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Abstract: Ophthalmology is a core medical field that is of interest to many. Retinal examination is a
commonly performed diagnostic procedure that can be used to inspect the interior of the eye and
screen for any pathological symptoms. Although various types of eye examinations exist, there are
many cases where it is difficult to identify the retinal condition of the patient accurately because
the test image resolution is very low because of the utilization of simple methods. In this paper,
we propose an image synthetic approach that reconstructs the vessel image based on past retinal
image data using the multilayer perceptron concept with artificial neural networks. The approach
proposed in this study can convert vessel images to vessel-centered images with clearer identification,
even for low-resolution retinal images. To verify the proposed approach, we determined whether
high-resolution vessel images could be extracted from low-resolution images through a statistical
analysis using high- and low-resolution images extracted from the same patient.

Keywords: retinal image; image synthesis; artificial intelligence; multi-layer perceptron; neural
network; healthcare

1. Introduction

As the population ages, ophthalmology has become a core medical field. Ophthalmology not
only treats severe diseases such as glaucoma but also non-disease issues such as vision correction.
Minor diseases such as conjunctivitis can be diagnosed visually or through simple examinations;
however, severe diseases that may lead to vision loss cannot be diagnosed accurately without a detailed
examination performed by a physician.

An example of an ophthalmology examination is the retinal or fundus examination, in which
a physician checks the interior of the eye through the pupil, including the vitreous, retina, retinal
blood vessels, optic disc, and macula. The physician can then make a diagnosis, such as glaucoma and
diabetic retinopathy, based on the examination results and their own expert knowledge. In addition to
eye diseases, Alzheimer’s disease can also be diagnosed through a retinal examination [1–4].

Several techniques have been developed in the field of ophthalmology for performing retinal
examinations. Ophthalmoscopy is a retinal examination method that is widely used today. Typical
ophthalmoscopy techniques include direct ophthalmoscopy, indirect ophthalmoscopy, and slit lamp
retinal examination. Direct ophthalmoscopy is an examination method that requires the use of a direct
ophthalmoscope, which is portable, low-cost, and relatively easy to perform. It is capable of 15 times
the magnification of the naked eye [5]. When using the indirect ophthalmoscopy method, the physician
uses a hand-held lens and headband with a light attached. Indirect ophthalmoscopy requires more
expensive equipment and has a lower magnification. However, it provides a wider viewing angle than
that of direct ophthalmoscopy and offers a better view of the eye’s interior when the image is blurry
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owing to cataracts [5]. Direct and indirect ophthalmoscopy lessen spatial limitations and are relatively
simple methods, but the image quality (resolution) is poor, possibly providing inaccurate diagnoses.

Unlike simple methods such as direct and indirect ophthalmoscopy, the slit light retinal examination
uses several auxiliary lenses and slit lamps to examine the interior of the eye. Compared to the
aforementioned retinal examination methods, it has spatial limitations and most examinations are
performed in ophthalmology examining rooms. It has a very high resolution and is effective for
detailed retinal examinations [6]. If a physician requires good-quality retinal images, practical issues
can arise owing to the required examination equipment (and associated cost and effort for the physician
to be trained to use new equipment), in addition to the aforementioned spatial limitations.

To perform retinal diagnostics and automated analysis, it is necessary to examine and assess
the blood vessels in the retinal image. If the image quality is low, the patient’s retina state cannot
be adequately understood. For example, in the case of diabetic retinopathy, one of the criteria for
diagnosing the progress of vessel occlusion is angiogenesis; however, very fine angiogenesis features
cannot be verified if the image quality is low. When the output image resolution of a retinal examination
is poor, considerable money may be spent on readily requesting images for reconfirmation. Despite
this burden, if the patient does not readily receive high-quality images, the value of the retinal exam
may be negligible, and the examination results questionable.

The software-based hybrid method has the advantages of both the former and latter methods;
however, it overcomes the problems of the two methods above, i.e., low-resolution images,
high equipment costs, and spatial limitations. An example of a mechanism that resolves these
problems is the transmission of low-resolution images obtained by direct ophthalmoscopy to a server,
using the server to convert them to high-resolution images, and then sending them back to the physician.

A multi-layer perceptron (MLP) is a structure that sequentially combines multiple layers of
perceptrons. A perceptron refers to a single node in a neural network. These nodes receive values that
quantify the characteristics of each data item and multiply these values by the weights assigned to
them to produce a single value. Next, the created values are evaluated according to threshold values
obtained from the activation function to determine the output value. In a single-layer perceptron,
this output value is the prediction value. In a multi-layer perceptron, it is used as the input for another
perceptron layer. An MLP is also called a feed-forward deep neural network (FFDNN). Layers that are
close to the input or output are said to be at the bottom or top, respectively. The signal continually
moves from the bottom to the top. In an MLP, there are connections between perceptrons on adjacent
layers; however, there are no connections between perceptrons on the same layer. Moreover, there is
no feedback for connections to layers that have already passed through once. Layers other than the
top- and bottom-most layers are said to be hidden and are called hidden layers [7–9].

This paper proposes a synthetic approach that reconstructs the vessel images based on past retinal
image data using an MLP in an artificial neural network to resolve the problems and implement the
methods discussed above. Even when the retina test results have a low-resolution, this approach
extracts vessel images that are equivalent to high-resolution results. The basic idea of the proposed
method is to find images that are the most similar to the synthetic images among existing retina test
result datasets. An MLP is then used to segment the two vessel images and combine the results.

To verify the proposed approach, high- and low-resolution images were obtained from the same
patient. The obtained data set was used to perform a statistical analysis on the low- and high-resolution
vessel images. The analysis showed that the results obtained by the proposed approach were not
statistically different from the high-resolution images, and these images were accurately synthesized.
The time taken to complete the conversion from the input images was measured, and we discuss
whether this mechanism can be used for real-time data conversion.

