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Abstract: The Internet of Things (IoT) is an exponentially growing emerging technology, which is
implemented in the digitization of Electronic Health Records (EHR). The application of IoT is used
to collect the patient’s data and the data holders and then to publish these data. However, the data
collected through the IoT-based devices are vulnerable to information leakage and are a potential
privacy threat. Therefore, there is a need to implement privacy protection methods to prevent
individual record identification in EHR. Significant research contributions exist e.g., p+-sensitive
k-anonymity and balanced p+-sensitive k-anonymity for implementing privacy protection in EHR.
However, these models have certain privacy vulnerabilities, which are identified in this paper with
two new types of attack: the sensitive variance attack and categorical similarity attack. A mitigation
solution, the θ-sensitive k-anonymity privacy model, is proposed to prevent the mentioned attacks.
The proposed model works effectively for all k-anonymous size groups and can prevent sensitive
variance, categorical similarity, and homogeneity attacks by creating more diverse k-anonymous
groups. Furthermore, we formally modeled and analyzed the base and the proposed privacy models
to show the invalidation of the base and applicability of the proposed work. Experiments show that
our proposed model outperforms the others in terms of privacy security (14.64%).
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1. Introduction

The current highly-connected technological society generates a huge amount of digital
data—termed Big Data, collected through internet-enabled devices, termed the Internet of Things
(IoT) [1]. Billions of these IoT devices sense and collect the data e.g., the patient’s Electronic Health
Records (EHR) [1–4]. The collected data are then shared with corporate or government bodies for
research and policymaking. However, the privacy of the individual records is an important goal
when sharing data that is collected through the IoT enabled devices [1–6]. This is because these data
contain names or some unique identification (explicit identifiers—Aei), such as age, gender, zip code
(quasi-identifiers—Aqi), and some health-related private information (sensitive attributes—As) [7–12].
To preserve privacy, eliminating the Aei before sharing or publishing the data is not enough [11]. For an
attacker or an adversary, the quasi-identifiers (QIs) are the partial identifiers that can be used to link
to some externally available data e.g., voting or census data, to identify an individual As, known
as a linking attack [10–12].
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To implement data privacy, a lot of cryptographic techniques [13,14] have been proposed.
However, these techniques have high computational overheads. Another simple approach is data
anonymization. Data anonymization is about concealing an individual’s identity in a small crowd of
records before data publishing. The publishing of such anonymized records are known as Privacy
Preserving Data Publishing (PPDP) [11]. A plethora of PPDP methods have been proposed [7–12,15–19].
These techniques are broadly classified into:

• Identity disclosure prevention: Generalizing [7–9] the QI values of a group of records from more
specific values to less specific values e.g., k-anonymity [7,8], where every record should be
indistinguishable from at least k-1 other records. An individual having probability higher than 1/k
cannot be re-identified by an intruder/attacker.

• Attribute disclosure prevention: Preventing to reveal private information (As information) about
an individual. Examples are l-diversity [15] and t-closeness [16] privacy models.

In this paper, a variance-based privacy model is proposed to prevent attribute disclosure risk.
For sensitive attribute privacy, the p+-sensitive k-anonymity, (p, α)-sensitive k-anonymity [17] privacy
model is a state-of-the-art privacy model where the sensitive values are categorized into four categories.
For creating a k-anonymous group of records called an equivalence class (EC), a l-diversity [15] is
applied. However, two new possible attacks are applied: sensitive variance attack and categorical
similarity attack. These attacks breach the privacy of the p+-sensitive k-anonymity and (p, α)-sensitive
k-anonymity [17] algorithm, due to the As values from the single sensitive category or a low diversity
at As category level. The proposed mitigation solution: the θ-Sensitive k-anonymity privacy model,
is a numerical measure of privacy strength for thwarting the attribute disclosure risk. The proposed
approach also appends small amounts of noise tuple(s) to increase the variability in an EC, if needed.
To minimize the utility loss, the proposed algorithm uses a bottom-up generalization (i.e., the local
recoding mechanism [18]) because it minimally distorts the data compared to global recoding
techniques [12]. The following section presents the motivation of our work.

