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Abstract: In this paper, we first propose two TVL1 variational problems for restoring images degraded
by blurring and impulse noise, and then we propose two fixed-point-like methods, using proximal
operators, for solving the new proposed TVL1 problems. Numerical experiments for several test
images blurred by Gaussian kernel and corrupted by salt-and-pepper impulse noise are provided to
demonstrate the efficiency and reliability of the proposed fixed-point-like methods. Numerical results
show that two fixed-point-like methods for solving the new TVL1 variational problems perform
very well in both PSNR (Peak signal-to-noise ratio) values and CPU time as compared with the
fixed-point-like methods for solving two existing TVL1 variational problems.
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1. Introduction

In this paper, we consider the problem of restoring images degraded by blurring and impulse noise.
Impulse noise is often generated by malfunctioning pixels in camera senses, faulty memory locations in
hardware, or erroneous transmission. Two common types of impulse noise are salt-and-pepper noise
and random-valued noise. Assume that an intensity range of an image is [dmin, dmax]. Salt-and-pepper
noise corrupts a portion of pixels with only two values of dmin or dmax while keeping other pixels
unaffected. For random-valued noise, a portion of pixels is corrupted in the same manner as
salt-and-pepper noise except that the corrupted pixels can take any random value between dmin
and dmax.

Let us assume that the true image U has an N × N square array. For convenience of exposition,
the image U is represented by a long vector u of size m = N2 which is defined by stacking the columns
of U, i.e.,

u = (uT
∗1, uT

∗2, . . . , uT
∗N)

T

where u∗` ∈ RN denotes the `th column of U. In this paper, we only consider the reflexive boundary
condition, which means that the scene outside the image boundaries is a mirror image of the scene
inside the image boundaries, and we assume that an observed (or degraded) image f ∈ Rm is
represented by

f = Au + η (1)
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where A ∈ Rm×m is a blurring operator, u ∈ Rm is the original image, and η ∈ Rm denotes the impulse
noise. Then, for salt-and-pepper noise, the noisy image f = ( fi) ∈ Rm is defined as

fi =


dmin with probability s

2

dmax with probability s
2

ũi with probability 1− s

,

where ũ = Au and s is the noise level of the salt-and-pepper noise. For random-valued noise, f is
defined as

fi =

{
di with probability r

ũi with probability 1− r
,

where di is the uniformly distributed random variable in [dmin, dmax] and r is the noise level of the
random-valued noise. Our objective of this paper is to restore u from the blurred and noisy image f as
well as possible.

The classic TVL1 model for recovering a true image u from an observed image f with impulse
noise is given by the following variational problem with the l1-norm data fidelity term and total
variational regularization term

min
u
{‖Au− f ‖1 + ρ‖u‖TV : u ∈ Rm} , (2)

where ρ > 0 is a regularization parameter and ‖u‖TV denotes the total variation (TV) of u. There are
two possible definitions for ‖u‖TV; one is the anisotropic TV, and the other is the isotropic TV. In this
paper, we only consider the isotropic TV of u ∈ Rm, which is defined by

‖u‖TV =
m

∑
i=1
‖(∇u)i‖2 =

m

∑
i=1

∥∥∥∥∥
(

(∇xu)i

(∇yu)m+i

) ∥∥∥∥∥
2

, (3)

where the discrete gradient operator O : Rm → R2m is defined as follows:

(Ou)i =
(
(Oxu)i, (Oyu)m+i

)T for each i = 1, 2, . . . , m

with

(Oxu)i =

{
0 , if i mod N = 1,

ui − ui−1, if i mod N 6= 1,
and (Oyu)m+i =

{
0 , if i ≤ N,

ui − ui−N , if i > N.

Note that, if `1-norm is used instead of `2-norm in Equation (3), then the resulting TV norm
is anisotropic.

Notice that there have been many existing mathematical models other than the TVL1 model (2)
for recovering a true image from an observed image corrupted by blur and impulse noise (e.g., see [1,2]
and the references therein). In this paper, we only consider fixed-point-like methods for solving several
types of TVL1 variational models. In the last few decades, the problem of solving the classical TVL1
model Equation (2) has been studied by many researchers (see [3–12] and the references therein). It
was shown in [9–11] that the TVL1 model works successfully in recovering blurred images corrupted
by impulse noise. Notice that the TVL1 model has many difficulties in finding its solutions both
mathematically and numerically since both the l1-norm data fidelity and regularization terms are not
differentiable.

Recently, Lu et al. [13] proposed a fixed-point method for solving the following TVL1
variational problem:

min
u

{
‖Au− f ‖1 +

λ

2
‖u‖2

2 + ρ‖u‖TV : u ∈ Rm
}

, (4)
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where λ and ρ are positive numbers. They showed that the fixed-point method performs remarkably
better in the image quality measured by PSNR and preserves more features than FTVd (Fast total
variation deconvolution) proposed in [11] at the expense of much increase in computational time.
Furthermore, Han and Yun [14] proposed a fixed-point-like method for solving the following TVL1
variational problem:

min
u
{‖Au− f ‖1 + λ‖u‖2 + ρ‖u‖TV : u ∈ Rm} , (5)

where λ and ρ are positive numbers. They showed that the fixed-point-like method restores the true
image much better than the fixed-point method proposed by Lu et al. [13]. These two approaches
motivate us to propose the following two TVL1 variational problems

min
u

{
‖Au− f ‖1 +

λ

2
‖Du‖2

2 + ρ‖u‖TV : u ∈ Rm
}

, (6)

min
u
{‖Au− f ‖1 + λ‖Du‖2 + ρ‖u‖TV : u ∈ Rm} , (7)

where D = −∆ and ∆ denote a discrete Laplacian operator. Under the reflexive boundary condition,
the discrete Laplacian operator is represented by a singular matrix in Rm×m (see Section 6). The
new TVL1 model Equation (6) uses a smooth term ‖Du‖2

2 instead of using a smooth term ‖u‖2
2. The

reason for using the term ‖Du‖2
2 is that it may better recover a true image u from an observed image f

by taking four neighborhood pixels into account when updating an approximate image during the
iteration step of iteration methods to be proposed in this paper. In addition, the new TVL1 model
Equation (7) uses a non-smooth term ‖Du‖2 instead of using a smooth term ‖Du‖2

2 for the purpose of
better preserving the edges and corners in the restored images.