The contributions of this study are as follows.

• We propose a retinal vessel image synthesis technique that intelligently synthesizes original and
similar images.
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• This technique is different from those of previous studies because a mask function is used that
selects only the good pixels from the original and similar images.

• A further difference is that gray level co-occurrence matrix (GLCM) Haralick textures are used to
retrieve the images that are most similar to the input retinal images.

• A statistical analysis is used to clearly demonstrate how different the original images are from the
images created in this study.

• By synthesizing high-quality retinal images from low-quality ones, the accuracy of retinal disease
diagnoses is improved, and the cost of obtaining high-quality retinal images using existing
methods is reduced.

The rest of this study is organized as follows. Section 2 discusses related work. Section 3 describes
background knowledge. Section 4 describes the proposed method in detail. Section 5 evaluates the
proposed method. Section 6 presents a discussion regarding this study. Finally, Section 7 presents this
study’s conclusions and future research.

2. Related Work

2.1. Challenges for Synthesized Retinal Images

Retinal images are used to monitor abnormal symptoms or diseases associated with eyes and are
widely utilized for a diagnostic purpose, as they often contain much disease-related information [10].
Since diagnosing the symptoms associated with retina is not an easy task for ophthalmologists,
those images are highly significant as base data for making an accurate diagnosis [11,12]. Moreover,
a number of automatic retina examination models such as ‘retinal artery and vein classification’ [13] or
‘glaucoma detection’ [14] using the retinal images have been developed. Recently, DeepMind (Google)
introduced a new model that can diagnose 50-plus eye diseases including three typical ones like
glaucoma, diabetic retinopathy, and macular degeneration by using a deep learning architecture [15].
These models are utilizing a retinal-image database containing many annotations and the accuracy
increases when more data is accumulated.

Retinal images are usually captured with an optical coherence tomography (OCT) scanner but since
their quality is often unsatisfactory due to environmental conditions such as an uneven illumination,
refraction/reflection or incorrect focus/blurring resulting from corneal clouding, or cataract or vitreous
hemorrhage showing low contrast, it is quite difficult to obtain a large enough number of diagnostically
valid images [16]. Such low-quality images make it hard for the ophthalmologists to make a clear
diagnosis or reduce the performance of automatic retina examination models. Thus, improvement
of the visibility of the anatomical structure through image synthesis along with the acquisition of a
variety of retinal image patterns have been required [16–22].

Further, there was a case of conducting a Kaggle competition in 2015 to comprehensively and
automatically identify diabetic retinopathy in a retinal image [23], and as a result, all the top-ranking
winners had adopted a learning-based method relying on a large training set. This served as a
momentum to reconfirm that a large amount of clear synthesized image data and diversely patterned
retinal image data are essential for medical examinations.

Research on the improvement and/or synthesis of retinal images are continuing even today.
Some of the image-processing methods are being used to improve the contrast or luminosity for the
former, whereas a deep-learning method such as a generative adversarial network (GAN) is being
adopted for the latter.

Xiong et al. [24] proposed an enhancement model based on an image formation model of scattering
which consisted of a Mahalanobis distance discrimination method [17] and a gray-scale global spatial
entropy-based contrast improvement technique. The authors claimed that it was the first technique
that could solve the problems associated with illumination, contrast, and color preservation in a retinal
image simultaneously.
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Mitra et al. [18] pointed out that the cause of a low-quality retinal image was the non-uniform
illumination resulting from a cataract and proposed a retinal image improvement method for its
diagnosis, which was to reduce blurring and increase the intensity by applying the histogram intensity
equalization to a modified hue saturation intensity (HSI) color space; at the same time, the colors were
compensated with Min/Max color correction.

Zhou et al. [19] used a luminance gain matrix obtained by the gamma correction performed for
the individual channels in an HSV color space for the control of the luminosity of retinal images.
In addition, it was possible to improve contrast without damaging the naturalness of the image by
proposing a contrast-limited adaptive histogram equalization (CLAHE) technique. The proposed
method showed an improvement in quantitative numerical values in an experiment using a 961
low-quality retinal image data set.

Gupta et al. [20,21] improved the luminosity and contrast of the images by proposing an adaptive
gamma correction (AGC) method [20] along with a quantile-based histogram equalization method [21],
which were tested for the Messidor database [25]. The result showed that they were useful in
the diagnosis by the ophthalmologists or achieved a sufficient level of improvement to be used as
a preprocessing step for the automated retinal analysis systems. Meanwhile, Cao improved the
contrast in the retinal structure by using a low-pass filter (LPF) and the α-rooting in an attempt
to make the images clearer, and at the same time, the gray scale [22] was used to restore colors.
Additionally, the performance of the proposed method was compared with the four aforementioned
methods [17–19,21] and the result statistically proved that the method was relatively superior in
terms of visual and quantitative evaluations (i.e., contrast enhancement measurement, color difference,
and overall quality).

Zhao et al. [26] performed a research on synthesizing the retinal images after being inspired by the
development of GAN which has come into the spotlight recently and proposed the original GAN-based
synthesis model Tub-sGAN. The retinal images created from Tub-sGAN were quite similar to a visual
shape of a training image so that they performed well for a small-scale training set. The authors also
mentioned that the synthesized images can be used as additional data. Tub-sGAN inspired many
research works associated with image synthesis.