1.1. Motivation

Broadly examining the PPDP models for preventing attribute disclosure risk [11,15–18], it was
concluded that the worthiness of each model exists in the diversity of an EC where the sensitive
values belongs to different categories. Such variability of As values creates a diverse EC. Different
privacy models employ different techniques to achieve variability in k-anonymous ECs. The repeated
frequencies of same sensitive values are the only obstruct in achieving the required diversity in an EC.
The privacy models in [17] and [18] provide a meaningful approach in dealing with the attribute
disclosure problem, however the following limitations have been observed.

• p+-sensitive k-anonymity and (p, α)-sensitive k-anonymity [17]: This model is a modified version
of the p-sensitive k-anonymity [19], for preventing a similarity attack. However, the p+-sensitive
k-anonymity and (p, α)-sensitive k-anonymity models have zero diversity at the As category level,
which may lead to a categorical similarity attack. A more powerful possible attack by an adversary
is the sensitive variance attack, due to the low variability at As category level. With an upsurge
in the adversary’s knowledge (background knowledge—BK) the privacy level can be breached,
which may cause attribute disclosures. The proposed θ-sensitive k-anonymity privacy model
provides a privacy solution to prevent all such attacks.

• Balanced p+-sensitive k-anonymity and (p,α)-sensitive k-anonymity [18]: This model is an enhanced
version of p+-sensitive k-anonymity model. It balances the categorical level sensitive attributes
in each EC. However, it still has low diversity at the As category level and works only for more
than three k-anonymous size ECs.

To solve the problems of homogeneity, categorical similarity, and sensitive variance attacks
in the p+-sensitive k-anonymity and (p, α)-sensitive k-anonymity model [17], we propose the θ-Sensitive
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k-anonymity privacy model in this paper. The categorical level similarity and small EC size problems
in the balanced p+-sensitive k-anonymity and (p, α)-sensitive k-anonymity model [18] are also addressed
by achieving a more balanced and diverse EC even at the category level and its execution on small
k size EC, i.e., k = 2.

1.2. Contributions

The proposed θ-sensitive k-anonymity privacy model multiplies variance (σ2) of a fully diverse
EC with an observed value (observation 1) which produces a threshold value θ. The θ value
ensures prevention against attribute disclosure in an EC which collectively results in the privacy of
the given dataset.

The contributions of this paper are as follows:

• A new θ-sensitive k-anonymity privacy model is proposed where privacy in an EC is achieved
through a threshold value, i.e., θ. The θ value for an EC is obtained by multiplying variance and
an observation value. The variance-based diversity in an EC prevents the sensitive variance attack,
which automatically prevents the categorical similarity attack. In the proposed model, the As

values checking is not only performed with next ECs, but a cross check is also performed during
the last EC. If the required privacy is not achievable with the existing As values, then a noise is
added for the required diversity.

• We formally modeled and analyzed the base model in [17] and the proposed θ-sensitive
k-anonymity privacy model using High Level Petri-Nets (HLPN).

• Based on the above points, simulation results show that our proposed θ-sensitive k-anonymity
model has only 0.002679% higher privacy leakage than its counterpart p+-sensitive k-anonymity
model which has 14.65% higher privacy leakage with the base line privacy.

Paper Organization. The remainder of the paper is organized as follows. Section 2 explains
related work. Preliminaries are discussed in Section 3. The considered attacks and problem statement
in p+-sensitive k-anonymity along with its formal analysis are presented in Section 4. Section 5 discusses
the proposed θ-sensitive k-anonymity model and its formal analysis. In Section 6, the experiments and
evaluations are provided. Section 7 concludes the paper.

