 barrel/5 in total

65%/45% First Mixing C (Cotton) 3 and T (polyester) 3 1 barrel/6 in total
60%/40% First Mixing C (Cotton) 4 and T (polyester) 3 1 barrel/7 in total

Second Mixing 6 Barrels 1 barrel/6 in total
Third Mixing 6 Barrels 1 barrel/6 in total
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Table 8. Equipment processing time.

Equipment Single Batch Processing
Time (Min) Single Product Processing Time

Polyester strip 10 2 min
Pre-drawing combs 10 2 min

Drawing roller 2 40 s
Combs 16 2 min

55%/45% First Mixing 10 100 s
60%/40% First Mixing 10 100 s

Second Mixing 15 150 s
Third Mixing 15 150 s

Table 9. AGV running time between different areas.

Starting Area Final Area Operation Hours/S

Area 1 (A) Area 2 (C) 10
Area 2 (A) Area3 (B) 12.5
Area 3 (B) Area4 (D) 10

The production efficiency of the production line was analyzed under different AGV quantities
throughout the multiple simulations [36]. The number of AGVs in the resource pool of each area
increased from 1 to 3, and a total of 81 groups of simulations were performed. AGV1, AGV2, AGV3,
and AGV4 signify the number of AGV initializations for the four regions. Completion time refers to the
time required to process all products, and the production requirements of the two products were set up
to 50. The following is a comparative analysis of the impact of the number of AGV allocation factors
and its effect on the completion time in the application scenario of the batch distribution strategy.

3.2. Simulation Model Construction

3.2.1. Machine Module

The machine tool of the draw frame was characterized by the need to process multiple raw
materials at a time. Various finished products were produced one after another, so the simulation could
understand that the input and output were different in one processing batch. To describe this type of
machine in ‘Siemens Tecnomatix Plant Simulation,’ multiple necessary components were required to
implement this feature. The composition of the combed pre-parallel device, which divided into two
major modules, is schematically shown in Figure 4. The first module mainly realized the functionality
that a processing batch needed a fixed amount of raw materials, and the second module realized the
processing of the processed materials after the required raw materials were satisfied.

Component assembly was introduced for continuous manufacturing to correctly understand the
function of processing various raw materials in one processing batch. A single processor was used to
constrain the processing time of a shipment after the number of raw materials was satisfied, upon
which the machine started processing, executed the ‘Method’ method, and released the exit of ‘Buffer3.’
Then, the entities in ‘Buffer3’ entered ‘Buffer1.’ When there was an entity flowing out of ‘Buffer3,’
the ‘Method1’ method was executed to count the number of products that could be produced by a
processing batch. Afterward, the entities in ‘Buffer1’ flowed out one after another. The constraint
requirement that a processing batch needed to process multiple raw materials at the same time in order
to successively produce several products was realized.

The simulation implementation of a machine that required multiple raw materials was similar,
except that, in this case, there were numerous input ports. Taking a device with a mixed process as an
example, Figure 5 shows the mixed-process machine composition of a 55%/45% product.
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3.2.2. AVG Transportation Simulation

The “workers” in the resource were used to simulate AGV transportation. In the simulation
model building, the function of the AGV was to transport the product from one process to another
process, and this could be achieved by “workers.” Figure 6 shows the loading point of one process,
the driving route of the AGV, and the unloading point of the next process. The single processor at the
entrance was the unloading point of the AGV, which needed to set the exiting property of the processor.
Then, the AGV could carry the goods to the specified location and then unload; as such, the AGV was
simulated in this way.

3.2.3. Scheduling Policy

The machine selection strategy of the tight node was controlled by a flow-controller, where
the plan set in Exit Strategy was that of the cyclic-sequence time, and the corresponding list of the
configured batch distribution policy could complete the setting. When the cyclic time was selected,
the rotation distribution was given; this distribution laid evenly, as shown in Figure 7.
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Figure 7. (a,b) show the evenly distributed batch simulation implementation.