Notice that the TVL1 problem Equation (4) has a unique solution since its objective function is
strictly convex, while the TVL1 problems Equations (5)–(7) may not have a unique solution since its
objective functions are just convex, not strictly convex.

This paper is organized as follows. In Section 2, we provide some definitions and useful properties
which are fundamental tools for developing numerical algorithms for solving the TVL1 variational
problems Equations (6) and (7). In Section 3, we just provide the fixed-point algorithm proposed
in [13] for solving the TVL1 problem Equation (4) and the fixed-point-like algorithm proposed in [14]
for solving the TVL1 problem Equation (5) for the purpose of comparison. In Section 4, we propose
a fixed-point-like method, using proximal operators, for solving the new proposed TVL1 problem
Equation (6). In Section 5, we propose a fixed-point-like method, using proximal operators, for solving
the new proposed TVL1 problem Equation (7). In Section 6, we provide numerical experiments for
several test images blurred by Gaussian kernel and corrupted by salt-and-pepper impulse noise in
order to demonstrate the efficiency and reliability of two fixed-point-like methods for solving the TVL1
problems Equations (6) and (7). Performance evaluation for these two methods is done by comparing
their numerical results with those of two fixed-point-like methods for the existing TVL1 problems
Equations (4) and (5). Lastly, we provide some concluding remarks.

2. Preliminaries

Some definitions and useful results which we refer to later in this paper are provided below. We
first provide the proximal operator introduced by Moreau [15].

Definition 1. Let ψ : Rm → R∪ {+∞} be a proper, convex, and lower semi-continuous (l.s.c) function. The
proximal operator of ψ at v ∈ Rm is defined by

proxψ(v) = argmin
u

{
1
2
‖ u− v ‖2

2 +ψ(u) : u ∈ Rm
}

. (8)
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Definition 2. Let ψ : Rm → R ∪ {+∞} be a proper, convex, and l.s.c function. The subdifferential of ψ at
v ∈ Rm is defined by

∂ψ(v) = {y ∈ Rm : ψ(z) ≥ ψ(v)+ < y, z− v >, ∀z ∈ Rm} . (9)

Elements in ∂ψ(v) are called subgradients.

It is well known that a subdifferential of a convex function ψ is a set-valued mapping from Rm

into a nonempty convex compact set in Rm [16]. We now provide explicit formulas for three proximal
operators used in this paper, which are the l1-norm, l2-norm, and isotropic TV norm [14,16]. The first
example gives two proximal operators for the l1-norm and l2-norm defined on Rm.

Example 1. Let || · ||1 and || · ||2 be the l1-norm and l2-norm defined on Rm, respectively. For any λ > 0 and
v ∈ Rm

prox 1
λ ‖·‖1

(v) = max
{
|v| − 1

λ
, 0
}

sign(v),

prox 1
λ ‖·‖2

(v) = max
{
‖v‖2 −

1
λ

, 0
}

v
‖v‖2

,

where |v| denotes elementwise absolute value of the vector v and .∗ denotes the elementwise multiplication.

Notice that the isotropic TV of u ∈ Rm defined by Equation (3) can be expressed as

‖u‖TV = (ϕ ◦ B)(u), (10)

where ϕ : R2m → R is a convex function defined by

ϕ(v) =
m

∑
i=1

∥∥∥∥∥
(

vi

vm+i

)∥∥∥∥∥
2

for each v = (vi) ∈ R2m

and B is a d×m matrix which represents a discrete gradient operator O with m = N2 and d = 2m
(see Section 6). The next example gives the proximal operator of the convex function ψ = 1

λ ϕ on R2m

which is called the generalized shrinkage formula, where λ > 0.

Example 2. If ψ = 1
λ ϕ and v = (vi) ∈ R2m, then

prox 1
λ ϕ(v) =

m

∏
i=1

(
prox 1

λ ‖·‖2

(
vi

vm+i

))
,

where ∏ denotes Cartesian product of vector spaces.

The following theorem outlines a relationship between the proximal operator and the
subdifferential of a convex function.

Theorem 1 ([13,15]). If ψ is a proper, convex and l.s.c. function on Rm and v ∈ Rm, then

y ∈ ∂ψ(v) ⇔ v = proxψ(v + y) ⇔ y = (I − proxψ)(v + y), (11)

where I denotes an identity operator on Rm.

3. Fixed-Point-Like Methods for the TVL1 Problems Equations (4) and (5)

In this section, we just provide the fixed-point algorithm proposed in [13] for solving the TVL1
problem Equation (4) and the fixed-point-like algorithm proposed in [14] for solving the TVL1 problem
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Equation (5) for the purpose of comparison with two fixed-point-like algorithms to be proposed in
this paper. The fixed-point method, called Algorithm 1, for the TVL1 problem Equation (4) and the
fixed-point-like method, called Algorithm 2, for the TVL1 problem Equation (5) are described below
(see [13,14] for detailed description of algorithms).

