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Abstract: Multi-domain image-to-image translation with the desired attributes is an important
approach for modifying single or multiple attributes of a face image, but is still a challenging task
in the computer vision field. Previous methods were based on either attribute-independent or
attribute-dependent approaches. The attribute-independent approach, in which the modification is
performed in the latent representation, has performance limitations because it requires paired data
for changing the desired attributes. In contrast, the attribute-dependent approach is effective because
it can modify the required features while maintaining the information in the given image. However,
the attribute-dependent approach is sensitive to attribute modifications performed while preserving
the face identity, and requires a careful model design for generating high-quality results. To address
this problem, we propose a fine-tuned attribute modification network (FTAMN). The FTAMN
comprises a single generator and two discriminators. The discriminators use the modified image in
two configurations with the binary attributes to fine tune the generator such that the generator can
generate high-quality attribute-modification results. Experimental results obtained using the CelebA
dataset verify the feasibility and effectiveness of the proposed FTAMN for editing multiple facial
attributes while preserving the other details.

Keywords: generative adversarial network; convolutional neural network; fine-tuned attribute-
modification network; autoencoders

1. Introduction

Facial attributes represent intuitive semantic features such as “male”, “female”, “person with
eyeglasses” and “smiling” that describe the biological identity or expression of a person. Extensive
research has been conducted on the biological identity of human faces in the field of computer vision,
from face identification and detection [1–4] to face-attribute modification [5–7]. These approaches were
successful based on three factors: (i) access to numerous publicly available training data with labels,
(ii) the high computational capabilities of GPUs, and (iii) access to open-source libraries. The availability
of the aforementioned resources made it possible for researchers to perform a large amount of work in
the fields of face identification, detection, and attribute modification. The prominent facial-attribute
modification task is, however, more challenging as compared to those of face recognition and detection,
wherein a careful description of the semantic aspects of the face is required while modifying the
required attributes, in addition to keeping the face identity intact. For example, if we want to modify a
specific attribute, such as hair color, we need to have semantic information about the hair and modify
only that part of the image without changing any facial details.

Extensive studies have been conducted on facial attribute modification and image-to-image
translation in computer graphics in terms of various applications such as color modification [8],
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content modification [9], image wrapping [10,11], image translation [12–17], and interpretation [18].
The image editing problem has been handled using two types of approaches: example-based [19–21]
and model-based approaches [11,22,23]. In the example-based approach, the required attribute is
searched for in the given reference image and transferred to the target image. This makes the image
editing dependent on the available reference image in many ways [19–21]. However, the reference
image must be of the same person with an appropriate face alignment and the same lighting conditions.
In the model-based approach, the model of the required face is first built and the image is then modified
accordingly [11,22,23]. Although these approaches have proven to be successful in the modification
of particular attributes, they are task-specific, and thus, it is impossible to apply them to arbitrary
attribute-modification problems.