In plant-simulation resource pool policy, setting up the same broker for the machining machine for
the same regional operation allowed for the operation within the region to share the AGV. The broker,
which was the part of the ‘Tecnomatix Plant Simulation environment,’ mostly cooperated with the
exporter and the importers of the station, the parallel station, the assembly station, and the dismantling
station. If it was a cross-regional independent resource pool policy, different brokers were configured
for different neighborhoods. AGVs in the various areas could not call each other; implementing
a cross-zone shared resource pool set brokers for multiple regions as the same as those for the
connecting regions.

3.2.4. Simulation Model

Figure 8 shows the extensive simulation model of the multi-AGV flow-shop scheduling workshop.
Based on the simulation scene of the shop floor assembly line, the following analysis simulation

experiment was carried out.
First was the AGV cross-regional shared resource pool and the AGV cross-regional independent

resource pool policy comparison. The second was under the optimal production equipment distribution
strategy and AGV resource pool strategy. The influence of AGV quantity on multi-AGV scheduling
performance and the analysis of AGV quantity allocation factors was also considered. Through
the above analysis, the results of multi-AGV scheduling decision-making were obtained. Because
the machine selection strategy was based on which batch distribution was better than the uniform
distribution strategy, the cross-regional independent resource pool strategy and cross-regional shared
resource pool strategy had an inconsistent relationship in different situations. From there, we went on
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to combine the actual case of the spinning workshop and to further compare the performance of the
two resource pool strategies.
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3.3. AGV Resource Pool Strategy Based on Bottleneck Analysis

In order to improve simulation efficiency, a production efficiency analysis was carried out on
each production process. Since the critical issue in this paper was the production process involving
AGV transportation, the procedure before raw material cotton and polyester was not considered,
nor was the third mixing process. The cotton production was a serial assembly line process. Therefore,
the output efficiency of the raw cotton material was related to the bottleneck process in these three
mixing processes. The raw material consumption and finished output speed of the three processes of
cotton raw materials were as follows.

1. Pre-drawing combs: Each machine produced five cans every 10 min with a total of 2 machines.
2. Drawing roller: Each machine consumed 24 cans every 2 min and produced 30 cotton rolls, with a

total of 1 machine.
3. Combs: Each machine consumed eight cotton bobbins every 16 min and produced five cotton

laps with a total of 5 machines;

In the polyester production process, there was only a polyester blending process. The efficiency
of the blending process was such that each machine produced five cans per 10 min with a total of
2 machines. Regardless of the transportation time, the output efficiency of the cotton raw materials was
equal to the output efficiency of the bottleneck process in the three processes, assuming that the output
of the immediately preceding process in each of the above processes was sufficient. The process of
pre-drawing combs produced an average of one cotton can per minute. The consumption of 12 cotton
bobbins yielded 15 cotton laps, while the process of combing consumed 40 cotton bobbins every 16 min.
The bottleneck process was pre-drawing combing, and the final cotton raw material output efficiency
was an average of 5 cotton rolls produced every 4 min. Because there was only one process in polyester,
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the output efficiency of the polyester was the output efficiency of the process. An average of one
polyester cylinder was produced per minute. Figure 9 shows the production process.
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In the mixed process of cotton and polyester, different machines could be used for different
products, and the required ratio of raw materials was also different. However, the same processes
existed for different products. However, machines were not shared between various products, so the
subsequent process was still a continual process for each product. The bottleneck process determined
the output. The following were the inputs and outputs of the first, second, and third mixing processes
for the two products.

3.3.1. Product One (55%/45%)

Each machine consumed three cotton rolls and three polyester drums every 10 min in its first
mixing process and produced a total of six cans. In the second and third mixing process with one
machine, it consumed six cans in every 15 min to produce six cans.

3.3.2. Product Two (60%/40%)

Each machine consumed four cotton rolls and three polyester cans every 10 min in its first mixing
process, yielding a total of seven cans. In the second and third mixing process with one machine,
it consumed six cans in every 15 min to produce six cans.