2. Related Work

In this section, the literature related to the proposed privacy model is studied from various
aspects. The data collected through the various IoT enabled devices [1–6,20,21] must be anonymized
before publishing because of the private information contained in it. Anonymized data are published
for the sake of its maximum utility without disclosing the private information of an individual.
For anonymization, the privacy models can be broadly classified into semantic [22,23] or syntactic [7–19]
approaches. The semantic privacy models add a random amount of noise for preserving privacy, e.g.,
differential privacy models [22,23]. In differential privacy, the deletion or addition of an individual’s
record or noise does not affect the data analysis results while preserving the privacy. Syntactic privacy
models create a k-indistinguishable [7] ECs. In syntactic privacy, two main privacy disclosure risks are:
identity disclosure [7–10,12] and attribute disclosure [11,15–18]. The k-anonymity [7,8] is an example of
preventing identity disclosure that generalizes a set of records with respect to QIs. These k-anonymous
records are indistinguishable from other k-1 records in a dataset. However, k-anonymity lacks the ability
to provide attribute level protection. Attribute disclosure releases the value of confidential attributes
corresponding to an identified individual record. Although in l-diversity [15], l distinct groups for
the As in an EC are required. However, the skewness and similarity attacks can breach the privacy
because l-well sensitive attribute groups are not always possible over the existing Ass. Similarly
for t-closeness [16], the threshold for As and its distance distribution in an EC has low data utility,
and the earth mover distance (EMD) is not an efficient prevention for attribute linkage [24,25].
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In [26] by Torra, identity and attribute disclosure were both addressed. Jose et al. [27] proposed
an adaptive two-step iterative anonymization approach. A privacy leakage for an attribute linkage
attack was possible because of having numerous versions. An extended k-anonymity model was
proposed by Rahimi et al. [28] to protect identity and attribute information. However, a BK attack
is possible because the publisher is unaware of the adversary’s knowledge. The k-join-anonymity
model proposed by Sowmiyaa et al. [29] was the same as k-anonymity, which focuses only on
identity disclosure risk. The (α, k)-anonymity model proposed by Wong et al. [30], used a global
recoding technique, which has a high utility loss and, due to table linkage attack, it was susceptible to
the disclosure of attributes.

The (k, e)-anonymization model proposed by Zhang et al. [31] publishes separate tables, consisting
of As and QI to reduce the relationship between them, and where instead of generalization,
a permutation-based approach has been adopted. Although in aggregated search, not using
QI-generalization is recommended for accuracy improvement. However, a probabilistic attack is
possible over the As due to the one-time publication of the microdata. The (ε, m)-anonymity model [32]
deals with the numeric As, however it is limited to work for categorical As. Xiao et al. [33] worked
on personalized anonymity that uses a greedy personalized generalization approach. This model
de-associated As and QI instead of modifying the association between them.

In Reference [19], the p-sensitive k-anonymity found the closest neighbor. This model was then
improved by Sun at al. [17] with a top-down specialization. The generated anonymized datasets should
be from at least p distinct As values categories for each EC. However, the developed algorithm in [17] is
vulnerable to privacy leakage from sensitive variance, categorical similarity, and homogeneity attacks.
In this paper, these privacy limitations were mitigated using the proposed θ–sensitive k-anonymity
algorithm. The proposed privacy model is a syntactic privacy model for preventing attribute disclosure
risk, which adds a fixed amount of noise to create k-anonymous ECs.

3. Preliminaries

Let an original Microdata Table (MT ) = {EI, QI, S} (i.e., Table 1a) be the private static data
(i.e., one-time release) for a publisher to publish. The t ∈MT is a tuple that belongs to an individual
i, such that EI = {Aei

1 , Aei
2 , Aei

3 . . .A
ei
h }, QI = {Aqi

1 , Aqi
2 , Aqi

3 . . . Aqi
m}, and S = {As} (this work considers

only single As). The k-anonymized data essentially consists of Aqi and As, while Aeis are removed.
This is because an adversary can link the Aqi with some external information (e.g., voter or census
data) to perform a record linkage attack (i.e., identity disclosure) [34]. However, the k-anonymous
Aqi values prevent the record against the record linkage attack in an EC. For example, consider some
common diseases in a 2-anonymous (Table 1b) obtained from the original microdata Table 1a. Table 2
summarizes the notations used in this paper.
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Table 1. a. Original microdata. b. 2-Anonymous microdata.

