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Abstract: In this paper, a wind turbine anomaly detection method based on a generalized feature
extraction is proposed. Firstly, wind turbine (WT) attributes collected from the Supervisory Control
And Data Acquisition (SCADA) system are clustered with k-means, and the Silhouette Coefficient
(SC) is adopted to judge the effectiveness of clustering. Correlation between attributes within a
class becomes larger, correlation between classes becomes smaller by clustering. Then, dimensions
of attributes within classes are reduced based on t-Distributed-Stochastic Neighbor Embedding
(t-SNE) so that the low-dimensional attributes can be more full and more concise in reflecting the
WT attributes. Finally, the detection model is trained and the normal or abnormal state is detected
by the classification result 0 or 1 respectively. Experiments consists of three cases with SCADA data
demonstrate the effectiveness of the proposed method.
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1. Introduction

With the increasing exhaustion of resources such as minerals and petroleum, wind energy is
widely used due to its sustainability and cleanliness. By 2020, wind power will account for 12 percent
of global power generation and become the main pillar of clean energy [1,2]. With the continuing
growth of global wind power capacity, condition monitoring (CM) of WTs is increasingly important to
reduce operation and maintenance cost [3].

CM is a process of monitoring the operating parameters of the physical system, it attracts a lot
of research in the industrial field. CM is applied to anomaly detection [4–6] and fault diagnosis [7,8]
of wind turbines. In [4], an evaluation index of wind turbine generator operating health based on
the relationships with SCADA data was presented. In [5], a framework was developed to monitor
the health of a wind turbine using an undercomplete autoencoder. In [6], a wind turbine generator
slip ring damage detection through temperature data analysis method was presented. In [7], a novel
fault diagnosis and forecasting approach based on support vector regression model was proposed.
In [8], a novel parameter-varying model for wind turbine systems was established, which was used for
real-time monitoring and fault reconstruction in wind turbine systems.

In recent research, many excellent methods were proposed for anomaly detection. The existing
methods can be divided into three categories: model-based [9], signal-based [10], and data-driven [11,12].
In model-based approaches, the nonlinear relationship among the sub-component of a wind turbine
makes it difficult to build numerical models [13]. The signal-based methods are realized by analyzing
the mechanical signals emitted during the operation process. However, the signal acquisition requires
the installation of sensors which adds additional costs [14]. The data-driven methods, and machine
learning techniques in particular, are used to model wind turbine behavior with supervisory control
and data acquisition (SCADA) data [15,16].
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SCADA provides hundreds of condition variables such as temperatures, wind parameters,
energy conversion parameters, which is continuously develop in monitoring and controlling distributed
processes [17]. Recently, SCADA are widely applied in the microgrid [18,19] which based on renewable
energy such as solar energy [20], wind energy [21], and biological energy [22], etc. The SCADA technology
is suitable for data-driven methods and big data analysis. Therefore, the rich data of SCADA system
make anomaly detection of wind turbines more flexible and reliable.

Till now, various data-driven methods using SCADA data, such as fuzzy inference system
(FIS) [23], support vector machine (SVM) [24] and deep neural network (DNN) [25] have been widely
used. In [11], based on fuzzy theory, a generalized wind turbine anomaly detection model is proposed.
In [12], a SVM-based method for fault detection in wind turbines was proposed, and the operating
states of the wind turbine is classified. In [13], a framework based on deep neural network was
developed to monitor anomalies of WT gearboxes.

In summary, some existed problems can be list as follows: (1) It is unreliable to select key attributes
based on manual experience and judgment when establish the anomaly detection model. (2) Most
existing methods can solve the problem of single anomaly detection. In addition, there are fewer
methods for multi-anomaly detection and the detection accuracy is lower.

Due to the above problems, this paper propose the following method: first, we cluster the
attributes collected from SCADA, and then reduce the dimensions. Finally, the multi-anomaly detection
model is trained to realize the anomaly detection.

The contributions of this paper include: (1) The data preprocessing model is proposed.
WT attributes collected from the SCADA system are clustered by k-means, and then the method
of dimension reduction within class based on t-SNE is proposed. (2) The detection model is proposed
based on the deep neural network. WT state is detected by the classification result 0 (abnormal) and 1
(normal). (3) A multi-anomalies detection method was proposed and the multi-anomalies detection
could achieve a good performance.

