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Abstract: In this paper, a split-gate resurf stepped oxide with double floating electrodes (DFSGRSO)
U-shape metal oxide semiconductor field-effect transistor (UMOSFET) is proposed. The floating
electrodes are symmetrically distributed on both sides of the source electrode in the trench.
The performance of the DFSGRSO UMOSFET with different size of floating electrodes is simulated and
analyzed. The simulation results reveal that the floating electrodes can modulate the distribution of the
electric field in the drift area, improving the performance of the device significantly. The breakdown
voltage (BV) and figure of merit (FOM) of the DFSGRSO UMOSFET at optimal parameters are 23.6%
and 53.1% higher than that of the conventional structure. In addition, the regulatory mechanism
of the floating electrodes is analyzed. The electric field moves from the bottom of the trench to the
middle of the drift area, which brings a new electric field peak. Therefore, the distribution of the
electric field is more uniform for the DFSGRSO UMOSFET compared with the conventional structure.

Keywords: power UMOSFET; split gate; floating electrode; electric field modulation

1. Introduction

The power metal oxide semiconductor field-effect transistor (MOSFET) has been playing an
important role in the electronic power industry with the development of society. In order to improve
the performance of devices, some new structures have been proposed, such as the laterally-diffused
MOSFET (LDMOSFET) [1–3], the vertical double-diffused MOSFET (VDMOFET) [3–6] and the U-shape
MOSFET (UMOSFET) [6–9], and the on-state resistance (RSP) of these devices is getting lower and
lower. However, it was difficult to realize a very low RSP due to the limit of one-dimensional
silicon, until the super junction MOSFET (SJ-MOSFET) [10–14] was proposed. The RSP is about
140 mΩ·cm2–100 mΩ·cm2 [3,5] for the previous structure, while the SJ-MOSFET achieves an RSP of
10 mΩ·cm2, and the next-generation devices are likely to be around 8 mΩ·cm2 [11]. The SJ-MOSFET
adopts the principle of charge-coupling, which could increase the doping concentration of the drift area,
completely breaking the one-dimensional silicon limit and significantly improving the performance of
the device. However, there are some problems in the actual process, mainly because of the doping
interdiffusion. Therefore, the split-gate resurf stepped oxide (SGRSO) UMOSFET [14–19] has attracted
the attention of researchers, as it also adopts the principle of charge-coupling and has a relatively simple
preparation process compared with SJ-MOSFET. The conventional structure is shown in Figure 1a,
whereby the electrode in the trench is connected to the source, which can enhance the depletion of drift
area and increase the doping concentration of the epitaxial layer to reduce the RSP of the device.
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However, the electric field distribution of this structure is not very ideal compared with the
SJ-MOSFET, especially for breakdown above 200 V [20]. In order to improve the distribution of electric
field in the drift area, a series of measures has been put forward, for example, a split gate UMOSFET
with P-pillar [21], subsection dielectric layer [22] and slope oxide layer [23], but it is unclear if the
control of the slope side oxygen or P-pillar is feasible with the appropriate accuracy in the actual
process and so on. Hence, an advanced SGRSO UMOSFET with a higher breakdown voltage (BV) and
figure of merit (FOM) is needed.

In this paper, a split-gate resurf stepped oxide with double floating electrodes (DFSGRSO)
UMOSFET is proposed. The floating electrodes are symmetrically distributed on both sides of the
source electrode in the trench. The simulation results reveal that the BV and FOM at optimal parameters
are higher than those of the conventional structure. In addition, the performance of the DFSGRSO
UMOSFET with different size of floating electrodes and the regulatory mechanism of the floating
electrodes is analyzed in this paper.

2. Device Structure and Principles of Operation

The schematic of the DFSGRSO UMOSFET is shown in Figure 1b. The electrode in the trench
(E1) is connected to the source electrode in order to achieve charge-coupling. Two floating electrodes
are introduced in the trench and located on both sides of the source electrode (E1) symmetrically.
The floating electrodes and the source electrode (E1) are separated by the oxide layer. Except for the
floating electrodes of the DFSGRSO UMOSFET, the other structural parameters are the same as the
conventional structure.

As shown in Figure 2, the distribution of the electric field and potential of the DFSGRSO
UMOSFET are compared with that of the device with the conventional structure. As shown in
Figure 2a,b, the electric field distribution of the DFSGRSO UMOSFET is more uniform compared to the
conventional structure, which reveals that the floating electrodes can modulate the electric field of the
drift area. The floating electrodes can be regarded as an equipotential body. Therefore, the electric
field originally converged on the bottom of the trench moves to the middle of the drift area, which
is near the top of the floating electrodes, and it brings a new electric field peak. Furthermore, it can
be seen from Figure 2c,d that the introduction of a floating electrode can increase the density of the
potential line, which proves that the DFSGRSO UMOSFET has a higher breakdown voltage at the same
structural parameters.
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Figure 2. Electric field distribution of (a) SGRSO and (b) DFSGRSO UMOSFETs and potential
distribution of (c) SGRSO and (d) DFSGRSO UMOSFETs.