Algorithm 1 Fixed-point method for the TVL1 problem Equation (4)

1: Given degraded image f , choose positive parameters α, β, λ, ρ
2: Initialization : u0 = 0, a0 = 0 and b0 = 0
3: for k = 0 to maxit do
4: ak+1 =

(
I − prox 1

αλ ‖·‖1

) (
Auk − f + ak)

5: bk+1 =

(
I − prox 1

βλ ϕ

) (
Buk + bk)

6: uk+1 = −
(
αATak+1 + ρβBTbk+1)

7: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then
8: Stop
9: end if

10: end for

Algorithm 2 Fixed-point-like method for the TVL1 problem Equation (5)

1: Given degraded image f , choose positive parameters α, β, γ, λ, ρ
2: Initialization : u0 = 0, a0 = 0 and b0 = 0
3: for k = 0 to maxit do
4: ak+1 =

(
I − prox 1

α ‖·‖1

) (
Auk − f + ak)

5: bk+1 =

(
I − prox ρ

β ϕ

) (
Buk + bk)

6: ck+1 = − 1
γλ

(
αATak+1 + βBTbk+1)

7: uk+1 = prox 1
γ ‖·‖2

(
uk + ck+1

)
8: if ‖u

k+1−uk‖2
‖uk+1‖2

< tol then
9: Stop

10: end if
11: end for

For all algorithms considered in this paper, maxit denotes the maximum number of iterations and
tol denotes the tolerance value of the stopping criterion.

4. Fixed-Point-Like Method for the TVL1 Problem Equation (6)

In this section, we propose a fixed-point-like method, using the proximal operators, for solving
the new proposed TVL1 variational problem Equation (6). Equation (6) can be expressed as

min
u

{
‖Au− f ‖1 +

λ

2
‖Du‖2

2 + ρ(ϕ ◦ B)(u) : u ∈ Rm
}

, (12)

where λ and ρ are positive numbers, ϕ and B are defined the same as in Equation (10). Using Theorem
1, we can obtain the following property for a solution to the TVL1 problem Equation (12).

Theorem 2. If ϕ is a real-valued convex function on Rd, B is an d×m matrix, A is an m×m matrix, and u
is a solution to the TVL1 problem Equation (12), then, for any α, β > 0, there exist vectors a ∈ Rm and b ∈ Rd

such that



Electronics 2020, 9, 735 6 of 17

a =
(

I − prox 1
α ‖·‖1

)
(Au− f + a) , (13)

b =

(
I − prox ρ

β ϕ

)
(Bu + b) , (14)

0 = αATa + λDT Du + βBTb. (15)

Conversely, if there exist positive numbers α, β, a ∈ Rm, b ∈ Rd and u ∈ Rm satisfying Equations (13)–(15),
then u is a solution to the TVL1 problem Equation (12).

Proof. We assume that u ∈ Rm is a solution to the TVL1 problem Equation (12). By the Fermat rule in
convex analysis for problem Equation (12) and using the relations ∂(ϕ ◦ B) = BT ◦ (∂ϕ) ◦ B, we have

0 ∈ AT(∂‖ · ‖1)(Au− f ) + λDT Du + ρBT(∂ϕ)(Bu). (16)

From relation (16), for any α, β > 0, we can choose a vector a ∈ ∂( 1
α‖ · ‖1)(Au − f ) and b ∈

∂( ρ
β ϕ)(Bu) satisfying

αATa + λDT Du + βBTb = 0. (17)

From Equation (17), we obtain Equation (15). By Theorem 1, the inclusions a ∈ ∂( 1
α‖ · ‖1)(Au− f )

and b ∈ ∂( ρ
β ϕ)(Bu) lead to Equations (13) and (14), respectively.

Conversely, suppose that there exist α, β, a ∈ Rm, b ∈ Rd and u ∈ Rm satisfying
Equations (13)–(15). Again, by Theorem 1, Equations (13) and (14) ensure that a ∈ ∂( 1

α‖ · ‖1)(Au− f )
and b ∈ ∂( ρ

β ϕ)(Bu), respectively. From Equation (15), relation (16) holds. Hence, u ∈ Rm is a solution
to the TVL1 problem Equation (12).

By splitting Equations (13) and (14) of Theorem 2 and rearranging the resulting equations, we can
obtain the following corollary.

Corollary 1. If ϕ is a real-valued convex function on Rd, B is an d×m matrix, A is an m×m matrix, and u
is a solution to the TVL1 problem Equation (12), then, for any α, β > 0, there exist vectors a ∈ Rm and b ∈ Rd

such that

a∗ = a− f − prox 1
α ‖·‖1

(Au− f + a) , (18)

b∗ = b− prox ρ
β ϕ (Bu + b) , (19)

(αAT A + λDT D + βBT B)u = −αATa∗ − βBTb∗, (20)

a = Au + a∗, (21)

b = Bu + b∗. (22)

Conversely, if there exist positive numbers α, β, a ∈ Rm, b ∈ Rd and u ∈ Rm satisfying Equations (18)–(22),
then u is a solution to the TVL1 problem Equation (31).

Proof. It is sufficient to show that Equations (13)–(15) in Theorem 2 are equivalent to Equations
(18)–(22) in Corollary 1. Splitting Equations (13) and (14) and using notations (18) and (19) for a∗ and
b∗, one obtains

a = Au− f + a− prox 1
α ‖·‖1

(Au− f + a) = Au + a∗, (23)

b = Bu + b− prox ρ
β ϕ (Bu + b) = Bu + b∗. (24)
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Hence, we obtain Equations (21) and (22). Substituting Equations (21) and (22) into Equation (15),
Equation (20) is also obtained.