The rest of this article is organized as follows: the architecture of the proposed anomaly detection
method is described in Section 2. The data feature extraction is given in Section 3, and the architecture
of the detection model is given in Section 4. Experimental cases are given in Section 5. Conclusions are
made in Section 6.

2. Architecture of the Proposed Method

The anomaly detection model of this paper can be divided into two phases as summarized in
Figure 1. Phase 1: Data feature extraction. The process consists clustering and dimension reduction,
which provide valid input for the detection model of the Phases 2. Phase 2: Model generation. The deep
neural network model will be trained to realize the classification of the input data.

Clustering
Dimension 

reduction
Output

Deep Neural NetworkDeep Neural Network

SUM

Figure 1. Architecture of the proposed anomaly detection method.

The flowchart of the proposed anomaly detection method of this paper is shown in Figure 2.
(1) The attributes collected by the SCADA system are clustered by k-means after determining the
number of clusters, and SC is adopted to judge the effectiveness of clustering. (2) The attributes within
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classes are reduced to a fixed dimension based on t-SNE, the sum of the attributes after dimension
reduction of each category are taken as the row input of the deep neural network . (3) The input data
converted into square to generate many WT attributes images, the state of WT will be determine by
the classification results after training abundant images.
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Figure 2. Flowchart of the proposed anomaly detection method.

3. Data Feature Extraction

To reduce the amount of data and eliminate data redundancy, a method of first clustering and then
reducing the dimension within class is put forward and the accuracy of the model can be increased.
The process of data feature extraction is described in detail below.

3.1. K-Means Clustering

The k-means algorithm can be applied to divide then data into k clusters so that the data in the
same clusters are similar, while the data between different clusters are dissimilar.

3.1.1. Clarify the Maximum Number of Clusters

In paper [26], the distance cost function is applied as the space clustering validity test function,
the spatial clustering result is optimal when the distance cost function reaches the minimum value,
and the maximum number of clusters is determined as:

kmax ≤
√

n (1)
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3.1.2. 0-1 Normalization Processing

It is difficult to compare the data from different dimensions. Therefore, it is necessary to normalize
the data. The data will be converted to dimensionless values in order to compare different parameters.

V =
Vi −min(A)

max(A)−min(A)
(2)

where Vi represents the value of each attribute, and min(A) represents the minimum value in a class
of attributes, and max(A) represents the maximum value in a class of attributes.

3.1.3. Determine the Number of Clusters

The feature attributes can be divided into 2–8 categories, and the silhouette coefficient (SC) is
used to estimate the effectiveness of clustering. The SC which combines the degree of cohesion and
separation, can be used to estimate the superiority of clustering. The value ranges from 1 to 2, and larger
value represents better clustering effect. The calculation process is as follows: (1) calculate the average
distance between Xi and all other elements within the same cluster, denoted by ai; (2) selecting a
cluster b outside Xi, and calculate the average distance between Xi and bi. Finding the nearest average
distance by traversing all other clusters, denoted bi. The formula is shown as:

Si
.
=

bi − ai
max(ai, bi)

(3)

where Si represents the silhouette coefficient. The relationship between Si and the number of clusters
K is shown in Equation (3).

3.2. T-SNE Dimensionality Reduction

The deep neural network requires fixed-dimensional input data. However, the number of
attributes after dimension reduction using traditional methods such as Principal Component Analysis
(PCA) and Kernel Principal Component Analysis (KPCA) is not fixed. To solve this problem,
the method of exploring high-dimensional data t-SNE is adopted, it has the advantage of reducing
data in hundreds or thousands of dimensions to two or three dimensions [27]. All classes of attributes
are reduced to the fixed dimension after the dimensionality reduction, which can generate valid input
data for the deep neural network model.

Original data is represented as X = {x1, x2, . . . , xn}, the new data after dimension reduction
based on t-SNE is represented as Y = {y1, y2, . . . , yn}. Firstly, set perplexity as Perp, set iterations as T,
set learning rate as η, and set momentum as α(t). Then adjusting the parameters constantly to reach a
relative optimal by the Equations (4)–(8). The similarity between high-dimensional data is calculated
by Equation (4). Gauss distribution can be adopted to transform the distance between data points
into probability distribution in the high dimensional space, as shown in Equation (5). The distance
between the middle and lower dimensions have a larger distance after mapping by the Equation (6).
The dimensionality reduction effectiveness can be determined by Equation (7), and the effect value is
closer to zero, the better the effect.