Niu et al. [27] pointed out that even though much medical evidence was needed to support
the reliability of the prediction made through machine learning, they were not sufficient in reality,
and thereby, a retinal image synthesis model based on Koch’s postulates and a convolutional neural
network was proposed. This model received excellent scores in the three performance evaluations
(i.e., the realness of fundus/lesion images and severity of diabetic retinopathy) conducted by five
certified ophthalmic professionals.

Zhou et al. [16] also emphasized the difficulty in collecting training data for the optimization
of an f-level diabetic retinopathy (DR) grading model and proposed a DR-GAN to synthesize
high-resolution fundus images using the EyePACS dataset of Kaggle [23]. The proposed DR-GAN
model exhibits a superior performance compared to the Tub-sGan [26] model in the independent
evaluations (i.e., qualitative and quantitative evaluations) conducted for the synthesized images by
three ophthalmologists. An additional test was conducted to determine whether the increased dataset
due to synthesized images had mitigated the distribution at each level and gave a positive effect on the
training model. As a result, it was possible to confirm that the grading accuracy had been increased a
little, as much as 1.75%.

2.2. Deep Learning for Image Processing

Most of the newest retina image synthesis studies are based on artificial neural networks [28–46].
The generative adversarial networks (GANs) model is a learning model that improves learning accuracy
by using two models—a discriminative model with supervised learning and a generative model
with unsupervised learning—and having them compete with each other. In studies that use GANs,
mapping of new retina images is learned from binary images that depict vessel trees by using two
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vessel segmentation methods to couple actual eye images with each vessel tree. After this, the GANs
model is used to perform a synthesis. In a quantitative quality analysis of synthetic retina images
that were obtained using this technique, it was found that the generated images maintained a high
percentage in the quality of the actual image data set. Another synthesis model called an auto-encoder
aims to improve learning accuracy by reducing the dimensions of the data. The reduction of the data’s
dimensions is called encoding. The auto encoder is a model that finds the most efficient encoding for
the input data. A study that used an auto-encoder resolved retina color image synthesis problems,
and it suggested that a new data point between two retina images can be interpolated smoothly.
The visual and quantitative results showed that the synthesized images were considerably different
from the training set images, but they were anatomically consistent and had reasonable visual quality.
However, because there is merely a concept of data generation in the auto-encoder, it is difficult for the
auto-encoder to generate better quality data than the GANs model. The GANs model is not trained
because it is difficult for generators to create significant data at the beginning of training [28].

A convolutional neural network (CNN) is an artificial neural network model that imitates the
structure of the human optic nerve. Feature maps are extracted from multiple convolutional layers,
and their dimensions are reduced by subsampling to simplify the image. Then, the processing results
are connected to the final layer via the fully connected layer to classify images. Studies that used
CNN [42–46] addressed vessel segmentation as a boundary detection problem and used CNNs to
generate vessel maps. Vessel maps separate vessels from the background in areas with insufficient
contrast and are useful for pathological areas in fundus images. Methods that used CNN achieved
performances comparable to the recent studies in the DRIVE and STARE data sets. In a study [44]
that employed a CNN and the Random Forest technique together, the proposed method proved that
features can be automatically learned and patterns can be predicted in raw images by combining the
advantages of feature learning and traditional classifiers using the aforementioned DRIVE and STARE
data sets. There was also a study [46] that aimed to increase the efficiency of CNN medical image
segmentation, as it is the deep learning method that is most compatible with image processing.

Studies that do not use artificial neural networks [47–50] use computer vision techniques. Marrugo
et al. [47] proposed an approach based on multi-channel blind deconvolution. This approach performs
pre-processing and estimates deconvolution to detect structural changes. In the results of this study,
images that were degraded by blurriness and non-uniform illumination were significantly restored to
the original retina images.

Nguyen et al. [48] proposed an effective method that automatically extracts vessels from color
retina images. The proposed method is based on the fact that line detectors can be created at various
scales by changing the length of the basic line detector. To maintain robustness and remove the
shortcomings of each individual line detector, line responses at various scales were combined linearly,
and a final segmented image was generated for each retina image. The proposed method achieved high
accuracy (measurements for evaluating accuracy in areas around the line) compared to other methods,
and it maintained comparable accuracy. Visual observations of the segmented results show that the
proposed method produced accurate segmentation in the central reflex vessel, and close vessels were
separated well. Vessel width measurements that were obtained using the divided images calculated
by the proposed method from the dataset are very accurate and close to the measurements produced
by experts.

Dias et al. [49] introduced a retina image quality assessment method that is based on hue, focus,
contrast, and illumination. The proposed method produced effective image quality assessments
by quantifying image noise and resolution sensitivity. Studies that do not employ artificial neural
networks show good performance for their experiment environments, but they can only be used with
robust data, and they are less able to handle a variety of situations compared to methods that use
artificial neural networks.

Generally, existing studies have focused on restoring image resolution. This study generates clear
images by synthesizing parts of high-resolution images.
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3. Background

3.1. Gray Level Co-Occurrence Matrix

A gray level co-occurrence matrix (GLCM) [51–54], also known as a gray level spatial dependence
matrix, is the best-known technique for analyzing image texture. GLCM is a matrix that counts how
often different combinations of pixel brightness values (gray levels) occur in images, and it extracts a
second-order statistical texture.