If the supply of raw materials was sufficient, the efficiency of product one consumed three cotton
rolls and three polyester cans every 15 min, thus yielding six cans. Moreover, the efficiency of product
two consumed four cotton rolls and three polyester cans every 15 min, thus yielding seven cans.
The second and third mixing processes were the bottleneck processes. Based on the raw material
processing and mixing process in the spinning and drawing workshop, every 16 min, the raw material
processing process provided raw material at an average speed of 25 cotton cans and 16 polyester
cans. In the mixing process, when all the machines were turned on, the efficiency was such that it
consumed seven cotton cans and six polyester cans every 15 min on average, thus producing 6 of
’product one,’ 6 of ‘product 2,’ and a total of 12 products. According to the efficiency comparison ratio
in the material section and the mixing process section, it was found that the bottleneck was in the
mixing process section. The output efficiency of the cotton pre-drawing combs and polyester strips
was the same as the bottleneck of raw material. Finally, the process of mixing one, two, and three
became the output bottleneck.

According to the workshop scheduling theory, the bottleneck process is the crucial section that
restricts the output of an assembly line. According to the above analysis, the bottleneck process was
identified. Therefore, if the output speed of the assembly line needed to increase, the output capacity
of the bottleneck process needed to be increased as well. In the above calculations, the time required
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for the product to move between the processes was ignored. When we considered the handling
time for the goods to transport, the output was further reduced. Still, due to the existence of the
bottleneck process, the machine utilization of other non-bottleneck processes was not full. In practical
applications, if transportation resources are sufficient and the transportation time is shorter than the
product processing time, then the transportation time could be ignored. However, after the introduction
of an AGV, transportation resources become scarce. Different transportation tasks compete for limited
transportation resources. Therefore, the next section focuses on analyzing how to schedule capacity
resources to meet the processing requirements of each machine and to produce a specified number of
products in the shortest time.

4. Simulation Results Analysis

4.1. Comparative Analysis of Two AGV Resource Pool Strategies

4.1.1. Analysis of Simulation Results Based on Cross-Regional Shared Resource Pools

As shown in Table 10, for the simulation result under the cross-regional shared resource pool,
according to the number of AGVs in four regions, the number was in the form of “A1-B1-C1-D1,”
indicating that regions A, B, C and D each had an AGV. The following is a principal analysis of the
changes in the number of AGVs between different regions at the time of completion. Under the shared
resource pool across regions, different AGV quantities affected the completion time (as shown in
Table 10).

Figure 10 shows a line chart of the maximum completion time under the different number of
AGVs, where the horizontal axis is the number of AGVs and the vertical axis is the completion time.
With the increase in the number of AGVs, the completion time gradually decreased until the number
of AGVs was 10. The completion time was stable, and adding AGVs did not significantly improve
production efficiency. The process takes time to produce was the main reason for this, and in terms
of process, the time it took to produce one batch per as was longer. Thus, increasing the number of
AGVs could significantly improve productivity when AGV resources are scarce. Nevertheless, as the
number of AGVs increased, the production efficiency of the process gradually became a new bottleneck,
and it was not possible to further improve the production efficiency by merely increasing the number
of AGVs.

From Table 10, another problem can be seen, i.e., different allocations still affected the completion
time at the same AGV. The following are examples of processes with six and nine AGVs, and the effect
of various AGV allocation schemes on the completion time is analyzed. In the programs mentioned
above, the total number of AGVs for a total of 10 distribution programs was six, the total number of
AGVs in 16 programs was nine, and Figure 11 shows the completion time for each application with a
whole a production time of 6 h. The largest allocation of completion time was that of “A1-B1-C1-D3;”
the smallest was that of “A2-B2-C1-D1,” which showed that under the cross-regional shared resource
pool, region A and C could connect, B and D could be combined, and A and B were connected. Under
“A2-B2-C1-D1,” it could be understood that region A and C had three AGVs, and B and D had three
AGVs; the allocation resources was more uniform than the number of AGVs in region A, except in
“A1-B1-C1-D3.” The completion time difference between the remaining programs was not significant
when the number of AGVs in region A was 2; there was a clear downward trend between the three
schemes, where “A2-B1-C1-D2” was higher than “A2-B1-C2-D1,” andA2-B2-C1-D1” was the smallest.
The difference between “A2-B1-C2-D1” and “A2-B2-C1-D1” was that area D scheduling took too
long, resulting in the consumption of too much time on empty-load operations, while A2-B1-C2-D1
tilted resources to the raw material area, i.e., for cotton and polyester production and processing.
This indicated that in the current production environment, raw material production time accounted
for the entire production time, which was longer and needed to tilt towards more capacity resources.
“A2-B2-C1-D1” had the lowest completion time because of its uniform distribution of resources, which
was flexible to dispatch.
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Table 10. Shared resource pool simulation results across regions.