ID Name Age Zip Code Country Disease

1 JULIAN 34 14247 USA HIV
2 KALEEM 40 14208 Pakistan HIV
3 JOHANNA 26 14205 USA Cancer
4 MICHAEL 25 14242 Canada Cancer
5 JUDITH 40 14054 USA Hepatitis
6 EVA 48 13073 Japan Phthisis
7 HARIS 45 14066 Pakistan Asthma
8 PAUL 40 14063 USA Obesity
9 YIN LI 40 14243 China Flu
10 BEVERLY 37 14203 Canada Flu
11 DENISE 36 14204 Canada Flu
12 JANETTE 35 14247 USA Indigestion

(a)

ID Age Zip Code Country Disease

1 34–40 14208-14247 ** HIV
2 34–40 14208-14247 ** HIV
3 25–26 14205-14242 America Cancer
4 25–26 14205-14242 America Cancer
5 >= 40 14054-14063 America Hepatitis
6 >= 40 14054-14063 America Obesity
7 >= 40 13073-14066 Asia Asthma
8 >= 40 13073-14066 Asia Phthisis
9 35–40 14243-14247 ** Flu
10 35–40 14243-14247 ** Indigestion
11 36–37 14203-14204 America Flu
12 36–37 14203-14204 America Flu

(b)

Definition 1. k-anonymity [7,8]: Relation R having Aqi over the schema R(A1,A2, . . . , An) in a masked
microdata table T′ is said to be k-anonymous if and only if, for any combination Aqi

i × t(Aqi
in) values from start to

end, is greater than or equal to k in R.

iff |∀{Aqi
i × t(Aqi

in)}| ∈ T′ ≥ k

where k is the anonymity level (as shown in Table 1b). The k-anonymity model blends the k records into at least
a k-1 crowd but it does not impose any restrictions on the algorithm to sufficiently protect the individuals.
Consequently, the probability of linking a victim to a specific record through Aqis is at most 1/k.

Definition 2. l-Diversity [15]: A QI block in a masked microdata table T′ having m QI-blocks QI j (1 ≤ j ≤ m)

is l-diverse, if it contains more than or equal to l well significant As values. In an l-diverse modified microdata
table T′, every QI block is l-diverse.

iff |∀{Aqi
i ×As

i }| ∈ T′ ≥ l

Definition 3. t-closeness [16]: An EC is considered as t-closed if the distance between the distribution of
the sensitive data in a class and the distribution of sensitive data in the whole table is equal to or less than threshold
t. If every EC is t-closed, the whole table is t-closed. To calculate the distance while studying the transportation
problem, researchers have explored some methods [33,35]. However, most of them focused on the Earth Mover
Distance (EMD) method [15,36]. The EMD(P, Q) measures the minimum cost for transforming one distribution
P to another distribution Q. It depends on the amount and distance of mass moved.
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Table 2. Summary of notations used.

Symbol Description Symbol Description

MT Microdata Table Aqi
i

Quasi identifier for ith end user
MMT Micro Mask Table As Sensitive Attributes
A Attributes in MT Aid Identifier Attribute
PD Published Data As

ECc Sensitive value in an ECc
ECs Set of Equivalence classes As

ECn Sensitive value in an ECn

ECi
k-anonymous group of tuples with
the combination of Aqi

i and As As
ECn−1 Sensitive value in an ECn−1

ECc Equivalence Class current As
ECb Sensitive value in an ECb

ECb Equivalence Class broken N Noise
VECi Variance for ECi M Total number of record in an EC
MSn Max frequency of As

i in an ECn MSc Max frequency of As
i in an ECc

MSn−1 Max frequency of As
i in an ECn-1 MSb Max frequency of As

i in an ECb
P Places used in formal modeling Gqi

i
QI-group at index i

ϕ Data Types in formal modeling

Definition 4. p-sensitive k-anonymity [19]: The masked microdata table T’ is p-sensitive k-anonymous if it is
k-anonymous and each EC in T′ has at least p distinct As values.

iff |∀{Aqi
i × t(Aqi

in)}| ∈ T′ ≥ k ∧
(∀G : {Aqi

i ×As
i } ∈ T′ •As

n ← Count(Dist(As
i )) ≥ p )

where G represents an EC that already satisfies k-anonymity and is a set of As
i and Aqi

i . The value of As
n must be

equal to or greater than p, where As
n represents distinct As values in an EC.

Definition 5. Categorical similarity attack: If an adversary knows that the l-diverse modified microdata T′

(satisfying k-anonymity and l-diversity) has sensitive values belong to the single sensitive category in an EC
from a p distinct As categories.

Definition 6. Sensitive variance attack: The privacy leakage in an EC due to the low variability of sensitive
values from p distinct As categories.