pj|i =
exp(− ‖xi−xj‖2

2σ2
i

)

∑
k 6=i exp(− ‖xi−xk‖2

2σ2
i

)

(4)

where σi differs depending on the data points and uses the binary search for the appropriate σ in the
case of given Perp.

pij =
pj|i + pi|j

2
(5)
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qij =
(1+ ‖ yi − yj ‖2)(−1)

∑k 6=l(1+‖yk−yl‖2)−1
(6)

δC
δyi

= 4 ∑(pij − qij)(yi − yj)(1+ ‖ yi − yj ‖2)(−1) (7)

where C refer to loss function. The loss function is derived and the mapping Y in the low-dimensional
space is optimized by using the gradient descent method, as shown in Equation (8):

Y(t) = Y(t−1) + η
σC
σy

+ α(t)(Y(t−1) −Y(t−2)) (8)

After K-means clustering, WT attributes are divided into K classes, and each class of attributes is
reduced to N (2 or 3) dimensions. The new attributes after dimensionality reduction are X = K × N
dimensions, which can be used as the line input for deep neural network.

4. Architecture of Detection Model

The deep neural network is adopted for anomaly detection. In this paper, the input data need
to be organized as several normalized WT attributes images with the same pixels to be fed into the
model for anomaly detection. The architecture of the detection model is described in detail below.

4.1. Deep Neural Network

The deep neural network is widely applied in much research [28], and it has advantages, such as
data mining and image classification [29–31]. The proposed model consists of a normalization layer,
two convolutional layers, two polling layers, and a fully connected classification layer.

4.2. Description of Each Layer

Normalization Layer. The normalized layer is added because the input of the deep neural network
needs to be normalized to the same size. Firstly, the maximum and minimum values of the image input to
the normalization layer and their corresponding positions should be found. Then, normalize them to the
required size using down-sampling method. Finally, the maximum and minimum values are replaced.

Convolutional Layer. The convolution layer is the primary component of the deep neural network,
and it can be used for feature extraction. A conventional layer includes two operations: convolution and
nonlinearity. Each mapping is a feature representation of the input image. The convolution operation can
be show as:

yj = ∑
i

kij ∗ xi (9)

where ∗ denotes the convolution operation, yj is the j-th feature map of output, kij is the convolutional
kernel, xi is the i-th input. The convolution algorithm reduces the number of free variables by sparse
connection (A) and weight sharing (B) so that the generalization performance of the network is increased.

A. Sparse connections is crucial in the deep neural network [32], each neuron is only connected
to a small part of the input. Although the direct connection is sparse, the deeper units can interact
indirectly with the larger part of the input, which can be illustrated in Figure 3. The M − 1 layer is
the input layer, and the input of the hidden layer M is the output of M− 1. Each neuron in the M layer
can accept the input from the previous three neurons, each neuron in the M + 1 layer receives the input
from the three neurons of the M layer. For adjacent layers, the accepted domain is 3; and for the M + 1
and M − 1 intervals, the receiving domain is 5. The complex interaction between units can be described
effectively through sparse connections, and the over fitting risk can be reduced due to less parameters.

B. Weight sharing refers to using the same convolution kernel to complete convolution operations
on images [33,34]. The convolution process is shown in Figure 4. When the size of input WT image
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xi is m1 × m1, the size of the convolution kernel kij is a × b, so the size of the output feature yj is
m1 − a + 1 and m1 − b + 1 after the convolution operation.

a1 a2 a3 a4 a5

b1 b2 b3

c1 M+1

M

M-1

Figure 3. Deep neural network connection.
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Figure 4. Weight calculation process.

Add the bias to the convolution result and then the result obtained is input to the non-linear activation
function. The saturation activation function ReLUs [32] is adopted in this paper, the operation is shown as:

ym,n = max(xm,n, 0) (10)

where (m, n) represents pixels in the figure. The xm,n represents the original value of the position (m, n),
and ym,n represents the output value of the ReLUs. The process of the convolution layer can be shown
in Figure 5.

* + ReLUs

Input

Convolution kernel

Deviation bx Output the feature map

Figure 5. Process of convolution operation.

Pool layer. Maximum pooling operation is adopted in this paper so that the deep neural network
can adapt to the small changes of the WT images. Firstly, the input WT images are divided into several
non-overlapping rectangular regions of the same size. Then, the maximum value in the rectangular
region is obtained by the maximal pooling operation. Figure 6 is a maximum pooling operation.