Figure 1 shows an example of a GLCM. Assuming that a 4 × 4 image is the gray level information
of the original image. If there are 4 known stages as stages 0–3, the GLCM is created as a 4 × 4 matrix.
The GLCM in the Figure 1 was created by grouping the values of the original image horizontally in
twos. For example, the original image’s (4 × 4 image in Figure 1) (2(row), 2(column)) and (2(row),
3(column)) values are 2 and 1, respectively, and the combination of (2, 1) is just one case in the 4 × 4
image. Thus, this is converted to GLCM as 1 value in (2, 1). The value of the GLCM (0, 0) is 2, and this
is because there are 2 pairs of (0, 0) in the original image. One characteristic of the GLCM is that the
sum of the GLCM found by the same method is always the same. The sum of the values of the GLCM
in the figure is 12, as there is a total of 12 pairs in the original image. Therefore, even if the original
image’s values change, the sum of the GLCM’s values is fixed as the GLCM is created by grouping
pairs. The figure’s normalized GLCM is normalized by dividing each GLCM value by 12, which is
the sum.
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Haralick texture [55–58] is a representative value that is expressed as a single real number like
an average or a determinant obtained based on the GLCM. The GLCM Haralick texture was created
from the need to use flat images for extracting features from three-dimensional elements that cannot be
touched or directly extracted in part. As such, it is effective for obtaining features from retinas that
cannot be directly touched or partially extracted.

3.2. Retinal Image

Retina images are digital images of the interior of the eye, specifically the rear portion.
Retina images are required to show the retina, optic disk, and blood vessels, as shown in Figure 2.
Figure 2 shows a retina image from the digital retinal images for vessel extraction (DRIVE) [59] dataset,
which is often used in retina-related studies.

Many studies have endeavored to automate the extraction of vessels from retina images and to
improve the efficiency and accuracy of retinal diagnoses [43]. If a retinal image’s quality is low, the state
of the patient’s retina cannot be sufficiently reflected. For example, in the case of diabetic retinopathy,
which is the world’s most common diabetic eye disease and a major cause of blindness, one of the
criteria for diagnosing the progress of the disease is angiogenesis, in which tiny new vessels grow
due to vessel occlusion. If the image quality is low, very fine angiogenesis cannot be seen. Figure 3
shows angiogenesis that has occurred due to diabetic retinopathy. When the resolution of a retinal
examination’s output images is poor, considerable money may be spent on readily requesting images
for reconfirmation. When a patient with expert knowledge of the eyes has doubts about the physician’s
diagnosis regarding their retina images, clear retina images can act as a basis for a re-diagnosis.
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They may also be helpful in future studies for automating retina image-based diagnostics. However,
if the patient does not readily receive high-quality images, the value of the retinal examination may be
negligible, and the examination results may be questionable.

The techniques that are often used for automating retinal vessel segmentation are based on
machine learning [28–46]. This is because replacing the lost vessel portion of an original retina image
with another person’s vessels lacks ethical credibility. On the other hand, machine learning is credible
because it learns patterns in which people’s vessels are spread. The focus of most recent studies
is on deep learning-based supervised learning, and this is the same for retinal vessel segmentation
automation. To learn vessel images, masks must be prepared in advance for the vessel portion. Figure 4
shows the manually prepared vessel portion of Figure 2. Moreover, the areas of the vessels must be
specified when the dataset’s retina images are in a different environment (minor changes in position
that occur when the image is captured). Figure 5 shows the position mask for Figure 2.
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4. Method

To perform an accurate retinal diagnosis, it is necessary to clearly see the retinal vessels in the
images obtained by a retinal examination. Figure 6 illustrates the overall approach. Let us assume
that low-quality retinal images (A) have been obtained from a simple retinal examination, such as
direct ophthalmoscopy. Low-quality images usually contain blurry portions with clear portions in
several parts. Therefore, vessel segmentation is performed only in the clear portions. The low-quality
image (A) is used to retrieve the most similar image (B) in the dataset that includes high-quality
(clear) vessels, and vessel segmentation is also performed on the retrieved clear image (B). Note that
vessel segmentation should only be performed on the clear portions of B (the blurry portions of A).
Finally, the identified vessel images are combined to generate a high-resolution image for an accurate
retinal diagnosis.

Algorithm 1 shows the procedure of the proposed technique. As inputs of the algorithm, Rp is a
set of low-quality images in which the user expects to increase quality, and Rc is a set of high-quality
retinal image data collected to improve the quality of Rp. Lines 4–10 show the process of finding an
image similar to a low-quality retinal image in a data collection. Haralick similarity is used to find the
image with the highest similarity to the input low-quality retinal image. The searched similar image is
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a source of good pixels to replace bad pixels (pixels that cause deterioration in quality) of the original
image. This process is covered in detail in Section 4.1. Lines 11–12 show the process of dividing the
blood vessel from the retinal image. The blood vessel is divided based on the learned MLP using
the DRIVE dataset. This process is covered in detail in Section 4.2. Lines 13–26 show the process of
creating a synthesized image by applying a mask. A threshold is used to create a mask with the criteria
of noise to be properly removed. In our approach, the Otsu method [60–69] is applied to dynamically
select the threshold. After the mask generation is completed, a pixel value is determined for each pixel
of the mask. If the pixel value is 0, the pixel of the original image is fetched, and if 1, the pixel of the
similar image is fetched. The final synthesized results are returned as a set. This process is covered in
detail in Section 4.3.