From Equations (18)–(22) of Corollary 1, we can obtain a fixed-point-like method, called
Algorithm 2, using the proximal operators for the TVL1 problem Equation (6).

Algorithm 3 Fixed-point-like method for the TVL1 problem Equation (6)

1: Given degraded image f , choose positive parameters α, β, λ, ρ
2: Initialization : u0 = f , a0 = 0 and b0 = 0
3: for k = 0 to maxit do
4: ak+ 1

2 = ak − f − prox 1
α ‖·‖1

(
Auk − f + ak)

5: bk+ 1
2 = bk − prox ρ

β ϕ

(
Buk + bk)

6: Solve (αAT A + βBT B + λDT D)uk+1 = −αATak+ 1
2 − βBTbk+ 1

2 for uk+1

7: ak+1 = Auk+1 + ak+ 1
2

8: bk+1 = Buk+1 + bk+ 1
2

9: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then
10: Stop
11: end if
12: end for

Notice that the linear system in line 6 of Algorithm 2 is equivalent to solving the following least
squares problem

min
u

∥∥∥∥∥∥∥
 −

√
α ak+ 1

2

−
√

β bk+ 1
2

0

−

√

α A√
β B√
λ D

 u

∥∥∥∥∥∥∥
2

2

. (25)

Hence, the linear system in line 6 of Algorithm 2 is solved by applying the CGLS (Conjugate
gradient least squares method [17]) to the problem Equation (25). The following theorem provides a
convergence analysis for Algorithm 2.

Theorem 3. Let {an}, {bn}, and {un} be sequences generated by Algorithm 2. If we can find two consecutive
vectors uk and uk+1 such that uk+1 = uk for some positive values of α, β, λ and ρ, then uk+1 is a solution to the
TVL1 problem Equation (6).

Proof. Substituting Equations (13) and (14) into Equation (15), one obtains

0 = αAT
(

I − prox 1
α ‖·‖1

)
(Au− f + a)

+ βBT
(

I − prox ρ
β ϕ

)
(Bu + b) + λDT Du.

(26)

From Theorem 2, it can be easily seen that, if u, a, and b satisfy Equation (26) for some positive
values of α, β, λ and ρ, then u is a solution to the TVL1 problem Equation (6). In Algorithm 2, if
uk+1 = uk for some positive values of α, β, λ and ρ, then it can be easily shown that

ak+1 = (I − prox 1
α ‖·‖1

)
(

Auk+1 − f + ak), (27)

bk+1 = (I − prox ρ
β ϕ)
(

Buk+1 + bk). (28)

Simplifying the linear system in line 6 of Algorithm 2 using the relations in lines 7 and 8 of
Algorithm 2, one can obtain

αATak+1 + βBTbk+1 + λDT Duk+1 = 0. (29)
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Substituting Equations (27) and (28) into Equation (29), one obtains

0 = αAT
(

I − prox 1
α ‖·‖1

) (
Auk+1 − f + ak

)
+ βBT

(
I − prox ρ

β ϕ

)(
Buk+1 + bk

)
+ λDT Duk+1.

(30)

From Equation (30), it can be seen that uk+1, ak, and bk satisfy Equation (26) for some positive
values of α, β, λ and ρ. Hence, uk+1 is a solution to the TVL1 problem Equation (6).

Theorem 3 gives an idea of how to stop Algorithm 2. In practical applications, we do not have to
find uk+1 which is equal to uk. Instead, we need to find uk+1 which is reasonably close to uk. Hence,
we have used the following stopping criterion in Algorithm 2

‖uk+1 − uk‖2

‖uk+1‖2
< tol,

where tol is a suitably chosen small tolerance value.

5. Fixed-Point-Like Method for the TVL1 Problem Equation (7)

In this section, we propose a fixed-point-like method, using the proximal operators, for solving
the new proposed TVL1 variational problem Equation (7). Equation (7) can be expressed as

min
u
{‖Au− f ‖1 + λ‖Du‖2 + ρ(ϕ ◦ B)(u) : u ∈ Rm} , (31)

where λ and ρ are positive numbers, ϕ and B are defined the same as in Equation (10). Using Theorem
1, we can obtain the following property for a solution to the TVL1 problem Equation (31).

Theorem 4. If ϕ is a real-valued convex function on Rd, B is an d×m matrix, A is an m×m matrix, and u
is a solution to the TVL1 problem Equation (31), then, for any α, β, γ > 0, there exist vectors a, c ∈ Rm and
b ∈ Rd such that

a =
(

I − prox 1
α ‖·‖1

)
(Au− f + a) , (32)

b =

(
I − prox ρ

β ϕ

)
(Bu + b) , (33)

c =
(

I − prox 1
γ ‖·‖2

)
(Du + c) , (34)

0 = αATa + βBTb + γλDTc. (35)

Conversely, if there exist positive numbers α, β, γ and vectors a, c ∈ Rm, b ∈ Rd, and u ∈ Rm satisfying
Equations (32)–(35), then u is a solution to the TVL1 problem Equation (31).

Proof. We assume that u ∈ Rm is a solution to the TVL1 problem (31). Applying the Fermat rule in
convex analysis to problem (31), one can obtain

0 ∈ AT(∂‖ · ‖1)(Au− f ) + BT (∂ρϕ) (Bu) + λDT(∂‖ · ‖2)(Du). (36)

From relation (36), for any α, β, γ > 0, we can choose a vector a ∈ ∂( 1
α‖ · ‖1)(Au − f ), b ∈

∂( ρ
β ϕ)(Bu) and c ∈ ∂( 1

γ‖ · ‖2)(Du) satisfying

αATa + βBTb + γλDTc = 0.
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Hence, Equation (35) holds. By Theorem 1, the inclusions a ∈ ∂( 1
α‖ · ‖1)(Au− f ), b ∈ ∂( ρ

β ϕ)(Bu)

and c ∈ ∂( 1
γ‖ · ‖2)(Du) lead to Equations (32)–(34), respectively.