As shown in the Figure 3, the electric field intensity on the surface of the trench and in the middle
of the drift area for the DFSGRSO UMOSFET are compared with that for the conventional structure,
respectively, at the same structure parameters. Figure 3a is a comparison of the electric field on the
trench surface of the two structures. It can be clearly seen that a new electric field peak (A) has been
brought, which is near the top of the floating electrode, while the intensity of the electric field, which is
near the bottom of the floating electrode, has decreased. In addition, the electric field intensity in the
middle of the drift area is compared, as shown in Figure 3b. It can be seen that the introduction of the
floating electrode improves the intensity of peak 1 significantly, and the distribution of the electric field
is more uniform compared with the conventional structure.
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A three-dimensional views of the electric field distribution in the drift area of the two structures
are shown in Figure 4. Figure 4a–d show the front view and back view of the SGRSO and DFSGRSO
UMOSFETs respectively. The electric field distribution in the drift area of the DFSGRSO UMOSFET is
more symmetrical compared with the conventional structure where the electric field usually converges
at the bottom of the trench. As a result, the volume under the electric field curved surface of the
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DFSGRSO UMOSFET is bigger than that of the SGRSO UMOSFET. Hence, the DFSGRSO UMOSFET
has a higher BV and FOM.Electronics 2020, 8, x FOR PEER REVIEW 4 of 10 
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3. Fabrication Procedure

First, a N-type epitaxial layer grows on a heavily doped N+ substrate and a deep trench is formed
by dry etching, as shown in Figure 5a. Next, a 1.2 µm oxide is deposited on the trench surface, as shown
in Figure 5b. As can be seen in Figure 5c, the trench is filled with highly doped N-type polysilicon and
etched back. Then, the trench is filled with oxide and etched back again to obtain the space for the
floating electrodes, as shown in Figure 5d. As shown in Figure 5e, a thicker oxide is deposited on the
surface of the trench. Afterwards, the trench is refilled with polysilicon and etched back to form the
floating electrodes, as shown in the Figure 5f. Subsequently, a 50 nm fresh oxide is grown thermally
on the trench sidewalls to form the gate oxide, and the gate is formed by the Chemical Mechanical
Polishing (CMP) process, as shown in the Figure 5g. Finally, the n+ and p− body is formed by the ion
implantation, and the complete structure is shown in Figure 5h.
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Figure 5. Proposed fabrication process steps for the DFSGRSO UMOSFET.

4. Results and Discussion

To compare the characters of both structures, we adopt the model of bandgap narrowing, the
concentration dependent mobility model (CONMOB), the parallel electric field-dependent mobility
model (FLDMOB) and the Shockley-Read-Hall model in simulations [24].

Figure 6 shows the dependence of the BV and FOM on the doping concentration of n-drift for the
two structures. The parameters of the structures used in the simulations are shown in Table 1. It can be
seen that the BV and FOM of the DFSGRSO UMOSFET are always higher than that of the conventional
structure in the range of 1 × 1015 cm3–5 × 1015 cm3. With the increase of doping concentration, the BV
of the two structures decreases gradually, but the FOM value increases and achieves the optimal
value when the n-drift doping concentration is 4.5 × 1015 cm3. As a result, the BV and FOM of the
conventional structure are 195.2 V and 236.1 V2/mΩ·mm2 respectively, while the BV and FOM of the
DFSGRSO UMOSFET are 238.3 V and 352.7 V2/mΩ·mm2 respectively, which have been improved by
22.1% and 49.4%.
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Table 1. Device parameters for the comparison of simulations.

Parameter Value

Depth of trench in drift region (HT) 7.5 µm
Depth of gate (HG) 1.0 µm

Depth of n+ source junction 0.2 µm
Depth of p-body junction 0.8 µm

Doping of p-body 1.5 × 1018 cm−3

width of trench (WT) 3.6 µm
Width of mesa (WM) 3.2 µm

Width of source electrode E1 (T1) 1.6 µm
Thickness of split-gate oxide for SGRSO (t2) 1.2 µm

Doping of n-drift region (ND) 4.5 × 1015 cm−3

Width of floating electrodes (T2) 0.5 µm
Length of floating electrodes (H1) 2.2 µm
Depth of floating electrodes (H2) 2.0 µm

Thickness of n-drift region (L) 13.5 µm
Height of source electrode of SGRSO (H) 6.3 µm