Definition 7. High-Level Petri Nets (HLPN) [37]: The behavior of the system with its mathematical properties
are modeled specifically via HLPN. An HLPN is a combination of 7-tuples N = (P, T, F,ϕ, Rn, L, M0), where P
represented by circles are the set of places. T is the set of transitions in the system represented by rectangular
boxes, such that P∩ T = ∅. F represents the flow relations such that F ⊆ (P× T)∪ (T ∪ P). ϕ maps places P
to the data types. Rn represents the rules or properties for transitions that verify the correctness of the underlying
system. L represents labels on F, and M0 is the initial marking.

The following section reviews the p+-sensitive k-anonymity model, to highlight its shortcomings
concerning sensitive variance or an S-Variance attack.

4. Problem Statement

Definitions 8 and 9 describe the p+-sensitive k-anonymity and (p, α)-sensitive k-anonymity
models [17], respectively.
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Definition 8. p+-sensitive k-anonymity [17]: A masked microdata T′, fulfills k-anonymity and for each As

value belongs to distinct categories must be equal to or greater than p for each EC in T′.

(∀G : {Aqi
i ×As

i } ∈ G∪C ∧
∀C ∈ G •Cn ← Count(Dist(C)) ≥ p)

where C depicts As values categorizations that already fulfill a p-sensitive k-anonymous approach. Cn

represents distinct categories in Table 3 [17] and must be equal to or greater than p. Table 4a obtained from
Table 1a, shows p+-sensitive k-anonymity model in which p = 2, k = 4 and c = 2. The ECs column in Table 4a is
not part of a published table.

Table 3. Category table.

Category ID Sensitive Values

1 HIV, Cancer
2 Hepatitis, Phthisis
3 Asthma, Obesity
4 Indigestion, Flu

Table 4. a. 2+-Sensitive 4-Anonymous. b. (3,1)-Sensitive 4-Anonymous.

ECs ID Age Zip Code Country Disease

EC1

1 =< 40 14204-14247 America HIV
2 =< 40 14204-14247 America Cancer
3 =< 40 14204-14247 America Flu
4 =< 40 14204-14247 America Indigestion

EC2

5 >= 40 13073-14066 **** Hepatitis
6 >= 40 13073-14066 **** Phthisis
7 >= 40 13073-14066 **** Asthma
8 >= 40 13073-14066 **** Obesity

EC3

9 =< 40 14203-14247 **** HIV
10 =< 40 14203-14247 **** Cancer
11 =< 40 14203-14247 **** Flu
12 =< 40 14203-14247 **** Flu

(a)

ID Age Zip Code Country Disease

1 =< 40 14205-14247 **** HIV
2 =< 40 14205-14247 **** HIV
3 =< 40 14205-14247 **** Cancer
4 =< 40 14205-14247 **** Flu

5 >= 40 13073-14066 **** Hepatitis
6 >= 40 13073-14066 **** Phthisis
7 >= 40 13073-14066 **** Asthma
8 >= 40 13073-14066 **** Obesity

9 =< 40 14203-14247 America Cancer
10 =< 40 14203-14247 America Flu
11 =< 40 14203-14247 America Flu
12 =< 40 14203-14247 America Indigestion

(b)
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Definition 9. (p,α)-sensitive k-anonymity [17]: A modified microdata table T′ that fulfills the k-anonymity
property and there must be p distinct sensitive attribute values in each QI-group having a minimum weight
of at least α.

(∀G : {Aqi
i ×As

i } ∈ T′ ∧ As
n ≥ p ∧wc ≥ α)

where G represents all groups in masked micro table T′ that already fulfill the p-sensitive k-anonymity property.
Weight should be assigned to each category and each sensitive value p must have weight in each category i.e., wc

that must be at least α. Table 4b obtained from Table 1a, shows (p,α)-sensitive k-anonymity.

The sensitive variance and categorical similarity attacks have minor difference concerning
the variability of As in an EC. The sensitive variance attack is more powerful than categorical similarity
attack, i.e., categorical similarity attack ∈ sensitive variance attack. Therefore, the attribute disclosure
through the sensitive variance attack automatically covers the disclosures through the categorical
similarity attack. The EC2 and EC3 in Table 4a obtained through the p+-sensitive k-anonymous
approach have categorical similarity and sensitive variance attacks and are explained in Table 5. Table 5
shows the variance calculation for these ECs, where a high variance for more diverse EC2 and small
variance for less diverse EC3 can be seen.