Algorithm 1 Procedure of the proposed method

input: Rp (set of the poor retinal images), Rc (collection of the retinal images)
output: Rsynth (set of the synthesized retinal vessel images)

1 while rp in Rp do
2 maxSimVal = 0 // maximum similarity value
3 mostSimImg = null // the most similar image
4 while rc in Rc // find an image which is the most similar with rp

5 hs = Haralick similarity(rp, rc) // calculate Haralick similarity between rp and rc

6 if hs > maxSimVal then // select maximum hs
7 maxSimVal = hs
8 mostSimImg = rc

9 end if
10 end while
11 vessel_rp = segVessel(rp) // vessel segmentation for rp

12 vessel_msi = segVessel(mostSimImg) // vessel segmentation for mostSimImg
13 thrsh_rp = OtsuThreshold(vessel_rp) // dynamic thresholding for vessel_rp

14 thrsh_msi = OtsuThreshold(vessel_msi) // dynamic thresholding for vessel_msi
15 mask = bulidMask(thrsh_rp, thrsh_msi) // build the mask based on thresholding result
16 while row in rp.rowsize do // build the synthesized vessel image
17 while col in rp.colsize do

18
if mask.pixel[row][col] = 0 then // if the pixel value is 0, a pixel of original image is
imported

19 vessel_synth[row][col] = vessel_rp.pixel[row][col]
20 else // if the pixel value is 1, a pixel of similar image is imported
21 vessel_synth[row][col] = vessel_msi[row][col]
22 end if
23 end while
24 end while
25 end while
26 ReturnRsynth // return set of vessel_synth

The proposed approach consists of three stages: searching for similar images, segmenting retinal
vessels, and combining images. Each stage is described in detail in the following subsections.
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4.1. Searching for Similar Images

For the proposed technique, the degraded (low-quality) retinal images are inputted, and images
are found that are the most similar to the input images in the pre-constructed retinal image data set,
which only contains high-quality retinal images. The criteria for finding similar images are based on a
logistic regression analysis [70–73] of Haralick textures, which are the GLCM matrix calculation results.
These are used because the appearances of most retinas are similar, and therefore, finding features is
difficult, as different patient retinal images cannot be distinguished without expert ophthalmology
knowledge. GLCM-based Haralick textures are useful for determining similarities between retinal
images because they are based on pixel changes. The proposed method uses a Haralick texture logistic
regression process to find the similarity between the bad and dataset images. It then selects the image
with the maximum similarity with the next input image.

4.2. Segmenting Retinal Vessels

During this stage, vessel segmentation is performed on the low-quality (low-resolution) retina
and similar images. MLP, which uses an artificial neural network algorithm based on supervised
learning, is employed for the vessel segmentation. Since MLP is a universal approximator, all functions
can be represented if the MLP model consists of a large enough number of neurons and layers. It is
also better to find an accurate weight value for every pixel instead of extracting partial features, as the
retina images of the people having an average retina are not that different.

MLP receives the image pixels as the input. Each input is multiplied by the weight of the edges
and added. Next, the activation function is used on the results to determine how much they affect the
next node, and this is transferred to the next layer. This is summarized by Equation (1), where x is the
input image pixels, w is the weight assigned to each edge, and y is the node output.

y = ϕ(
n∑

i=0

xiwi) (ϕ is Activation Fuction) (1)
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Figure 7 shows a simple example of the MLP method used in this study. The high-resolution
fundus (HRF) [74] image dataset contains higher-quality retinal images compared to those of DRIVE,
and provides both low- and high-quality retinal images. Figure 8 shows a low-quality retinal image.
The bottom part of the image is unclear owing to white noise caused by environmental factors. Figure 9
shows a retinal vessel image created by performing vessel segmentation on Figure 8. The white
noise seen in Figure 8 also affects vessel segmentation. Figure 10 is a high-quality retinal image and
the white noise observed in Figure 8 has disappeared. The bottom part of the vessel stem is clearly
visible, which did not appear in the original image. Figure 11 shows a retinal vessel image created by
performing vessel segmentation on Figure 10. Unlike Figure 9, the bottom part of the vessel stem is
shown clearly.
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4.3. Synthesizing Images

The vessel images obtained from the low-quality (low-resolution) retinal images do not sufficiently
show the patient status. Thus, the proposed method can be used to synthesize the original low-quality
retinal image with the image that is the most similar to that of the high-resolution vessel image dataset.
The mask concept generally used in computer vision techniques is applied to synthesize the low-quality
input and similar images. The proposed method must satisfy three constraints to obtain a safe synthesis.
The constraints are as follows.

1. Removal of noise mixed with the bad image.
2. Express damaged vessels owing to low quality.
3. Does not damage remaining vessels in the bad image.

To synthesize two images, a mask is created by setting a threshold value for the gray levels of both
the original low-quality and similar images. Areas with gray levels below and above the threshold are
set to 0 and 1, respectively, to create a binary image in advance. The binary image is used as the input
for the mask equation. The pixels of the grayscale images are used to create a new synthetic image.
The mask pixel (i, j) equation is as follows:

Mi, j = T
(
Badi, j

) ∣∣∣∣ T
(
Simi, j

)
(T is Threshold Function) (2)

A pixel of the original (low-quality) image is inserted into the synthesized image when the mask
is set to 0. On the other hand, a pixel of the similar image is inserted into the synthesis image when the
mask is set to 1.

Constraint (1) assumes that a pixel (a, b) of the low-quality image is noise. If this is so, then the
mask is set to 1 by constraint (1), and the proposed method uses the similar image pixel. As the original
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image pixel (a, b) is noise, the similar image pixel (a, b) is clean. Therefore, the proposed method
satisfies constraint (1). Constraint (2) assumes that the original image pixel (a, b) is damaged and is
part of the vessel that is not shown. If the dataset sufficiently guarantees that the similar image is
similar to the low-quality image (i.e., the low-quality image is a favorable state), the similar image pixel
(a, b) is set to 1, and therefore, the mask is set to 1. As such, the proposed method satisfies constraint
(2). Constraint (3) assumes that pixel (a, b) is part of the properly depicted vessel, and that the similar
image pixel (a, b) is also part of the vessel. Therefore, the proposed method satisfies constraint (3). It is
assumed that pixel (a, b) is part of a blank area without noise in the low-quality image. Then, pixel (a,
b) of the similar image is also part of a blank area without noise. Thus, the mask is set to 0.