Number of AGV
in Regions

Complete
Working Hours

Serial
Number

Complete
Working Hours

Serial
Number

Complete
Working Hours

A1-B1-C1-D1 11:31:22 A2-B1-C1-D1 9:22:47 A3-B1-C1-D1 8:19:21
A1-B1-C1-D2 10:32:43 A2-B1-C1-D2 8:50:37 A3-B1-C1-D2 7:58:13
A1-B1-C1-D3 9:25:48 A2-B1-C1-D3 7:40:32 A3-B1-C1-D3 7:02:43
A1-B1-C2-D1 10:01:01 A2-B1-C2-D1 8:14:34 A3-B1-C2-D1 7:00:07
A1-B1-C2-D2 8:35:47 A2-B1-C2-D2 7:48:03 A3-B1-C2-D2 7:20:05
A1-B1-C2-D3 7:37:24 A2-B1-C2-D3 7:01:26 A3-B1-C2-D3 6:39:55
A1-B1-C3-D1 8:43:39 A2-B1-C3-D1 7:39:03 A3-B1-C3-D1 6:29:23
A1-B1-C3-D2 8:19:02 A2-B1-C3-D2 6:54:04 A3-B1-C3-D2 6:06:10
A1-B1-C3-D3 6:58:07 A2-B1-C3-D3 6:15:16 A3-B1-C3-D3 5:53:56
A1-B2-C1-D1 8:43:14 A2-B2-C1-D1 7:47:08 A3-B2-C1-D1 7:24:25
A1-B2-C1-D2 8:37:37 A2-B2-C1-D2 8:24:59 A3-B2-C1-D2 7:43:04
A1-B2-C1-D3 7:39:17 A2-B2-C1-D3 7:17:48 A3-B2-C1-D3 6:30:45
A1-B2-C2-D1 8:39:55 A2-B2-C2-D1 7:36:28 A3-B2-C2-D1 7:02:18
A1-B2-C2-D2 8:27:33 A2-B2-C2-D2 7:00:09 A3-B2-C2-D2 6:18:14
A1-B2-C2-D3 7:18:25 A2-B2-C2-D3 6:31:08 A3-B2-C2-D3 5:43:51
A1-B2-C3-D1 7:18:21 A2-B2-C3-D1 6:12:34 A3-B2-C3-D1 5:52:14
A1-B2-C3-D2 7:02:31 A2-B2-C3-D2 6:16:59 A3-B2-C3-D2 6:01:39
A1-B2-C3-D3 6:22:01 A2-B2-C3-D3 5:55:06 A3-B2-C3-D3 5:33:38
A1-B3-C1-D1 8:11:15 A2-B3-C1-D1 7:08:49 A3-B3-C1-D1 6:55:14
A1-B3-C1-D2 7:55:27 A2-B3-C1-D2 7:02:44 A3-B3-C1-D2 6:17:15
A1-B3-C1-D3 6:47:07 A2-B3-C1-D3 6:11:53 A3-B3-C1-D3 5:32:05
A1-B3-C2-D1 7:22:26 A2-B3-C2-D1 7:28:21 A3-B3-C2-D1 6:08:00
A1-B3-C2-D2 6:52:03 A2-B3-C2-D2 7:05:10 A3-B3-C2-D2 5:49:54
A1-B3-C2-D3 6:13:16 A2-B3-C2-D3 6:05:57 A3-B3-C2-D3 5:42:54
A1-B3-C3-D1 6:31:31 A2-B3-C3-D1 6:02:41 A3-B3-C3-D1 6:02:54
A1-B3-C3-D2 6:37:05 A2-B3-C3-D2 6:06:14 A3-B3-C3-D2 5:36:09
A1-B3-C3-D3 5:51:02 A2-B3-C3-D3 5:39:36 A3-B3-C3-D3 5:25:27
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Figure 12 presents a comparison of the completion times under nine AGVs, with “A2-B3-C2-D2”
having the longest completion time in the 16 distribution schemes, while “A3-B2-C3-D1” had the
shortest completion time. In the 16 scenarios, the completion time varied little, with it being the same
when 6 AGVs were present and the raw material stage required more resource tilt.