Several face-attribute modification approaches [6,24] and distortion-removal approaches for real
images [24] have been developed based on recent developments in deep neural networks, such as
generative adversarial networks (GANs) [25] and variational autoencoders (VAEs) [26]. Both GANs
and VAEs are powerful models and are capable of generating images. GANs generate more realistic
images as compared to VAEs. However, the GAN cannot encode images as it uses random noise as an
input. In contrast, the VAE is capable of encoding the image to its corresponding latent representation
although its generated image is blurry as compared to that of the GAN. A combination of the GAN
and autoencoder makes a powerful tool for image-attribute editing. In Invertable Conditional GAN
(IcGAN) [27] and Conditional GAN (cGAN) [28], the GAN and autoencoder are combined for editing
the attributes of an image. They modify the latent representation to reflect the expected attribute
and then decode the modified image. The object transfiguration is learned by GeneGAN [5] from
two unpaired sets of images: one set of images with specific attributes and the other without those
attributes. The only constraint faced here is that the objects are located at approximately the same
place. For example, the training data can comprise one set of reference images of faces with eyeglasses
and another set of images of faces without eyeglasses, where both sets are spatially aligned using
face landmarks. DNA-GAN [29] shares similar traits with GeneGAN and provides “crossbreed”
images by swapping the latent representation of the corresponding attributes between the given pair
of images. Hence, the DNA-GAN can be considered as an extension of the GeneGAN. These methods
have been proved to be useful in image editing tasks, but they require different models for different
attributes, which is not practical in real-world applications owing to the corresponding time complexity.
The proposed work is based on the attribute-dependent approach, wherein an attribute classification
constraint is applied to the generated images. Attribute GAN (AttGAN) [6] can change the required
attribute while keeping the other details unchanged. The modified attributes, however, are not
prominent, although the face identity is well preserved. In contrast, the proposed approach is focused
on the prominent modification of the attributes while keeping the rest of the attributes unchanged.
The proposed approach is different from the AttGAN because it has an additional discriminator
that we call the refined discriminator. The refined discriminator takes the modified image from the
generator as an input and helps the generator to refine it further to obtain a better output. Further
explanation of the refined discriminator is presented in Section 2. RelGAN in [7] can effectively modify
attributes simultaneously with an additional capability of interpolation. They obtain the relative
attributes by determining the difference between the given and predefined target attributes. In contrast,
the proposed approach does not consider the predefined attributes but uses the already-available
target attributes with a further refinement, which is provided by the refined discriminator. Recently,
a facial attribute modification network (FAMN) was proposed in [30], which has an architecture style
that is common with that of the AttGAN and the proposed approach. The FAMN has two generators
and two discriminators, and both the generators share the same encoder part. The decoder part of both
the generators takes the latent representation as its input along with the binary and mean attribute
vectors, whereas each generator has its own discriminator. In contrast, the proposed approach consists
of a single generator and two discriminators, where the role of the second discriminator is to refine
the modified output further and, hence, to generate more realistic results with a lower computational
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complexity. In [31], the authors proposed the Multimodal Unsupervised Image-to-Image Translation
(MUNIT) framework, where they decomposed the image representation into a content code and a
style code and then recombined the content code with a random style code sampled from the style
space of the target domain to generate different style output. The cycle-consistent adversarial networks
(CycleGANs) [32] translate an input image from one domain to another domain in an unsupervised
manner, where the corresponding target pair is not given. Both MUNIT and CycleGAN can effectively
translate images from one domain to another domain. However, their focus is on the style of the
whole image rather than a specific attribute. Considering the time efficiency, because the proposed
network has a single generator and two discriminators while the AttGAN has a single generator and a
single discriminator, the number of parameters in the proposed network are more than those of the
AttGAN and thus the proposed network requires more training time than the AttGAN. However,
the discriminator is only included in training as shown in Figure 1 and does not affect the time
complexity during the testing. The FAMN, on the other hand, has two discriminators and an extra
decoder whereas the proposed approach does not have the extra decoder. Thus, the number of
parameters in the proposed network are less than those of the FAMN and the proposed network
requires less training time than the FAMN. The testing time for the AttGAN, the FAMN, and the
proposed approach is same. The contribution of this work can be summarized as follows:

• A novel network architecture that utilizes the latent representation of the given and modified outputs
along with the given and required attributes is proposed to generate prominent modification in the
given input.

• The tuning and refining discriminators ensure the prominent modifications by guiding the generators.
• A unified approach is proposed to effectively change the appearance of faces while preserving

the identity.
• Multiple experiments are carried out to validate the proposed approach.
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Figure 1. Fine-tuned attribute-modification network: (a) Training; (b) Testing; (c) Network descriptions.

2. Proposed Approach

This section introduces the fine-tuned attribute-modification approach for editing facial attributes.
The facial attributes are represented by a binary vector, where “1” represents the presence of a particular
attribute in the given face image and ”0” represents its absence. The configuration of the proposed
FTAMN is presented in Figure 1. The FTAMN consists of a single generator with an encoder Genc and
a decoder Gdec, and two discriminators Disc1 and Disc2. The generator takes the input face image in
two different steps. In the first step, the encoder part Genc of the generator takes the face image xa

that is required to be modified and projects it to the latent representation z_a. The decoder Gdec then
takes the pair of the latent representation z_a and given attribute vector a and generates the image
xa′ . Similarly, the latent representation z_a and required attribute vector b are decoded back to the
modified image xb′ using Gdec. In the second step, Genc takes the generated image xb′ as its input
and projects it to its corresponding latent representation z_b. Next, Gdec takes the pair of the latent
representation z_b and the required attribute vector b and then generates the modified image xb′′ .
In terms of the discriminators, the first discriminator Disc1 takes either the real image xa or fake image
xb′ generated by Gdec and maps it to the attribute vectors a or b along with real and fake classification
labels. It thus guides the generator to generate the modified image. Similarly, the second discriminator
Disc2 is used as a tuning discriminator that takes the real image xa or fake image xb′′ generated by
Gdec and maps it to the corresponding attribute vectors a or b along with real and fake classification
labels. It thus guides the generator to generate the required modified image with prominent attributes.