1 6

8 4

4 5

7 2

9 0

2 2

3 5

6 1

8 9

7 6

8 98 9

 

Figure 6. Maximum pooling operation.

Classification layer. The obtained features are converted into one-dimensional vectors and then
input to the classification layer. The sigmoid activation function is adopted in this paper. The classification
results 0 and 1 are used to determine the status of the WT: 0 is anomaly, and 1 is normal. As shown in
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Equation (11). The classification accuracy of the prediction will be divided into three parts: the abnormal
accuracy, the normal accuracy and total accuracy. Represented by Q1, Q2 and Q, shown in Equations (12),
(13), and (14), respectively.

y =

{
0, y < 0.5

1, y ≥ 0.5
(11)

where y indicates the states of the output.

Q1 =
TA

TA + FA
(12)

Q2 =
TH

TH + FH
(13)

Q = 1− FH + FA
TH + FH + TA + FA

(14)

where TA is true abnormal, FA is false abnormal, TH is true health, FH is false health.

4.3. Training Process of the Model

The proposed model is trained by back propagation (BP) gradients. Parameters are updated by
the Equation (15):

∆ωi+1 := θ · ∆ωi − ξ · η ·ωi − η · 5L(ω)

ωi+1 := ωi + ∆ωi+1

(15)

where i is the iteration index, ∆ω is the dynamic variable, θ is the momentum value, ξ is the weight
decay, and η is the learning rate. Weights and deviations are initialized to 0.

5. Experimental and Discussion

In this section, three cases of experiments are conducted to evaluate the effectiveness of the
proposed detection method. Case 1: single anomaly detection of 1st attribute. Case 2: multi-anomalies
detection of 6th attribute. Case 3: multi-anomalies detection of multi-attributes, and the 1st and 7th
attributes were selected for experimentation. The configurations of the software environment are
listed as follows, software: Matlab (2018a) Pycharm (2017.1), CPU: Intel (R) Core (TM) i7-8750H CPU@
2.21GHz, Memory: 16 GB, GPU: NVIDIA GeForce GTX1060 and Hard disc: 1TB.

5.1. Data Description

The experiment data are collected from a wind farm in the south of China. There are 33 WTs in
the wind farm and the WT 8 was selected for research. Figure 7 shows the sensor structure of WT.
The SCADA data collected at an interval of 10 minutes are used in experiments. The data in this WF
are well-collected, with a complete record of anomaly. Figure 8 shows image of the wind farm. Table 1
shows the parameters of WTs.
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rotor
 system

main
shaft

gearbox generator converter

auxiliary equipment

Figure 7. Sensor structure of WT.

Figure 8. Image of the wind farm.

Table 1. Parameters of WTs .

.

No. Parameter Unit No. Parameter Unit

1 Temp. of hub ◦C 33 Temp. of generator output shaft ◦C
2 Temp. of generator of blade 1 ◦C 34 Temp. of generator stator winding ◦C
3 Temp. of generator of blade 2 ◦C 35 Speed of the generator rpm
4 Temp. of generator of blade 3 ◦C 36 Ambient temperature of the converter ◦C
5 Current of generator of blade 1 A 37 Measured torque of the converter Nm
6 Current of generator of blade 2 A 38 Measured speed of the converter rpm
7 Current of generator of blade 3 A 39 Wind direction
8 Function code 40 Absolute wind direction
9 Value of the encoder of blade 1A 41 Average wind direction of 1 s

10 Value of the encoder of blade 2A 42 Average wind direction of 1 min
11 Value of the encoder of blade 3A 43 Average wind direction of 10 min
12 Value of the encoder of blade 1B 44 Average wind velocity m/s
13 Value of the encoder of blade 2B 45 Maximum wind velocity m/s
14 Value of the encoder of blade 3B 46 Minimum wind speed m/s
15 Angle of the cable ◦ 47 Average wind speed of 1 s m/s
16 Temp. of the main bearing ◦C 48 Average wind speed of 1 min m/s
17 Pressure of the hydraulic system bar 49 Average wind speed of 10 min m/s
18 Speed of variable pitch for shaft 1 rpm 50 Ambient temperature ◦C
19 Speed of variable pitch for shaft 2 rpm 51 Temp. of the cabin ◦C
20 Speed of variable pitch for shaft 3 rpm 52 Frequency of power system HZ
21 Vibration on x direction of node 100 g 53 Active power kW
22 Vibration on y direction of node 100 g 54 Reactive power kW
23 Vibration on x direction of node 101 g 55 Voltage of phase A V
24 Vibration on y direction of node 101 g 56 Voltage of phase B V
25 Speed of the gearbox rpm 57 Voltage of phase C V
26 Temp. of gearbox oil ◦C 58 Current of phase A A
27 Temp. of gearbox input shaft ◦C 59 Current of phase B A
28 Inlet temperature of the gearbox oil ◦C 60 Current of phase C A
29 Temp. of gearbox output shaft ◦C 61 Average power of 1 s kW
30 Pressure of gearbox oil pump bar 62 Average power of 1 min kW
31 Inlet pressure of the gearbox oil bar 63 Average power of 10 min kW
32 Temp. of generator input shaft ◦C 64 Power factor