Once the mask-generating process for the pair consisting of an image and a similar image has
been completed, the proposed technique will be employed to create a restored (synthesized) image
based on the mask. The pixel value (i, j) value of restored image imports the pixel value (i, j) of the bad
or the similar image. If the pixel value (i, j) of the mask is 1, the restored image imports similar (good)
image value (i, j), whereas if the pixel value (i, j) of the mask is 0, the restored image imports the bad
(original) image value (i, j). That is, the restored image imports the similar image’s pixel for the main
branch or the noise, or imports the original image’s pixel for the sub-branches as the sub-branches are
excluded by threshold function. The final restored (synthesized) image is shown in Figure 12.
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5. Evaluation

To evaluate the proposed method, we collected retinal images from the DRIVE and HRF datasets
(These data sets are available as presented in Supplementary Materials). DRIVE is a retinal image
dataset that has been used in many retinal image classification and vessel segmentation studies. DRIVE
consists of 140 retinal images. Since DRIVE provides 2 manual vessel masks per retina image, the user
does not need to make blood vessel masks separately and can choose a mask that produces a more
accurate result from the two makes for each image. Thus, it is more reasonable to use DRIVE for a
training set. Using DRIVE makes this study comparable to the other studies. HRF has a higher image
quality than DRIVE in general. Although HRF does not provide a blood vessel mask, it contains both
high- and low-quality retinal images, making it useful for the evaluation of the proposed approach.
HRF consists of 18 high- and low-quality retinal image pairs and due to the characteristics of HRF that
does not provide any masks, it is more reasonable for it to be used for a testing set. As the performance
of the proposed method might change following the accuracy of the similar image representing a
patient’s retina image, it is better to have more images in the dataset. In this experiment, we assume
that the retinal images of all people with normal retinas are similar.
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It has been known that there are not any specific values that meet the number of nodes or layers
appropriate for all situations or datasets. Thus, we needed to find the appropriate numbers for both
nodes and layers and found them by constructing the MLP models having a different number of nodes
and layers manually. As a result, we realized that 3 hidden layers and 1.8–2 times nodes of the input
layer were sufficient enough.

As the noise removal performance by the proposed technique can be affected by the threshold
values used when defining a mask, we evaluated the noise removal performance of each threshold
value to achieve the optimal noise removal performance level possible. Each pixel in an input image
converted with a gray scale has 256 levels, indicating that the color would become darker as it
approaches near 0 or vice versa. For the threshold function, all the pixels having a gray-scale level
exceeding the parameter value were set to 255, whereas the opposite ones were set to 0. Figure 13
shows the masks generated from the six threshold types in the image in Figure 9. Since the area
indicated as 1 (yellow section) due to the mask applied with a threshold type would import the pixel
of a similar image, the mask that represents the area of the noise (i.e., the yellow section) more clearly
will be deemed as a good mask.

Figure 13. Comparison of synthetic vessel images by threshold types.

In Figure 13, it is possible to know in the picture that there is no significant meaning in the areas
distinguished by the mask as most their pixel values are 1 when the threshold value is 8. Although
such a phenomenon had decreased when the threshold value was increased from 16 to 32, the areas
that had been excessively identified as noise existed at the top of the image. The optimal performance
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was seen when the threshold value was 64, but it became harder to distinguish the noise areas as the
value exceeded it.

For this study, the Otsu method [60–69] was applied to select reliably threshold value that has a
great influence on the synthesized results of the proposed approach. The Otsu method provides the
criteria for setting the most natural threshold value using a statistical method. This method defines
two variances for a threshold value, T, which could be from 0 to 255.

intra class variance = ασ2
1 + βσ2

2 (3)

inter class variance = αβ(µ1 − µ2)
2 (4)

where α is the ratio of pixels darker than the T value, and β is the ratio of pixels brighter than the T
value. σ2

1 is the variance of pixels darker than the T value, and σ2
2 is the variance of pixels brighter than

the T value. µ1 is the average brightness of the pixels darker than the T value, and µ2 is the average
brightness of the pixels brighter than the T value. The Otsu method is to select T with the largest
inter-class variance when pixels are divided into two classes based on T while increasing the threshold
value T from the minimum value to the maximum value (from 0 to 255). That is, the Otsu method
minimizes (3) or maximizes (4) to dynamically find the optimal threshold T (this method tries to
maintain a small variance inside the group, and groups divided by T try to maintain a large variance).

Figure 14 shows a comparison of a vessel image extracted from the original low-quality image
with one synthesized by the proposed method. The white noise area at the bottom of the original
low-quality image is clearly not present in the synthesized vessel image. As for the bottom part of the
vessel stem that was damaged and could not be distinguished, this was created independently with
noise removal.
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Figure 15 shows a comparison of the vessel image extracted from the original high-quality
image with one synthesized by the proposed method. The vessel portion that was newly created in
the synthesized vessel image is similar to the vessels in the original high-quality image. However,
compared to the original high-quality image, the right part of the vessel is not clean, and there is
faint noise in the vessel image that was synthesized by the proposed method. The noise is below the
threshold value that was set when the mask was created. Even though the area below the threshold
value is noise, the pixels from the original low-quality image are used because it was recognized as an
empty area and was set to 0 in the binary image. However, owing to this reason, merely lowering
the threshold value increases the effects of the similar image. This makes it possible to ignore the
empty parts in the low-quality image and vessels can be used that are not related to the owner of the
original image.
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In our evaluation, we focused on the two types of the comparisons: (1) a comparison of the
low-quality vessel image with the high-quality vessel image, and (2) a comparison of the low-quality
vessel image with the restored image by the proposed method using the HRF dataset. A statistical
analysis was performed on the experimental results to objectively assess the proposed method.
An independent sample t-test is often used to compare the population means of two groups, mainly to
observe the similarities or differences between two different test groups [75–78]. In our experiment,
an independent sample t-test was used to determine if there was a significant difference between
the high-quality and synthesized images. For the evaluation, we conducted three experiments
using independent sample t-test for the three separate techniques: (1) analysis of feature matching,
(2) analysis of image similarity based on the Haralick algorithm, (3) analysis of mean-square error (MSE).
We checked whether these two groups (low-quality image vs. high-quality image and low-quality vs.
the restored image) had an equal variance prior to performing the t-test. Thus, we conducted the F-test
first and then checked whether the p-value was greater than the significant level (0.05).
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Table 1 shows the number of high-quality and restored (synthesized) image features that match
those of the low-quality image using feature matching. In Table 1, the “# of features matched in
bad–good images” represents the number of matching features obtained when the feature-matching
algorithm was used on the low- and high-quality-images. The “# of features matched in bad–synthesized
image” represents the number of matching features obtained when the feature-matching algorithm
was used on the low-quality and synthesized images.