3. Training

The purpose of the proposed FTAMN is to modify multiple attributes simultaneously using the
attribute information available in the input data. The generator takes the required image as an input,
and we modify some of its contents by decoding a different combination of attributes. In this approach,
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we selected thirteen attributes that are required to be modified. These attributes include baldness, bangs,
black hair, blond hair, brown hair, bushy eyebrows, eyeglasses, gender, mouth open/closed, mustache,
no beard, pale skin, and young. For example, if black hair and a mustache are the desired attributes in
the input testing sample, this approach will make the hair black and put a mustache on the face in the
given image. During the training, the attributes of each image are concatenated in three configurations.
In the first configuration, the original attributes are concatenated with the latent representation of the
input image, and the combination of the attributes and latent representation are then decoded back to
the original image using Gdec. The original attribute objective along with the GAN objective is used
to train Disc1 and Disc2. In the second configuration, the input attributes are first shuffled and then
concatenated with the latent representation of the input image. Next, the concatenated pair is decoded
back to the modified image using Gdec. In the third configuration, the generated modified image is
first fed back to the encoder Genc and is projected to its corresponding latent representation. The latent
representation and the required attributes are concatenated. Next, the concatenated pair is decoded
back to the modified image using Gdec. The attribute objective along with the reconstruction and the
GAN objectives are used to tune the parameters of the generator of the network.

The detailed explanation of this process and stepwise training procedure are as follows. For a
given face input image xa, its attributes are defined as a vector a as follows.

a = [a1, a2, . . . , an] (1)

In the first step, the encoder part Genc of the FTAMN takes xa as its input and transforms it into its
corresponding latent representation z_a as follows.

z_a = Genc(xa) (2)

During the first configuration, the decoder Gdec translates the latent representation z_a along with
its attribute vector a to xa′ as follows.

xa′ = Gdec(z_a, a) (3)

During the second configuration, the attribute vector a is first modified to reflect the required
attributes as follows.

b = f(a) (4)

where f(·) is a function used for changing the elements of a binary vector. The decoder Gdec then
translates the latent representation z_a along with the required attribute vector b to the modified image
xb′ as follows.

xb′ = Gdec(z_a, b) (5)

During the third configuration, the latent representation z_b is first obtained as follows.

z_b = Genc
(
xb′

)
(6)

The decoder Gdec then translates the latent representation z_b along with the required attribute
vector b to the refined modified image xb′′ .

xb′′ = Gdec(z_b, b) (7)

The GAN objective functions are defined for training the discriminators Disc1 and Disc2 as follows.

LDisc1_GAN = γd

(
Disc1_D(xa) + 1−Disc1_D

(
xb′

))
(8)

LDisc2_GAN = γd

(
Disc2_D(xa) + 1−Disc2_D

(
xb′′

))
(9)
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where LDisc1_GAN and LDisc2_GAN, respectively, are the GAN losses for training each of the discriminators.
Disc1_D(xa) and Disc2_D(xa) represent the real outputs of the discriminators for the given original
input that is required to be modified. Disc1_D

(
xb′

)
and Disc2_D

(
xb′′

)
represent the fake outputs of

the discriminators for the given modified face image generated by Gdec. The attribute objective for
preserving the remaining attributes of the face image is defined as follows.

LDisc1att_a = −
n∑

i=1
ai log Disc1_C

(
xa

i

)
= −ai log

(
Disc1_C

(
xa

i

))
− (1− ai) log

(
1−Disc1_C

(
xa

i

)) (10)

where LDisc1att_a represents the sigmoid cross-entropy loss for the given attributes, ai represents the
target attribute, and Disc1_C

(
xa

i

)
represents the generated predicted attributes.