Conversely, suppose that there exist α, β, γ > 0, a, c, u ∈ Rm, and b ∈ Rd satisfying Equations
(32)–(35). By Theorem 1, Equations (32)–(34) ensure that a ∈ ∂( 1

α‖ · ‖1)(Au− f ), b ∈ ∂( ρ
β ϕ)(Bu) and

c ∈ ∂( 1
γ‖ · ‖2)(Du), respectively. From Equation (35), relation (36) holds. Hence, u ∈ Rm is a solution

to the TVL1 problem Equation (31).

By splitting Equations (32)–(34) of Theorem 4 and rearranging the resulting equations, we can
obtain the following corollary.

Corollary 2. If ϕ is a real-valued convex function on Rd, B is an d×m matrix, A is an m×m matrix, and u
is a solution to the TVL1 problem Equation (31), then, for any α, β, γ > 0 there exist vectors a, c ∈ Rm and
b ∈ Rd such that

a∗ = a− f − prox 1
α ‖·‖1

(Au− f + a) , (37)

b∗ = b− prox ρ
β ϕ (Bu + b) , (38)

c∗ = c− prox 1
γ ‖·‖2

(Du + c) , (39)

(αAT A + βBT B + γλDT D)u = −αATa∗ − βBTb∗ − γλDTc∗, (40)

a = Au + a∗, (41)

b = Bu + b∗, (42)

c = Du + c∗. (43)

Conversely, if there exist positive numbers α, β, γ and vectors a, c ∈ Rm, b ∈ Rd, and u ∈ Rm satisfying
Equations (37)–(43), then u is a solution to the TVL1 problem Equation (31).

Proof. It is sufficient to show that Equations (32)–(35) in Theorem 4 are equivalent to Equations
(37)–(43) in Corollary 2. Splitting Equations (32)–(34) and using notations (37)–(39) for a∗, b∗ and c∗,
one obtains

a = Au− f + a− prox 1
α ‖·‖1

(Au− f + a) = Au + a∗, (44)

b = Bu + b− prox ρ
β ϕ (Bu + b) = Bu + b∗, (45)

c = Du + c− prox 1
γ ‖·‖2

(Du + c) = Du + c∗. (46)

From Equations (44)–(46), Equations (41)–(43) are obtained. Substituting Equations (41)–(43) into
Equation (35), Equation (40) is also obtained.

From Equations (37)–(43) of Corollary 2, we can obtain a fixed-point-like method, called
Algorithm 3, using the proximal operators for the TVL1 problem Equation (7).

Notice that the linear system in line 7 of Algorithm 3 is equivalent to solving the following least
squares problem:

min
u

∥∥∥∥∥∥∥
 −

√
α ak+ 1

2

−
√

β bk+ 1
2

−
√

γλ ck+ 1
2

−

√

α A√
β B

√
γλ D

 u

∥∥∥∥∥∥∥
2

2

. (47)

Hence, the linear system in line 7 of Algorithm 3 is also solved by applying the CGLS to the
problem Equation (47). The following theorem provides a convergence analysis for Algorithm 3.
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Algorithm 4 Fixed-point-like method for the TVL1 problem Equation (7)

1: Given degraded image f , choose positive parameters α, β, γ, λ, ρ
2: Initialization : u0 = 0, a0 = 0, b0 = 0 and c0 = 0
3: for k = 0 to maxit do
4: ak+ 1

2 = ak − f − prox 1
α ‖·‖1

(
Auk − f + ak)

5: bk+ 1
2 = bk − prox ρ

β ϕ

(
Buk + bk)

6: ck+ 1
2 = ck − prox 1

γ ‖·‖2

(
Duk + ck)

7: Solve (αAT A + βBT B + γλDT D)uk+1 = −αAT ak+ 1
2 − βBT bk+ 1

2 − γλDT ck+ 1
2 for uk+1

8: ak+1 = Auk+1 + ak+ 1
2

9: bk+1 = Buk+1 + bk+ 1
2

10: ck+1 = Duk+1 + ck+ 1
2

11: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then
12: Stop
13: end if
14: end for

Theorem 5. Let {an}, {bn}, {cn}, and {un} be sequences generated by Algorithm 3. If we can find two
consecutive vectors uk and uk+1 such that uk+1 = uk for some positive values of α, β, γ, λ and ρ, then uk+1 is a
solution to the TVL1 problem Equation (7).

Proof. Substituting Equations (32)–(34) into Equation (35), one obtains

0 = αAT
(

I − prox 1
α ‖·‖1

)
(Au− f + a)

+ βBT
(

I − prox ρ
β ϕ

)
(Bu + b)

+ γλDT
(

I − prox 1
γ ‖·‖2

)
(Du + c) .

(48)

Theorem 4 implies that if u, a, b and c satisfy Equation (48) for some positive values of α, β, γ, λ

and ρ, then u is a solution to the TVL1 problem Equation (7). In Algorithm 3, if uk+1 = uk for some
positive values of α, β, γ, λ and ρ, then it can be shown that

ak+1 = (I − prox 1
α ‖·‖1

)
(

Auk+1 − f + ak), (49)

bk+1 = (I − prox ρ
β ϕ)
(

Buk+1 + bk), (50)

ck+1 = (I − prox 1
γ ‖·‖2

)
(

Duk+1 + ck). (51)

Simplifying the linear system in line 7 of Algorithm 3 using the relations in lines 8 to 10 of
Algorithm 3, one can obtain

αATak+1 + βBTbk+1 + γλDTck+1 = 0. (52)

Substituting Equations (49)–(51) into Equation (52), one obtains

0 = αAT
(

I − prox 1
α ‖·‖1

) (
Auk+1 − f + ak

)
+ βBT

(
I − prox ρ

β ϕ

)(
Buk+1 + bk

)
+ γλDT

(
I − prox 1

γ ‖·‖2

)(
Duk+1 + ck

)
.