Table 1. Comparative analysis from feature matching.

Retinal Image Pair
(Good/Bad) No. Causes of Low-Quality Retinal Image Cases # of Features Matched

in Bad–Good Image
# of Features Matched in
Bad–Synthesized Image

1st Partially obscured images by foreign objects 18 17
2nd Dark image 17 15
3rd Blurry image, White light-reflected image 24 24
4th Blurry image, White light-reflected image 17 14
5th Blurry image 19 21
6th Right-shifted image 16 15
7th Blurry image 49 45
8th Blurry image 35 34
9th Blurry image, Enlarged image 25 22

10th Bright image 20 18
11th Partially obscured images by foreign objects 27 26
12th Dark shadow image 39 34
13th Blurry image 37 36
14th Blurry image 36 35
15th Blurry image 21 19
16th Blurry image 25 21
17th Blurry image 27 31
18th Blurry image 20 18

F-test p-value 0.44
Independent t-test

p-value 0.62

Table 2 shows that the retrieved high-quality and restored (synthesized) images are similar to
the low-quality images. In Table 2, “Bad–Good Image Similarity” represents the similarity when the
Haralick algorithm was used on the low-quality and good images. The “Bad–Synthesized Image
Similarity” represents the similarity when the Haralick algorithm was used on the low-quality and
synthesized images.

Table 2. Comparative analysis to validate synthetic images using Haralick algorithm.

Retinal Image Pair
(Good/Bad) No. Causes of Low-Quality Retinal Image Cases Bad–Good Image

Similarity
Bad–Synthesized
Image Similarity

1st Partially obscured images by foreign objects 16.42 12.07
2nd Dark image 9.72 11.21
3rd Blurry image, White light-reflected image 15.89 15.18
4th Blurry image, White light-reflected image 15.15 11.29
5th Blurry image 14.28 10.99
6th Right-shifted image 5.55 14.27
7th Blurry image 13.66 16.10
8th Blurry image 16.22 13.23
9th Blurry image, Enlarged image 11.75 12.95
10th Bright image 15.03 17.22
11th Partially obscured images by foreign objects 16.09 11.41
12th Dark shadow image 15.67 9.84
13th Blurry image 15.64 14.90
14th Blurry image 15.69 15.77
15th Blurry image 14.17 7.89
16th Blurry image 13.60 7.62
17th Blurry image 16.46 10.28
18th Blurry image 14.14 11.33

F-test p-value 0.48
Independent t-test p-value 0.064
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The p-value exceeded the significance level of 0.05 for the independent sample t-test results. Thus,
there were no statistically significant differences between the high-quality and synthesized images.

In entries 1, 12, and 18 of Table 2, the similarity of the low- and high-quality images was greater
than that of the low-quality and synthesized images, unlike the majority of cases. This is because the
similar images used in the image synthesis did not adequately represent the original images. As such,
this appears to be a problem that will be resolved by improving the dataset or the algorithm used to
find similar images.

Table 3 shows how many high-quality and restored (synthesized) images are different with the
low-quality images through mean-square error (MSE). In Table 3, the “MSE Between Bad–Good Image”
represents the MSE value when the MSE algorithm was used for the low-quality images and the
high-quality images. In addition, the “MSE Between Bad–Synthesized Image” represents the MSE
value when the MSE algorithm was used for the low-quality images and the synthesized images.

Table 3. Comparative analysis from mean-square error (MSE).

Retinal Image Pair
(Good/Bad) No. Causes of Low-Quality Retinal Image Cases MSE Between

Bad–Good Image
MSE Between

Bad–Synthesized Image

1st Partially obscured images by foreign objects 962.60 944.21
2nd Dark image 1170.57 829.18
3rd Blurry image, White light-reflected image 1910.91 1762.72
4th Blurry image, White light-reflected image 651.33 661.45
5th Blurry image 938.05 831.33
6th Right-shifted image 1031.38 881.69
7th Blurry image 734.49 756.56
8th Blurry image 716.56 701.44
9th Blurry image, Enlarged image 596.17 474.91
10th Bright image 881.17 529.32
11th Partially obscured images by foreign objects 660.03 657.79
12th Dark shadow image 1047.40 1006.05
13th Blurry image 908.65 796.46
14th Blurry image 811.50 808.41
15th Blurry image 925.40 844.29
16th Blurry image 1143.98 1040.94
17th Blurry image 717.55 548.62
18th Blurry image 863.38 899.54

F-test p-value 0.40
Independent t-test

p-value 0.33

Figure 16 shows the six p-values obtained from the experiments (i.e., 2 types of tests and 3
experiments). Here, the Y axis represents the p-values of the tests, whereas the black bar and
slash-patterned bar represent the F-test and T-test, respectively. The results from the three experiments
showed that there was no difference between the good image and the synthesized image. In all
experiments, two groups (low-quality image vs. high-quality image and low-quality vs. the synthesized
image) had an equal variance as F-test p-values were greater than the significant level (0.05). Moreover,
since all the t-test p-values were greater than the significant level (0.05) in all experiments, we were
able to assume that there was no significant difference between the two groups, confirming that the
synthesized retina image was similar enough with the good quality retina image.