Electronics 2020, 9, x FOR PEER REVIEW 21 of 34 

 

 

 

Figure 12. Completion time under 9 AGVs 

In addition to the maximum completion time, the utilization rate of AGVs needed to be 
analyzed. Figure 13 is the AGV utilization rate under “A3-B3-C3-D3.” From the Figure, we can see 
that the utilization rate of an AGV was not high. The time of AGV empty operation in regions A and 
B was relatively high, and so the utilization rate was relatively high as well; meanwhile, the time of 
AGV empty operation of areas C and D was low. The overall utilization rate of each AGV was only 
10%–20%. In comparison, the utilization rate of AGV of region D was less than 10%, indicating that 
the number of AGVs was over-allocated and resources overflowed. 

  

5:45:36
6:00:00
6:14:24
6:28:48
6:43:12
6:57:36
7:12:00

A
1-

B
2-

C
3-

D
3

A
1-

B
3-

C
2-

D
3

A
1-

B
3-

C
3-

D
2

A
2-

B
1-

C
3-

D
3

A
2-

B
2-

C
2-

D
3

A
2-

B
2-

C
3-

D
2

A
2-

B
3-

C
1-

D
3

A
2-

B
3-

C
2-

D
2

A
2-

B
3-

C
3-

D
1

A
3-

B
1-

C
2-

D
3

A
3-

B
1-

C
3-

D
2

A
3-

B
2-

C
1-

D
3

A
3-

B
2-

C
2-

D
2

A
3-

B
2-

C
3-

D
1

A
3-

B
3-

C
1-

D
2

A
3-

B
3-

C
2-

D
1

CO
M

PL
ET

E 
W

OR
KI

NG
 

HO
UR

S/
HH

:M
M

:S
S

CASE NUMBER

Figure 12. Completion time under 9 AGVs

In addition to the maximum completion time, the utilization rate of AGVs needed to be analyzed.
Figure 13 is the AGV utilization rate under “A3-B3-C3-D3.” From the Figure, we can see that the
utilization rate of an AGV was not high. The time of AGV empty operation in regions A and B was
relatively high, and so the utilization rate was relatively high as well; meanwhile, the time of AGV
empty operation of areas C and D was low. The overall utilization rate of each AGV was only 10–20%.
In comparison, the utilization rate of AGV of region D was less than 10%, indicating that the number
of AGVs was over-allocated and resources overflowed.
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4.1.2. Analysis of Cross-Regional Independent Resource Pool Simulation Results

Table 11 shows the result of the simulation under a distinct pool of resources across regions.
As with the cross-regional shared resource pool policy, the effect of changes in the number of AGVs in
the different areas on the time of completion was analyzed.
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Table 11. Cross-regional independent resource pool simulation results.