(53)

Equation (53) implies that uk+1, ak, bk and ck satisfy Equation (48) for some positive values of
α, β, γ, λ and ρ. Hence, uk+1 is a solution to the TVL1 problem Equation (7).
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Theorem 5 also gives an idea of how to stop Algorithm 3. Thus, Algorithm 3 has the same
stopping criterion as Algorithm 2.

6. Numerical Experiments

In this section, we provide numerical experiments for several test problems to evaluate the
efficiency of two fixed-point-like methods, called Algorithms 3 and 4, proposed in this paper.
Performances of these two algorithms are analyzed by comparing their numerical results with those of
Algorithms 1 and 2.

In Section 2, it was shown that the isotropic TV of u ∈ Rm can be represented by ||u||TV =

(ϕ ◦ B)(u), where ϕ and B are defined the same as in Equation (10). Let Dx = Dy be the first order
backward finite difference matrix of order N defined by

Dx = Dy =



0 0 · · · · · · 0
−1 1 · · · · · · 0

...
. . . . . . . . .

...
0 · · · −1 1 0
0 · · · 0 −1 1


.

Then, B can be expressed as a d×m matrix given by

B =

(
IN ⊗ Dx

Dy ⊗ IN

)
,

where ⊗ denotes the Kronecker product, IN denotes the identity matrix of order N, m = N2, and
d = 2m. The discrete negative Laplacian operator D = −∆ can be represented by an m×m matrix
(IN ⊗ Dxx + Dyy ⊗ IN), where Dxx = Dyy is the second order finite difference matrix of order N
defined by

Dxx = Dyy =



1 −1 · · · · · · 0
−1 2 −1 · · · 0

...
. . . . . . . . .

...
0 · · · −1 2 −1
0 · · · 0 −1 1


.

In order to illustrate the efficiency and reliability of two fixed-point-like methods, called
Algorithms 3 and 4, for solving the new proposed TVL1 problems Equations (6) and (7), we provide
numerical results for five test images such as Cameraman, Lena, House, Boat, and Pepper (see Figure 1).
The pixel size of five test images is 256× 256. All numerical tests have been performed using Matlab
R2019a (Mathworks, Natick, MA, USA) on a personal computer with 3.2 GHz CPU and 8 GB RAM.
maxit is set to 3500 (for Algorithms 1 and 2) or 500 (for Algorithms 3 and 4), and tol is set to 1× 10−5

(for Algorithm 1), 1.5× 10−4 (for Algorithm 2), 2× 10−4 (for Algorithm 3) or 2× 10−3 (for Algorithm 4).
For the CGLS method which is used to solve a linear system every iteration of Algorithms 3 and 4, the
tolerance for stopping criterion is set to 5× 10−3 (for Algorithm 3) or 1× 10−2 (for Algorithm 4), and
the maximum number of iterations is set to 25. Note that the CGLS uses a symmetric preconditioner to
accelerate its convergence. To see how to construct the symmetric preconditioner, we refer to [18,19].

To evaluate the quality of the restored images, we use the PSNR (peak signal-to-noise ratio) value
between the restored image and original image which is defined by

PSNR = 10 log10

N2 max
i,j
|uij|2

‖U − Ũ‖2
F


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where ‖ · ‖F refers to the Frobenius norm, U and Ũ are the original and restored images with size
N × N, respectively. In addition, uij stands for the value of original image U at the pixel point (i, j)
and N2 is the total number of pixels. It is generally true that the larger PSNR value stands for the
better quality of restored image.

Cameraman image Lena image House image Boat image Pepper image

Figure 1. True images for Cameraman, Lena, House, Boat, and Pepper.

For all numerical experiments, we have used the test images with an intensity range of [0, 1]. For
all test problems, we choose the degraded test images which are resulting images blurred by Gaussian
kernel of size 15× 15 with standard deviation 9 under the reflexive boundary condition, and then
corrupted by salt-and-pepper impulse noise with noise levels 20%, 30%, 60%, or 70%. In Tables 1–4, P0

represents the PSNR values for the blurred and noisy images f , Alg denotes the algorithm to be used,
Cam denotes the Cameraman image, PSNR represents the PSNR value for the restored image, Iter
denotes the number of iterations, and CPU denotes the elapsed CPU time in seconds. All parameters
α, β, γ, λ, and ρ are chosen as the best one by numerical tries.

Tables 1–4 contain numerical results of Algorithms 1–4 for degraded test images with 20%, 30%,
60%, or 70% salt-and-pepper impulse noises. In Table 1, we do not provide numerical results for
Algorithms 1 and 2 since it does not converges within maxit = 3500. Figure 1 contains the true images
for Cameraman, Lena, House, Boat, and Pepper. In Figures 2–6, the first row contains the images
restored by Algorithms 1–4 for blurred images with 60% salt-and-pepper noise, and the second row
contains the images restored by Algorithms 1–4 for blurred images with 30% salt-and-pepper noise.