LDisc2att_a = −
n∑

i=1
ai log Disc2_C

(
xa

i

)
= −ai log

(
Disc2_C

(
xa

i

))
− (1− ai) log

(
1−Disc2_C

(
xa

i

)) (11)

where LDisc2att_a represents the sigmoid cross-entropy loss for the given attributes, and Disc2_C
(
xa

i

)
represents the generated predicted attributes.

The overall objective for training the discriminator Disc1 is defined as follows.

LDisc1 = LDisc1_GAN + αLDisc1att_a (12)

where α represents the control parameter for the original attribute objective. The overall objective for
training the discriminator Disc2 is defined as follows.

LDisc2 = LDisc2_GAN + αLDisc2att_a (13)

Similarly, the training objective functions for the generator in the first and second steps are defined
as follows.

LG1_GAN = γd

(
1−Disc1_D

(
xb′

))
(14)

LG2_GAN = γd

(
1−Disc2_D

(
xb′′

))
(15)

where LG1_GAN and LG2_GAN are the GAN losses for training the generator in the first and second
steps, respectively.

LDisc1att_b = −
n∑

i=1
bi log Disc1_C

(
xb′

i

)
= −bi log

(
Disc1_C

(
xb′

i

))
− (1− bi) log

(
1−Disc1_C

(
xb′

i

)) (16)

LDisc2att_b = −
n∑

i=1
bi log Disc2_C

(
xb′′

i

)
= −bi log

(
Disc2_C

(
xb′′

i

))
− (1− bi) log

(
1−Disc2_C

(
xb′′

i

)) (17)

where LDisc1att_b and LDisc2att_b represent the sigmoid cross-entropy losses for the modified attributes
bi, where bi represents the target binary attributes. Disc1_C

(
xb′

i

)
and Disc2_C

(
xb′′

i

)
represent the

corresponding generated predicted attributes.

Lrecons = ζ
(
abs

(
xa
− xa′

))
(18)

where Lrecons represents the absolute reconstruction objective, where the aim is to preserve the remaining
attributes of the face image during the modification of the required attribute objectives. xa represents
the input face image, and xa′ represents the image reconstructed with the intention of preserving the
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remaining features of the given face image. ζ is the control parameter for the reconstruction objective
that preserves the face identity.

Lrefine = ζ
(
abs

(
xb′
− xb′′

))
(19)

where Lrefine represents the absolute refinement objective, where the aim is to further refine the
modification in the given image while considering the provided attributes. xb′ represents the generated
modified image in the first step, and xb′′ represents the generated modified image in the second step.

The overall training objective for the generator part of the network is expressed as follows.

LGen = LG1_GAN + LG2_GAN + λLDisc1att_b + λLDisc2att_b + Lrecons + Lrefine (20)

where λ represents the control parameter for the required attribute objective, and LGen represents the
total loss of the generator.

4. Experiments

For training the FTAMN, we used the CelebA dataset [33]. The CelebA is a large-scale face
dataset comprising 202,599 face images. We divided the CelebA dataset into training and testing sets.
The training set comprises 182,000 images, and the testing set comprises the remaining 20,599 images.
After the training, we evaluated the network for its ability to modify the input images according to the
required attributes. We analyzed the experimental results qualitatively and quantitatively by defining
the structural similarity index (SSIM) from the reconstructed images and the modified images as shown
in Table 1. The proposed network was implemented by using TensorFlow 1.7, an open-source deep
learning framework, on the GPU-based PC, which was comprised of an Intel(R) Core i9-9940X CPU,
132.0 GB RAM, and four NVIDIA GeForce RTX 2080 Ti graphics cards.

Table 1. Structural similarity index (SSIM) between the reconstructed images and their corresponding
modified images.

FTAMN (proposed approach)

Attributes Bald Mouth
Open/Closed Bangs Eyeglasses Mustache

SSIM per pixel 5.3262 × 10−6 3.9688 × 10−6 5.4398 × 10−6 6.0457 × 10−6 6.3409 × 10−6

SSIM per image 0.9474 0.9883 0.9676 0.9410 0.9869

AttGAN [6]

Attributes Bald Mouth
Open/Closed Bangs Eyeglasses Mustache

SSIM per pixel 5.4324 × 10−6 3.9795 × 10−6 5.4689 × 10−6 6.1952 × 10−6 6.3807 × 10−6

SSIM per image 0.9663 0.9910 0.9728 0.9642 0.9931

FAMN [30]