Number of AGV
in Regions

Complete
Working Hours

Serial
Number

Complete
Working Hours

Serial
Number

Complete
Working Hours

A1-B1-C1-D1 6:03:47 A2-B1-C1-D1 4:45:26 A3-B1-C1-D1 4:46:56
A1-B1-C1-D2 4:43:11 A2-B1-C1-D2 3:26:48 A3-B1-C1-D2 3:52:52
A1-B1-C1-D3 4:39:46 A2-B1-C1-D3 3:07:50 A3-B1-C1-D3 3:33:54
A1-B1-C2-D1 4:51:03 A2-B1-C2-D1 4:26:58 A3-B1-C2-D1 4:34:54
A1-B1-C2-D2 4:43:11 A2-B1-C2-D2 3:27:01 A3-B1-C2-D2 3:48:21
A1-B1-C2-D3 4:39:46 A2-B1-C2-D3 3:03:25 A3-B1-C2-D3 3:32:55
A1-B1-C3-D1 5:16:27 A2-B1-C3-D1 4:15:58 A3-B1-C3-D1 4:48:31
A1-B1-C3-D2 4:49:32 A2-B1-C3-D2 3:24:12 A3-B1-C3-D2 3:51:17
A1-B1-C3-D3 4:39:46 A2-B1-C3-D3 3:02:48 A3-B1-C3-D3 3:32:15
A1-B2-C1-D1 5:09:27 A2-B2-C1-D1 4:38:58 A3-B2-C1-D1 4:32:39
A1-B2-C1-D2 5:01:03 A2-B2-C1-D2 3:26:47 A3-B2-C1-D2 3:17:17
A1-B2-C1-D3 4:56:37 A2-B2-C1-D3 3:02:40 A3-B2-C1-D3 2:54:20
A1-B2-C2-D1 5:17:42 A2-B2-C2-D1 4:38:56 A3-B2-C2-D1 4:32:35
A1-B2-C2-D2 5:02:16 A2-B2-C2-D2 3:26:44 A3-B2-C2-D2 3:15:14
A1-B2-C2-D3 4:56:37 A2-B2-C2-D3 3:02:40 A3-B2-C2-D3 2:49:25
A1-B2-C3-D1 5:17:42 A2-B2-C3-D1 4:25:16 A3-B2-C3-D1 4:07:00
A1-B2-C3-D2 5:02:16 A2-B2-C3-D2 3:23:19 A3-B2-C3-D2 3:08:05
A1-B2-C3-D3 4:56:37 A2-B2-C3-D3 3:02:40 A3-B2-C3-D3 2:48:18
A1-B3-C1-D1 5:12:50 A2-B3-C1-D1 4:39:08 A3-B3-C1-D1 4:23:51
A1-B3-C1-D2 5:01:03 A2-B3-C1-D2 3:26:47 A3-B3-C1-D2 3:17:17
A1-B3-C1-D3 4:56:37 A2-B3-C1-D3 3:02:40 A3-B3-C1-D3 2:54:20
A1-B3-C2-D1 5:17:42 A2-B3-C2-D1 4:38:56 A3-B3-C2-D1 4:23:35
A1-B3-C2-D2 5:02:16 A2-B3-C2-D2 3:26:44 A3-B3-C2-D2 3:12:59
A1-B3-C2-D3 4:56:37 A2-B3-C2-D3 3:02:40 A3-B3-C2-D3 2:49:25
A1-B3-C3-D1 5:17:42 A2-B3-C3-D1 4:20:08 A3-B3-C3-D1 4:07:00
A1-B3-C3-D2 5:02:16 A2-B3-C3-D2 3:22:02 A3-B3-C3-D2 3:08:05
A1-B3-C3-D3 4:56:37 A2-B3-C3-D3 3:02:40 A3-B3-C3-D3 2:48:18