Table 5. Variance calculation for different equivalence classes (ECs) in Table 4a.

EC2 EC3

Sensitive Values x f x2 f ∗ x f ∗ x2 Sensitive Values x f x2 f ∗ x f ∗ x2

Hepatitis 1 1 1 1 1 Flu 1 2 1 2 2

Phthisis 2 1 4 2 4 Cancer 2 1 4 2 4

Asthma 3 1 9 3 9 HIV 3 1 9 3 9

Obesity 4 1 16 4 16 N =
∑

f = 4
∑

f x = 7
∑

f x2 = 15
N =

∑
f = 4

∑
f x = 10

∑
f x2 = 30

Variance (σ2)
(∑

fX2

N − (
∑

fX
N )

2)
=

(
30
4 − (

10
4 )

2
)
= 1.25 Variance (σ2)

(∑
fX2

N − (
∑

fX
N )

2)
=

(
15
4 − (

7
4 )

2
)
= 0.69

To calculate the variance of the ECs, an ordered weight is given to the As values in such a way that
the higher the frequency (f ), the lower the weight (x) will be. For example, consider EC3 in Table 4a,
i.e., Flu = 2, Cancer = 1, HIV = 1. The numeric value against each sensitive value represents its
frequency occurrence in EC3. If an EC, e.g., EC2 is fully diverse i.e., size 4 and 4-diverse, then the order
weight will be Hepatitis = 1, Phthisis = 1, Asthma = 1, Obesity = 1. In EC2, because of having a single
occurrence for each As value, has a higher variance than EC3.

An adversary, using the category table (Table 3), can analyse the ECs in Tables 4a and 4b published
in [17]. The variability in some of the ECs is low concerning the category table. Therefore, the adversary
can isolate the sensitive values that belong to a specific category and hence to individual records,
and thus breaches the identity of an individual.

Critical Review of p+-Sensitive k-Anonymity Model

We formally modeled the p+-sensitive k-anonymity algorithm to check its invalidation concerning
a sensitive variance attack. The detail formal verification of the working of p+-sensitive k-anonymity
privacy model along with its properties is given in [18] from Rule 1 to Rule 7, which gets original
data input from the end-user and processes it. The sensitive variance attack over the p+-sensitive
k-anonymity model is shown in Figure 1, where the arrow heads show the data flow. Table 6 shows
variable types and their descriptions. The places P and its description are shown in Table 7. The attacker
model in Figure 1 consists of three entities: the end-user, the adversary, and the trusted data publisher.
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Table 6. Types used in high-level Petri nets (HLPN) for p+-sensitive k-anonymity.

Data Types Description

k User input for k-anonymity
p p-sensitivity numeric value
C Distinct categories set
Condition Boolean value 1 or 0
Sn Total distinct As values
Cn Total distinct categories
Asi

i Sensitive Attribute for ith end user
Aid

i Identifier attribute for ith end user

Table 7. Data-types, places, and their mapping.

Places Description

ϕ (MT) P (Aqi
× As

× Aid)
ϕ (MMT) P (Aqi

× As
× k)

ϕ (KLevel) P (k)
ϕ (CondTF) P (Condition)
ϕ (Gi) P (Aqi

× As
× k)

ϕ (ds) P (As)
ϕ (CountDs) P (Sn)
ϕ (Gi

′

) P (Aqi
× As

× k × C)
ϕ (PLevel) P (p)
ϕ (CompC) P (Cn)
ϕ (Publish Data) P (Aqi

× As)
ϕ (BK) P (Aid

× Aqi)

ϕ (SA Disc) P (Aqi
i × Asi

i × Aid
i )
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Figure 1. HLPN for p+-sensitive k-anonymity attack model.

In Figure 1, Transitions T, which are input to the HLPN model, consist of patients’ records
(original data). A trusted data publisher further processes the data to minimize an attribute disclosure
risk. Generalization and removing identifying attributes transform the data into masked data. After
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generalization, the masked microdata table is ready to be published. An adversary then exploits
the published data for its benefits.