Attributes Bald Mouth
Open/Closed Bangs Eyeglasses Mustache

SSIM per pixel 5.3993 × 10−6 3.9778 × 10−6 5.4359 × 10−6 6.2458 × 10−6 6.3415 × 10−6

SSIM per image 0.9604 0.9906 0.9669 0.9721 0.9870

In the first experimental analysis, we evaluated the proposed approach in terms of the baldness
of the given input image. If the given image is not bald, the proposed approach will inverse the
bald attribute and generate a bald image. The comparison of the qualitative results of the proposed
approach with those of the AttGAN [6] and the FAMN [30] in terms of baldness is presented in
Figure 2. Figure 2a–c shows the results obtained using the proposed FTAMN, the AttGAN, and the
FAMN, respectively. The green frame indicates the required successful modification, the blue frame
indicates the successful modification with lost identity, and the red frame indicates the failure of the
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required attribute modifications. Considering the modified images of the AttGAN, we can observe
that the generated images are smooth but their smoothness affects the quality of the modified image,
as indicated by the red frames in Figure 2b. In other words, the baldness effect is not distinct in the
results of the AttGAN as compared to our results. In the results of the FAMN, we can observe that the
generated images show prominent baldness but the identity of the face is affected as indicated by the
blue frames in Figure 2c. In contrast, the FTAMN translates the attributes in a prominent manner with
considerable smoothness and retains the face identity as compared to the FAMN, as indicated by the
green frames in Figure 2a. This proves that, as compared to the AttGAN and the FAMN, the proposed
FTAMN is more effective in translating the required attributes to the given input face images.
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Figure 2. Modification of the bald attributes in the given face images. (a) Fine-tuned attribute
modification network (FTAMN) (proposed approach); (b) Attribute GAN (AttGAN) [6]; (c) Facial
attribute modification network (FAMN) [30]. The input images in the first column of each subfigure
with hair are transformed into the output images that show bald faces.

In the second analysis, we evaluated the proposed approach in terms of the mouth open/closed
attribute, where the given input image with an open mouth is modified to obtain an output image
with a closed mouth. The comparative analysis of the proposed approach with the AttGAN and
the FAMN is presented in Figure 3. Figure 3a–c presents the results obtained using the proposed
FTAMN, the AttGAN, and the FAMN, respectively. From this analysis, we can observe that the
AttGAN translates the input images with an open mouth into the required output images with a
closed mouth. However, the attribute modification is not prominent, as indicated by the red frames
in Figure 3b. In contrast, the FTAMN translates the required attribute in a prominent manner in the
output images, as indicated by the green frames in Figure 3a. The modification performance of the
FTAMN is comparable with that of the FAMN, but the FTAMN preserves the face identity in the
images better than the FAMN.
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subfigure with an open mouth are transformed into the output images with a closed mouth.

In the third analysis, we evaluated the proposed approach in terms of the bangs attribute,
where the given input image without bangs is modified to an output image that comprises bangs.
The comparative analysis of the proposed approach with the AttGAN and the FAMN in terms of the
bangs attribute translation is presented in Figure 4. From this analysis, we can observe that the bangs
attribute effect is applied well to the given input images on using the proposed FTAMN, as shown
in Figure 4a. In Figure 4a, the first and second columns, respectively, comprise the candidate input
images and generated images with the required bangs effect. Figure 4b shows the results obtained
from the AttGAN, where the given input images in the first column are translated to the output
images in the second column with the required modification. The bangs effect is not prominent in the
translated images with this approach as compared to the proposed FTAMN, although the face identity
is preserved well. Figure 4c shows the results obtained with the FAMN, where the given input images
in the first column are also translated to the output images in the second column with the required
modification. The bangs effect is not prominent in the majority of the translated images of the FAMN as
compared to the proposed FTAMN, especially in the red frame of Figure 4c. Furthermore, the FTAMN
preserves the face identity better than the FAMN, as indicated by the green frame in Figure 4a.