Figure 14 shows a line chart of the maximum completion time under different AGV numbers
under the cross-region independent resource pool strategy. The horizontal axis is the number of AGVs,
and the vertical axis is the completion time. When the number of AGVs increased, the completion
time gradually decreased. Until the number of AGVs was 10, the completion time tended to be stable,
as in the cross-region shared resource pool. The reason for this is that the completion time under
the cross-region independent resource pool was much shorter than the completion time under the
cross-region shared resource pool. When ten units were configured with AGVs, the completion time
was only about 2 h and 50 min.
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Increasing the number of AGVs did not significantly improve production efficiency for the same
reasons as sharing resource pools across the regions. Moreover, the minimum completion time of the same
ratio under the two resource allocation strategies was compared, and it was found that the cross-region
shared resource pool required close to 5 h, and the cross-region independent resource pool had a minimum
completion time of 2 h and 48 min, which was far less than the cross-region shared resource pool.
The five hours required for the cross-region shared resource pool indicated that in the current simulation
configuration, independent resource pools across regions could effectively improve production efficiency.

As well as sharing resource pools across regions, we analyzed the simulation results of the same
number of AGVs under different configuration schemes. Here, for example, the number of AGVs was
7 and 10, and the effects of various AGV allocation schemes on the completion time were analyzed.
In the above scenarios, the total number of AGVs for the 16 allocation programs was seven. There were
10 scenarios with a complete a number of AGVs of 10. Figure 15 shows the completion time for each
program with total damage of 7 h. The largest allocation of completion time was for “A1-B3-C2-D1,”
and the smallest was for “A2-B1-C1-D3.”
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Figure 15. Completion time under 7 AGVs.

Figure 16 shows a comparison of the completion times under 10 AGVs, for which A1-B3-C3-D3
had the longest completion time in the 10 distribution schemes, whereas “A3-B2-C2-D3” had the least
completion time. In all ten scenarios, the completion time varied a little, same as each scenario with
the 7 AGVs, and the raw material stage required more resource tilt.
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Unlike shared resource pools across regions, the overall utilization of AGVs was higher because
AGV cross-regional scheduling was not allowed under the cross-regional independent resource pool
policy. Figure 17 presents a comparative analysis of AGV utilization under a separate resource pool
across regions, with regions A and C corresponding to cotton and polyester raw material areas,
respectively, while AGVs were waiting most of the time in regions B and D, indicating that AGVs
were over-resourced.
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Based on the above comparison analysis (which originates in practice), due to the high load
caused by cross-regional scheduling, the cross-regional independent resource pool was superior to the
cross-regional shared resource pool in an actual situation, whether in the case of an AGV resource
shortage or when the AGV resources are sufficient. With other unchanged parameters, the distance
between regions will affect the time of cross-region scheduling. When the distance is more significant,
cross-regional scheduling increases the load rate, which affects the completion time. When the distance
is small, cross-regional scheduling can effectively improve the utilization of AGV resources and shorten
completion time.

4.2. Comprehensive Analysis of Multi-AGV Scheduling in the Workshop

To further analyze the characteristics of the multi-AGV scheduling problem in the drawing shop,
the number of required products was increased to analyze whether the AGV scheduling resources
would still tilt toward the raw material area.

4.2.1. Increase the Number of Products

Figure 18 shows the scheduling time when the number of two products was 100, and Figure 19
shows scheduling time when the number of two products was 200. The results of the analysis presented
as complete working hours and the number of experiments according to their confidence interval. It can
be observed that between Experiment 1 and Experiment 3, the average value of the completion time
significantly declined, and it showed a periodic law. There was a regularity between the completion
time and the AGV configuration. The reason for this is that the cycle amount when increasing the
number of AGVs was 3, which means that increasing the number of AGVs could significantly improve
production efficiency and shorten completion time. Additionally, this proved that when the number
of products doubled, the AGV resource was insufficient, and the completion time nearly doubled,
as well. However, when the AGV resources were relatively sufficient, the completion time did not
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increase proportionally, indicating that the production line was not in a balanced state and the number
of products produced was very small. Not all the machines were working for a long time during
production, and there was a substantial warm-up period. The effect of increasing the number of
AGVs on the completion time was not very obvious, but when the number of products increased,
the warm-up period gradually decreased during the process. In conclusion, increasing the number of
AGVs could significantly affect completion time until the AGV resources are saturated.
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4.2.2. AGV Quantity Decision Analysis