Electronics 2020, 9, 751 9 of 16

5.2. Model Parameters Setting

K-means clustering. There are 64 attributes in Table 1, and attributes are divided into eight
categories according to the formula kmax ≤

√
64. After normalization and clustering, the relation

between cluster number K and SC is shown in Table 2 and Figure 9. The effect of SC (0.8814) is optimal
when K = 7. Therefore, the attributes are divided into seven categories.
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−0.5
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te
 c

oe
ffi
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en

t

Figure 9. Curve of SC and K.

Table 2. Numerical relationship of SC and K.

K SC

2 0.7699
3 −0.5612
4 −0.6385
5 0.7954
6 −0.5370
7 0.8814
8 0.6953

t-SNE dimension reduction. The attribute dimension is not less than 3, so the obtained attribute
is 3 dimensions after dimension reduction. After a lot of training, the parameters setting of each class
are shown in Table 3. Through the data preprocessing, the new attribute is X = 21 dimensions, and is
used to input into deep neural network.

deep neural network model. Each input image is normalized to 21 × 21 in this experiment,
other settings as shown in Table 4. The number of second-level convolution kernels is obtained
through multiple training. The specific training parameters of the optimal model obtained through
multiple experiments are shown in Table 5.

Table 3. t-SNE parameters setting of each class.

1 2 3 4 5 6 7

Perp 100 50 40 30 25 40 40
T 3000 2000 500 1000 1000 1200 1500

Table 4. Architecture of Deep Neural Network.

The first convolution layer 6 kernels of size 6 × 6
Output the feature map 6 maps of size 16 × 16

The first pool layer 2 × 2
Output the feature map 6 maps of size 8 × 8

The second convolution layer 12 kernels of size 3 × 3
The second pool layer 2 × 2

Output the feature map 12 maps of size 3 × 3

Table 5. Training parameter settings.

learning rate:alpha 1
The number of samples in batch training:batchsize 10

Iteration number:numepochs 2



Electronics 2020, 9, 751 10 of 16

Test example. According to the settings in Tables 4 and 5, the test example is shown in Figure 10.
The normalized WT images are represented by C1, S1, C2, and S2.

Normalized input C1 6:16*16 S1 6:8*8 C2 12:6*6 S2 12:3*3

Figure 10. Output process of each layer.

5.3. Cases Analysis

Experimental data includes 20,000 training images and 100 test images. The ratio of normal
data to abnormal data is 1:1. The size of the input picture is 21 × 21. The following three cases were
conducted: (1) Single anomaly detection of 1st attribute. (2) Multi-anomalies detection of 6th attribute.
(3) Multi-anomalies detection of multi-attributes.

5.3.1. Cases 1: Single Anomaly Detection of 1st Attribute

The anomaly is that the temperature of gearbox output shaft is overheating. Figure 11 is comparison
of the normal and abnormal images. The size of each image is 21 × 21 and every three rows in the image
belongs a category. Figure 11a are normal states at different times. Figure 11b are abnormal states at
different times. The first three rows of the image represent the 1st attribute.
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(b) Abnormal states

Figure 11. Comparison of normal and abnormal.
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The model based on deep neural network is used to estimate the state of WT. The test samples are
randomly selected. Figure 12 shows the five test experiments. The experiment including 48 normal
data and 52 abnormal data. Gray lines represent actual values, five other colored lines represent
predicted values. If the output value is less than 0.5, the state is 0 (abnormal), otherwise the state is 1
(normal). The result is shown in Table 6.
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Figure 12. Output values of five test experiments.

Table 6. Results of five test experiments.