60% noisy blurred image Restoration by Alg 1 Restoration by Alg 2 Restoration by Alg 3 Restoration by Alg 4

30% noisy blurred image Restoration by Alg 1 Restoration by Alg 2 Restoration by Alg 3 Restoration by Alg 4

Figure 2. Image restoration for blurred Cameraman image with 60% or 30% salt-and-pepper noise.
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60% noisy blurred image Restoration by Alg 1 Restoration by Alg 2 Restoration by Alg 3 Restoration by Alg 4

30% noisy blurred image Restoration by Alg 1 Restoration by Alg 2 Restoration by Alg 3 Restoration by Alg 4

Figure 3. Image restoration for blurred Lena image with 60% or 30% salt-and-pepper noise.

60% noisy blurred image Restoration by Alg 1 Restoration by Alg 2 Restoration by Alg 3 Restoration by Alg 4

30% noisy blurred image Restoration by Alg 1 Restoration by Alg 2 Restoration by Alg 3 Restoration by Alg 4

Figure 4. Image restoration for blurred House image with 60% or 30% salt-and-pepper noise.

60% noisy blurred image Restoration by Alg 1 Restoration by Alg 2 Restoration by Alg 3 Restoration by Alg 4

30% noisy blurred image Restoration by Alg 1 Restoration by Alg 2 Restoration by Alg 3 Restoration by Alg 4

Figure 5. Image restoration for blurred Boat image with 60% or 30% salt-and-pepper noise.
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60% noisy blurred image Restoration by Alg 1 Restoration by Alg 2 Restoration by Alg 3 Restoration by Alg 4

30% noisy blurred image Restoration by Alg 1 Restoration by Alg 2 Restoration by Alg 3 Restoration by Alg 4

Figure 6. Image restoration for blurred Pepper image with 60% or 30% salt-and-pepper noise.

Table 1. Numerical results for TVL1 problems with 20% salt-and-pepper impulse noise.

Image P0 Alg α β γ λ ρ tol PSNR Iter CPU
Cam 11.42 3 130 0.09 0.0001 0.0017 2× 10−4 32.71 146 81

4 90 0.001 0.0003 0.004 0.00007 2× 10−3 35.52 257 107
Lena 11.52 3 270 0.09 0.0002 0.0015 2× 10−4 32.33 133 71

4 150 0.0008 0.0003 0.004 0.00007 2× 10−3 34.38 317 106
House 11.54 3 500 0.2 0.002 0.0015 2× 10−4 38.74 123 61

4 170 0.0004 0.0006 0.004 0.00005 2× 10−3 40.53 339 90
Boat 11.11 3 480 0.2 0.0008 0.0017 2× 10−4 33.14 163 83

4 160 0.0004 0.0007 0.004 0.00004 2× 10−3 35.88 290 77
Pepper 11.65 3 270 0.09 0.0002 0.0015 2× 10−4 36.57 136 71

4 170 0.0004 0.0006 0.004 0.00005 2× 10−3 38.01 316 82

Table 2. Numerical results for TVL1 problems with 30% salt-and-pepper impulse noise.

Image P0 Alg α β γ λ ρ tol PSNR Iter CPU
1 2.2 0.1 0.14 0.004 1× 10−5 25.12 2323 868
2 6.3 0.001 1.3 1.03 0.003 1.5× 10−4 30.03 1843 678

Cam 9.86 3 450 0.008 0.0001 0.003 2× 10−4 30.49 243 80
4 115.0 0.0004 0.0004 0.003 0.0002 2× 10−3 33.46 359 101
1 2.2 0.07 0.13 0.01 1× 10−5 26.65 3122 1172
2 6.3 0.0003 1.3 1.1 0.003 1.5× 10−4 30.09 1845 679

Lena 9.92 3 50.0 0.0002 0.0008 0.003 2× 10−4 30.42 270 44
4 40.0 0.0006 0.0006 0.005 0.00004 2× 10−3 32.78 195 85
1 2.2 0.2 0.15 0.02 1× 10−5 31.20 2195 829
2 6.6 0.00003 1.3 1.1 0.003 1.5× 10−4 36.57 2332 857

House 9.91 3 460 0.002 0.005 0.003 2× 10−4 37.02 161 21
4 37.0 0.0005 0.0007 0.004 0.00005 2× 10−3 39.03 191 79
1 2.2 0.06 0.14 0.007 1× 10−5 26.23 2907 1082
2 6.6 0.00008 1.3 1.1 0.003 1.5× 10−4 30.43 1668 624

Boat 9.55 3 450 0.002 0.001 0.003 2× 10−4 30.75 228 41
4 36.0 0.0006 0.0004 0.005 0.00005 2× 10−3 33.99 206 94
1 2.2 0.07 0.13 0.01 1× 10−5 28.11 3060 1123
2 6.3 0.0003 1.3 1.1 0.003 1.5× 10−4 34.15 1680 628

Pepper 10.13 3 50.0 0.0002 0.0008 0.003 2× 10−4 34.58 230 37
4 37.0 0.0005 0.0007 0.004 0.00005 2× 10−3 36.51 178 74
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Table 3. Numerical results for TVL1 problems with 60% salt-and-pepper impulse noise.