The dependence of the BV and FOM on the thickness of the epitaxial layer (L) for the SGRSO and
DFSGRSO UMOSFETs is shown in the Figure 7. As can be seen from the figure, with the increase of
the thickness of the epitaxial layer for the two structures, the BV reaches saturation state, while FOM
increases gradually at first and then decreases after reaching the optimal value, because the on-state
resistance gradually increases with the increase of the thickness of the epitaxial layer for both structures.
As shown in the results, when the epitaxial layer thickness is 13.5 µm, the FOM of the two structures
achieves the optimal value. Furthermore, the BV and FOM of the device with the conventional structure
are 198.2 V and 247.3 V2/mΩ·mm2, while the BV and FOM of the DFSGRSO UMOSFET are 243.1 V
and 373.1 V2/mΩ·mm2, which have been improved by 22.7% and 50.9% respectively.
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and DFSGRSO UMOSFETs.

The dependence of BV on the length of floating electrodes (H1) at different depth (H2) for the
DFSGRSO UMOSFET is shown in Figure 8. Each curve in the figure represents the variation of the BV
with the length of the floating electrodes at a certain depth for the DFSGRSO UMOSFET. It can be seen
from the graph, at different depths, the BV of the DFSGRSO UMOSFET always increases gradually
with the length of the floating electrodes at first and then decreases after reaching the optimal value.
This is because as the length of the floating electrodes increases, the electric field gradually moves from
the bottom of the trench to the middle of the drift area and achieves a uniform state. If the length of the
floating electrodes continues to increase, the optimal state is broken, and the electric field around of the
PN junction increases sharply. It makes the DFSGRSO UMOSFET break in advance and reduces the
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BV of the device. In addition, it can be seen from the graph that the modulation effect of the floating
electrodes becomes stronger as its depth increases, and the length of floating electrodes required to
achieve optimal station gradually reduces. When the depth and length of the floating electrodes is
2 µm and 2.2 µm respectively, the BV reaches a maximum value of 238.3 V. However, if the depth of
the floating electrodes continues to increase, the BV of the DFSGRSO UMOSFET decreases due to the
break of the charge-coupling.
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Figure 9 shows the dependence of the BV on the width of the floating electrodes (T2) for different
lengths (H1) for the DFSGRSO UMOSFET. Each curve in the figure represents the variation of the BV
with the width of the floating electrodes at a certain length. As the width of the floating electrode
increases, its BV gradually increases and reaches the optimal value. Furthermore, the trend of the BV
with the length is similar to the result of Figure 8. As the length of the floating electrodes increases,
the breakdown voltage of the device gradually increases, and the width required to reach the optimal
value becomes smaller and smaller. When the length and width of the floating electrode is 2.2 µm
and 0.5 µm, the BV and FOM of the DFSGRSO UMOSFET reaches the optimal values of 244.9 V and
378.6 V2/mΩ·mm2 respectively, which shows an improvement of 23.6% and 53.1% compared with the
device with the conventional structure.
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Figure 9. Dependence of the BV on the width of floating electrodes (T2) at different length (H1) for the
DFSGRSO UMOSFET.

In order to compare the output characteristics of the two structures, the BV of both structures was
set at about 200 V by adjusting the doping concentration of the drift area, as shown in the Figure 10a.
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The leakage current is limited to 1 × 10−7A. Figure 10b shows a comparison of the output characteristic
for both structures. As can be seen from the graph, when the gate voltage is 4, 8, 12 and 16 V, the output
characteristic of the DFSGRSO UMOSFET is higher than that of the device with the conventional
structure. Furthermore, the output characteristics of the DFSGRSO UMOSFET at a gate voltage of 8 V
are even better than that of the SGRSO UMOSFET at a gate voltage of 16 V.
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As shown in Figure 11, the work of this article is compared with several published works. It can
be found that the work of this article has a higher breakdown voltage and a lower on-resistance,
which proves that the introduction of floating electrodes helps to improve the overall performance of
the device.
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5. Conclusions

In this paper, a split-gate resurf stepped oxide with double floating electrodes (DFSGRSO)
UMOSFET has been proposed. The floating electrodes are symmetrically distributed on both sides of
the source electrode in the trench. The regulatory mechanism of floating electrodes has been analyzed.
The electric field originally converged on the bottom of the trench moves to the middle of the drift
area, which is near the top of the floating electrodes, and it brings a new electric field peak. Therefore,
the distribution of the electric field is more uniform for the DFSGRSO UMOSFET compared with the
conventional structure. In addition, the performance of the DFSGRSO UMOSFET with different size of
floating electrodes has been simulated and analyzed. The simulation results reveal that the floating
electrodes introduced in the trench can modulate the distribution of the electric field in the drift area
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and improve the performance of the device significantly compared with the conventional structure.
The breakdown voltage and FOM at optimal parameters is 23.6% and 53.1% higher than that of the
conventional structure.
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