In the fourth analysis, we evaluated the proposed approach in terms of the eyeglasses attribute,
where the given input image without eyeglasses is modified into the output image with eyeglasses.
The comparative analysis of the FTAMN with the AttGAN and the FAMN is presented in Figure 5,
where Figure 5a–c presents the results of the FTAMN, the AttGAN, and the FAMN, respectively.
As shown in the second columns of each subfigure in Figure 5, the FTAMN translates the eyeglasses
attribute in more prominent manner in the case of a majority of the images as compared to the AttGAN
and the FAMN, as indicated by the green frames in Figure 5a. Furthermore, the FTAMN preserves the
face identity better than the FAMN, as indicated by the green frames in Figure 5a.
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In the fifth analysis, we evaluated the proposed approach in terms of the mustache attribute,
where the given input image without a mustache is modified into the output image with a mustache
irrespective of the gender. For example, if the given input image comprises no mustache, whether its
face is male or female, we modify the input image to have a mustache. We performed a comparative
analysis of the proposed approach with the AttGAN and the FAMN in terms of putting a mustache
in the image, as presented in Figure 6. We can observe that the mustache attribute effect is applied
well to the given input images by the FTAMN, as shown in Figure 6a. The first and second columns
in Figure 6a show the candidate input images and the generated images with the required mustache
on the face. Figure 6b,c presents the results obtained using the AttGAN and the FAMN, respectively,
where the given input images in the first column are translated to the output images in the second
column with the required modification. In the case of the AttGAN, the effect of the mustache attribute
is not prominent in the translated images as compared to the FTAMN, although the face identity is
preserved well, as indicated by the red frames in Figure 6b. In the case of the FAMN, as compared to
the FTAMN, although the effect of the mustache attribute is prominent, the identity of the face image is
affected, as indicated by the blue frames in Figure 6c.Electronics 2020, 9, x FOR PEER REVIEW 12 of 17 
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In the final analysis, we performed a comparative qualitative analysis of the proposed FTAMN
with the AttGAN and the FAMN for all of the thirteen attributes, as shown in Figure 7. Figure 7a–c
shows the results obtained using the AttGAN, the FAMN, and the proposed FTAMN, respectively.
The input images in the first column are the candidate samples that are required to be modified
according to the required attributes. The second column shows the reconstructed results obtained
using the AttGAN, the FAMN, and the FTAMN, and the remaining columns comprise the modified
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results with the various aforementioned attributes ranging from bald to young. These results reflect
that the proposed FTAMN is capable of modifying multiple attributes more efficiently as compared to
the AttGAN and the FAMN.Electronics 2020, 9, x FOR PEER REVIEW 13 of 17 
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The qualitative results discussed above showed the effectiveness of the proposed network for
realistically modifying the given input images to their corresponding required attributes, compared
with the AttGAN and the FAMN approaches. However, for insight into the analysis of the proposed
approach, we performed a quantitative analysis. We selected five attributes such as bald, mouth
open/closed, bangs, eyeglasses, and mustache. First, we randomly selected the testing samples and
then generated the reconstructed samples as well as the modified images using the proposed FTAMN,
the FAMN and the AttGAN approaches. We analyzed the structure of the images generated by the
proposed FTAMN, the FAMN and the AttGAN approaches with the SSIM. To perform specific attribute
dependent analysis, we first located the required target attribute region in the input image and then
cropped the attribute region for comparative analysis using the SSIM as shown in Figure 8. The SSIM
showed the structural similarity between the modified images and the corresponding reconstructed
images. Under the rough estimation, the lower the SSIM was, the better the results were because we
want prominent modification. The per-pixel and per-image SSIM results for the CelebA dataset are
listed in Table 1. The per-pixel and per-image SSIM values were lower for the proposed FTAMN than
the FAMN and the AttGAN, showing that the proposed approach outperformed the FAMN and the
AttGAN in terms of prominent attribute modification.
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5. Conclusions

In this paper, we proposed the FTAMN for efficiently modifying multiple attributes in the given
input images. The proposed FTAMN consists of a generator and two discriminators. The first
discriminator guides the generator to generate the required modified output face images, while
the second refined discriminator further guides the generator to generate a realistic modification
in the given face images. The proposed approach, with additional training strategy of the refined
discriminator, can modify the input images effectively, as demonstrated in the experimental results.
The FTAMN modifies the given attributes prominently while preserving the identity of the remaining
attributes well in the given input images. Furthermore, as interpolation is a desirable feature in
image modification, in our future work, we intend to extend the proposed approach to gain the
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additional capability of interpolation along with attribute-independent modification for realizing a
further improvement in prominent attribute modification while preserving the other features well.
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