In addition, for the three types of experiments, we have also evaluated how the threshold values
affected the p-values. Table 4 shows how the p-values had changed according to the changes in the
threshold types: Otsu method and Global values (8 to 128). The result showed that for the global
threshold, the p-values also increased following the increase in the threshold values but they dropped
drastically when the latter reached 128. As previously mentioned, this might have been caused as the
noise was not clearly removed when the threshold value had become excessively higher. Especially,
in a similarity test with a Haralick algorithm, all the p-values could not exceed the significance level
of 0.05 except when the threshold value was 64. As the picture shows, the p-value in an extreme
situation, having a threshold value of 8, for example, decreases less when compared with another
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extreme situation where the threshold value is 128. This means that it is better to use the similar image
as it is instead of using a low-quality image. Since the synthesized image will become closer to a similar
image as the number of areas having a pixel value of 1 (i.e., a low threshold value) increases, it would
represent the actual retinal image of a patient more clearly when the dataset is organized in a better
way, which means that the lower threshold values would reduce damage to the synthesized image.
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In the case of the threshold derived by the Otsu method, the p-value obtained from the feature
matching was similar to the manually selected global threshold. However, the p-value generated
by the Haralick algorithm and MSE was higher than the manually selected global threshold. In our
experiments, it was confirmed that the Otsu method was a very appropriate threshold setting method
for the Haralick algorithm and MSE.

Table 4. p-value changes by threshold types.

Threshold Types p-Value Obtained from t-Test

Feature Matching Haralick MSE

Otsu method 0.626 0.064 0.335
Global 8 0.604 0.038 0.110

Global 16 0.618 0.044 0.161
Global 32 0.664 0.049 0.221
Global 64 0.690 0.053 0.243

Global 128 0.392 0.022 0.071

6. Discussion

An image synthesis approach was proposed in this study to improve the quality of retinal images,
particularly their vessel areas, to help physicians perform diagnoses after retinal examinations. As this
is a medical study, the proposed method will be very useful for emergency medical situations requiring
high-quality images in real time.

Table 5 shows the time taken to perform 10 repeated rounds of training and testing for the
experiments described in Section 4. For the 10 rounds of data, the smallest value is marked in bold,
and the largest value is underlined. The average training time was 634 s, and in all cases, it took
approximately 10 min. The average testing time was approximately 33 s, and in all cases, it took
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approximately 30 s. The training time is not a significant issue as this is the processing time required
by the server. The problem is the testing time, as this is the time taken to produce results after a
physician has inputted a newly created retinal image into the trained model, and it has the greatest
effect on real-time service. Nevertheless, an average of 30 s is sufficient for situations with soft real-time
conditions. However, it is difficult for our approach to satisfy hard real-time conditions such as
life-threatening emergency medical situations.

Table 5. Time for generating synthetic vessel images (The minimum value in each column is presented
in bold, and the maximum value in each column is underlined).

Count The Time to Train Data (s) The Time to Test Data (s)

1st 633 42
2nd 609 27
3rd 628 24
4th 644 48
5th 648 19
6th 678 33
7th 621 45
8th 630 29
9th 625 36

10th 632 29
Average 634.80 33.20

7. Conclusions

This study has proposed an image synthesis method that allows for accurate diagnoses after
retinal examinations. The proposed method ensures that it is always possible to clearly distinguish the
vessel portions of images that are essential for examinations even when the images that were obtained
in the retinal examination have a low resolution. Specifically, it collects the most similar images from
a dataset that stores existing high-resolution images, segments the high-resolution vessel portions,
and combines them with the low-quality (low-resolution) retinal image to obtain the clearest vessel
image. Through this process, optimal high-resolution vessel images, which can aid in making accurate
diagnoses, are extracted.

In addition, this type of study contributes toward future research by formulating a complex retina
vessel structure model from an anatomic and ophthalmological perspective. When a patient with
expert knowledge of the eyes has doubts about the physician’s diagnosis regarding their retinal images,
clear retinal images can act as a basis for a re-diagnosis. Our results also contribute toward future
studies on automating retinal image-based diagnoses.

Future directions for this study are as follows. As discussed in Section 6, the current method cannot
provide the critical real-time services that are needed in emergency medical situations. We believe that
it is very important to study this first. In addition, this study’s dataset follows a fixed form, and the
method cannot dynamically handle a variety of datasets. This does not reflect reality, and retina
data formats can vary according to the country or type of hospital. To deal with this, we will study
data reduction techniques that are based on the characteristics of retina images. By doing so, it will
be possible to dynamically handle different retinal data formats. Moreover, studies on efficiently
generating retinal data are expected to contribute toward improving the quality of the retinal images
themselves rather than efficient retinal data structures.

Supplementary Materials: The datasets used during the current study are available from the following websites
(DRIVE: https://drive.grand-challenge.org/ and HRF: https://www5.cs.fau.de/research/data/fundus-images/).
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MLP Multi-Layer Perceptron
FFDNN Feed-Forward Deep Neural Network
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DRIVE Digital Retinal Images for Vessel Extraction
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STARE Structured Analysis of the Retina
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