The factors that need to be considered in the decision of the number of AGVs are the completion
time and the utilization rate of each AGV. Here, we analyzed a set of data regarding the unit time
contribution of each AGV, i.e., the increase in the contribution of an AGV to the completion time.
Under the cross-region shared resource pool strategy, increasing the number of AGVs could effectively
shorten the completion time, but under different circumstances, increasing the reduction rate of AGVs
had different performances. Figure 20 shows that when the number of AGVs increased from four to
five, the impact on the completion time was massive, and the completion time reduction rate was
close to 25%, before it gradually flattened. After the number of AGVs reached nine, the impact was
small—completion time stabilized. Figure 21 shows the impact of the increase in AGV numbers on the
completion time under the strategy of independent resource pools across regions. The completion
time had a more significant impact at six AGVs, and when eight AGVs were used, the completion
time stabilized.
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Figure 21. Impact of AGV quantity on completion time under a cross-regional independent
resource pool.

According to the number of AGVs based on the completion time and the above analysis of
increasing the number of products, we could estimate that when the number of products was small,
a relatively small number of AGVs could be selected to increase the utilization of AGVs. When
the number of products was significant, we needed to increase the number of AGVs to shorten the
completion time.
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4.2.3. Optimization Analysis

Figure 22 shows multiple AGV scheduling scenarios by the Gantt chart using manual scheduling.
By comparing the completion time, it could be found that, whether it was a cross-region shared resource
pool or a cross-region independent resource pool, the completion time was less than the completion
time of the manual scheduling job, which illustrates the effectiveness of the method. The introduction
of the AGV transport of semi-finished products in a drawing shop can reduce the labor intensity of
workers, improve transport efficiency, and shorten completion time.
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5. Conclusions and Future Work

In this paper, we investigated the actual production process parameters and characteristics of
highly distributed manufacturing system like textile ring-spinning combing section. This work was
inspired to resolve the confronting problems of scheduling, real-time can distribution, and path
planning in the continuous production of spinning by benefitting the mixed flow-shop predictive
modelling. To effectively reduce the makespans and total completion time, it was vital to define
the properties and features of the workshop, equipment, products, and AGVs. Based on the two
AGVs scheduling strategies, a novel approach of handling both cross-regional shared resource and
cross-regional independent resource pools was analyzed. For the dissimilar cotton and polyester
draw-out processing, we established an overall mathematical model of multi-AGV scheduling to solve
the problems of can distributions and to prevent conflict and deadlock by assigning different tasks:
AGV assignment, AGV sorting, and task source. Moreover, for the intended categories of scheduling
tasks, an AGV transportation route strategy was also developed for mass production in a spinning
CPPS. The extensive computational experiments were performed using ‘Siemens Tecnomatix Plant
Simulation software,’ according to the production of a certain number of products and two scheduling
strategies. The simulation results analysis of 81 groups of optimization targets with completion time
showed a specific range of AGVs. As the number of AGVs increased, the completion time decreased.
The number of AGVs reached a certain threshold, and the completion time stabilized. On this basis,
the utilization rate and the completion time of the products were also analyzed. When the number of
AGVs rose to a certain extent, the contribution of increasing AGV numbers to the completion time
decreased sharply, thus reducing the utilization rate of AGVs. By comparing the results of 81 sets of
simulations under the two strategies, it was found that the cross-regional independent resource pool
strategy was better than the cross-regional shared resource pool strategy under the actual scenario.
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These results demonstrated the adequacy of the methods we used and proved that flow-shop predictive
modeling for when multi-AGV resources are scarce also produces, for each AGV, a control mode and,
if necessary, a preventive maintenance plan. Based on the comparison with our scheduling approach,
it was found that the results of multi-AGV scheduling have distinct advantages that can significantly
shorten completion time.

In the future, it will be attractive to examine multi-AGV scheduling by applying different
scheduling algorithms in order to investigate the potential mechanisms responsible for transportation
task set scheduling decisions using a genetic algorithm.
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