1 2 3 4 5 SUM

TA 46 45 44 47 45 227
FA 6 7 8 5 7 33
TH 44 43 45 40 46 218
FH 4 5 3 8 2 22

Table 7 and Figure 13 show the accuracy of Q1, Q2, Q. From the experiment results, it can be
concluded that the proposed method is effective in single anomaly detection.

Table 7. Accuracy of five test experiments.

1 2 3 4 5 Average

Q1 88% 87% 85% 90% 87% 87.4%
Q2 92% 90% 94% 83% 96% 91%
Q 90% 88% 89% 87% 91% 89%
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Figure 13. Accuracy of Q1, Q2, Q.
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5.3.2. Cases 2: Multi-Anomalies Detection of 6th Attribute

The anomalies are the speed of the generator is reduced and the speed of gearbox is reduced.
Figure 14 is comparison of the normal and abnormal images. Figure 14a are normal states at different
times. Figure 14b are abnormal states at different times. Rows 16 to 18 indicate the 6th attribute.

Figure 15 shows the five test experiments. The experiment including 50 normal data and 50
abnormal data. Table 8 shows five results of test experiments. Table 9 and Figure 16 show the accuracy
of Q1, Q2, Q. The average accuracy is 95.4% , which is higher than case1. From the experiment results,
it can be concluded that the proposed method is effective in multi-anomaly detection.
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Figure 14. Comparison of normal and abnormal.
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Figure 15. Output values of five test experiments.
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Figure 16. Accuracy of Q1, Q2, Q.

Table 8. Results of five test experiments.

1 2 3 4 5 SUM

TA 50 50 47 50 42 239
FA 0 0 3 0 8 11
TH 50 50 42 50 46 238
FH 0 0 8 0 4 12

Table 9. Accuracy of five test experiments.

1 2 3 4 5 Average

Q1 100% 100% 94% 100% 84% 95.6%
Q2 100% 100% 84% 100% 92% 95.2%
Q 100% 100% 89% 100% 88% 95.4%

5.3.3. Cases 3: Multi-Anomalies Detection of Multi-Attributes

The anomalies are the temperature of gearbox oil and temperature of gearbox input shaft increase
both in the 1st and 7th attributes. The attributes and anomalies are selected randomly. Figure 17
is comparison of the normal and abnormal images. Figure 17a are normal states at different times.
Figure 17b are abnormal states at different times. Rows 1 to 3 indicate the 1st attribute and rows 19 to
21 indicate the 7th attribute.

Figure 18 shows the five test experiments. The experiment including 50 normal data and 50
abnormal data. Table 10 shows five results of accuracy. The average accuracy of normal state is
95.6%, the average accuracy of abnormal state is 96%. Therefore, the average accuracy of the five test
experiments is 95.8%, which is higher than case1. From the experiment results, it can be concluded
that the proposed method is effective in multi-anomalies detection of multi-attributes.

To further verify the effectiveness of the proposed method, other two methods are adopted
to make the comparison: (1) BPNN method, (2) SVM method. The experiment results shown in
Table 11. It can be concluded that the average accuracy of proposed method is 95.8%, and it has the
best performance in the experiment.
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Figure 18. Output values of five test experiments.

Table 10. Accuracy of five test experiments.

1 2 3 4 5 Average

Q1 88% 92% 100% 100% 100% 96%
Q2 94% 94% 90% 100% 100% 95.6%
Q 91% 93% 90% 100% 100% 95.8%

Table 11. Comparison results of three methods.

Method Q1 Q2 Q

BPNN 81.2% 84.8% 83%
SVM 80.4% 83.6% 82%

The proposed method 96% 95.6% 95.8%
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6. Conclusions

In this paper, a wind turbine anomaly detection method based on SCADA data mining is proposed.
Firstly, WT attributes collected from the SCADA system are clustered by k-means, and then the method
of dimension reduction within class based on t-SNE is proposed. Finally, the detection model is
trained and the abnormal or normal state is detected by the classification result 0 or 1 respectively.
Three cases are conducted in this paper to demonstrate the effectiveness of the proposed method.
The results show that the proposed method has good performance in three cases: (1) single anomaly
detection of 1st attribute, (2) multi-anomalies detection of 6th attribute, (3) multi-anomalies detection
of multi-attributes. In the future, we will continue our research on anomaly detection, and developing
more effective deep learning methods to predict anomalies before they occur.
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