Image P0 Alg α β γ λ ρ tol PSNR Iter CPU
1 2.6 0.2 0.29 0.02 1× 10−5 22.11 1433 536
2 6.3 0.002 1.1 1.1 0.014 1.5× 10−4 24.86 1096 409

Cam 7.11 3 6.70 0.002 0.004 0.014 2× 10−4 24.95 287 58
4 23.5 0.03 0.003 0.01 0.0011 2× 10−3 26.96 227 118
1 2.6 0.2 0.29 0.03 1× 10−5 23.89 1716 643
2 5.9 0.0008 1.1 1.1 0.015 1.5× 10−4 26.38 1143 428

Lena 7.12 3 20.0 0.002 0.009 0.013 2× 10−4 26.54 246 40
4 27.5 0.0019 0.0017 0.0081 0.0007 2× 10−3 28.55 320 110
1 2.5 0.3 0.25 0.02 1× 10−5 27.17 1313 513
2 5.3 0.0008 0.7 1.3 0.015 1.5× 10−4 31.15 958 356

House 7.07 3 20.0 0.003 0.009 0.013 2× 10−4 31.53 175 34
4 24.0 0.0018 0.003 0.0082 0.0004 2× 10−3 34.44 250 86
1 2.5 0.2 0.24 0.01 1× 10−5 23.13 1553 582
2 1.5 0.001 1.4 2.2 0.015 1.5× 10−4 24.72 1546 578

Boat 6.76 3 10.0 0.001 0.020 0.011 2× 10−4 25.00 242 41
4 38.5 0.002 0.002 0.008 0.001 2× 10−3 28.43 320 101
1 2.5 0.3 0.25 0.02 1× 10−5 23.79 1507 555
2 5.3 0.0008 0.7 1.3 0.015 1.5× 10−4 27.77 877 328

Pepper 7.40 3 20.0 0.002 0.009 0.013 2× 10−4 27.88 258 41
4 27.5 0.0019 0.0017 0.0081 0.0007 2× 10−3 31.22 309 105

Table 4. Numerical results for TVL1 problems with 70% salt-and-pepper impulse noise.

Image P0 Alg α β γ λ ρ tol PSNR Iter CPU
1 2.0 0.77 0.10 0.05 1× 10−5 22.26 2258 835
2 6.0 0.30 5.0 1.50 0.03 1.5× 10−4 23.40 709 266

Cam 6.47 3 2.6 0.03 0.01 0.03 2× 10−4 23.49 169 46
4 8.5 0.017 0.09 0.018 0.022 2× 10−3 23.55 93 34
1 2.0 0.77 0.10 0.05 1× 10−5 24.11 2605 960
2 6.0 0.50 5.0 1.50 0.03 1.5× 10−4 24.84 649 243

Lena 6.47 3 24.0 0.006 0.03 0.03 2× 10−4 25.11 247 40
4 20.0 0.017 0.02 0.05 0.0065 2× 10−3 25.48 166 46
1 1.9 0.80 0.09 0.05 1× 10−5 27.12 2095 786
2 10.0 1.00 7.0 1.90 0.03 1.5× 10−4 28.71 546 204

House 6.40 3 26.0 0.03 0.02 0.027 2× 10−4 29.18 154 35
4 18.0 0.018 0.02 0.05 0.0065 2× 10−3 29.54 154 44
1 2.0 0.77 0.10 0.05 1× 10−5 22.54 2563 940
2 5.0 0.50 5.0 1.90 0.03 1.5× 10−4 23.24 570 213

Boat 6.11 3 7.0 0.003 0.04 0.024 2× 10−4 23.48 278 46
4 13.0 0.019 0.02 0.05 0.0053 2× 10−3 24.04 135 44
1 1.9 0.80 0.09 0.05 1× 10−5 23.47 2662 978
2 6.0 0.50 4.0 1.50 0.03 1.5× 10−4 24.66 506 189

Pepper 6.75 3 26.0 0.03 0.02 0.027 2× 10−4 24.87 169 40
4 12.0 0.02 0.02 0.05 0.01 2× 10−3 25.20 109 36

As can be seen in Tables 1–4, Algorithm 4 for the TVL1 problem Equation (7) restores the true
image best, and Algorithm 1 for the TVL1 problem Equation (4) restores the true image worst. That
is, Algorithm 4 yields the highest PSNR values, and Algorithm 1 yields the lowest PSNR values.
Algorithm 4 for the TVL1 problem Equation (7) restores the true image much better than Algorithm 3
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for the TVL1 problem Equation (6), while Algorithm 4 takes much more CPU time than Algorithm 3 in
most cases. In addition, Algorithms 3 and 4 for the new proposed TVL1 problems Equations (6) and (7)
perform better than Algorithms 1 and 2 for the TVL1 problems Equations (4) and (5) in both PSNR
values and CPU time. Based on numerical results, Algorithm 4 for solving the new TVL1 problem
Equation (7) is preferred over Algorithm 3 for solving the new TVL1 problem Equation (6), though it
may take more CPU time than Algorithm 3 in most cases.

7. Conclusions

In this paper, we proposed two new TVL1 variational problems Equations (6) and (7) for
restoring images degraded by blurring and impulse noise, and then we proposed two fixed-point-like
methods, called Algorithms 3 and 4, for solving the new TVL1 problems Equations (6) and (7).
Numerical experiments showed that Algorithms 3 and 4 for solving the new proposed TVL1 problems
Equations (6) and (7) perform better than Algorithms 1 and 2 for solving the existing TVL1 problems
Equations (4) and (5) in both PSNR values and CPU time, and Algorithm 4 restores the true image
much better than Algorithm 3 at the expense of some increase in CPU time. Hence, it can be concluded
that Algorithms 3 and 4 are preferred over Algorithms 1 and 2, and Algorithm 4 for the new TVL1
problem Equation (7) is strongly recommended to use even though it may take more CPU time than
Algorithm 3 for the new TVL1 problem Equation (6).

The fixed-point-like methods and TVL1 problems Equations (6) and (7) proposed in this paper can
be applied to an image inpainting problem or image denoising problem with impulse noise. Future
work will study these kinds of problems. Notice that the problem of finding optimal parameters for
fixed-point-like methods is a very challenging problem. Future work will also study how to choose
optimal or near optimal parameters for the fixed-point-like methods proposed in this paper.
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