In this paper, the first seven rules in [18] are outlined briefly. For input k, the data publisher
processes the original data to perform data generalization via the Generalize() function and each EC
is stored at place the micro mask table (MMT); The publisher confirms the k-anonymity condition.
If successful, Condition variable is set to true. For each EC, the Dist() function calculates the distinct
As values and stores its count at place ds. To further process the array of t As, the Count() function
counts the Sn and stores it at place Count Ds. Before the calculation of Cn, p-sensitive k-anonymity is
verified in masked data. Transition CheckPK checks at least p distinct As values in each EC in the whole
table. PLevel stores the input transition p value for comparison. Apart from the checking condition for
k-anonymity, another checking for p value is done. If it returns true it means the data already fulfills
k-anonymity. This concludes a successful transition, ensures the p-sensitive k-anonymous property.
Next, computing As values categories using function Get_Cat(). Both As values and categories are
stored at place Gi′ for further processing. Actual improvement to the prior model and source for
p+-sensitive k-anonymity is the transition CheckPPK. Distinct categories are calculated in a column,
using the sensitive values. Comp C stores this ‘number’ of distinct categories. The Cn involved in each
EC is checked with transition CheckPPK to confirm that there must be at least p distinct categories.
The minimum value for p is 2. The p+-sensitive k-anonymity properties are fulfilled if the condition
variable returns true.

The p+-sensitive k-anonymity model is highly vulnerable against a sensitive variance attack.
The main reason is the existence of non-diverse (low variance) As values similar to ‘Flu’
in Tables 4a and 4b, and ‘HIV’ in Table 4b. In Rule (1) through function S-Variance_ Attck(),
an adversary performs an attack on the released data using some external source of information, i.e.,
BK. In Rule (1):

R(Attack) = ∀ i40 ∈ x40, i42 ∈ x42, i43 ∈ x43 , ∀ i2 ∈ x2|
S−Variance_Attck(i40[2], i42[2])→ i43[2] = i2[1] ∧ i43[2] = i2[3]

The adversary takes the union of the published data with the external information and BK to plot
an EC. In this way, specific individuals correspond to some specific ECs that belong to homogenous
categories and hence sensitive values from a specific category disclose an individual. Therefore,
a sensitive variance attack occurs due to low variance in corresponding ECs.

5. The proposed θ-Sensitive k-Anonymity Privacy Model

5.1. Threshold θ-Sensitivity

The goal of the proposed θ-Sensitive k-anonymity privacy model is to prevent the attribute
disclosure of the individual records in MT, collected through the IoT [2–6] enabled devices. Each EC
in MT must satisfy the threshold θ value. The θ-Sensitivity, is the product of variance (σ2) and
Observation 1 (µ) as shown in Equation (1).

θ = Variance of a fully diverse EC (σ2) ∗ Observation 1(µ) (1)

The variance value represents the diversity in an EC. High variance means high diversity
in an EC and vice versa, since achieving 100% diversity is almost impossible in all cases. However,
the variance-based optimal frequency distribution of As values with some fixed amount of noise
addition achieves an enhanced data privacy in an EC. The proposed method in this paper is simple
and effective. During examining each EC, if the variance of an EC is greater than θ i.e., fully diverse,
the next EC is examined. Otherwise, the variance for the same EC is increased by swapping the As

values from the successor ECs or by adding some noise records, to make it above θ. Because of
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the required noise addition, our proposed model implies ε-differential privacy [22,23] but the proposed
approach is a syntactic anonymization [9] approach.

5.1.1. Variance (σ2)

The variance calculation in Table 5 for ECs depicts the variability in a numerical form.
To standardize the θ value for different size ECs, to prevent the sensitive variance attack, initially,
we consider a fully diverse EC, e.g., if EC size = 2 variance = 0.25, if EC size = 3 variance = 0.67, if EC
size = 4 variance = 1.25, if EC size = 5 variance = 2, and so on, then multiplying the variance with
an observed value from Observation 1 (µ).

5.1.2. Observation 1 (µ)

A decimal multiplied part: Observation 1 (µ), for getting θ, the threshold value has full control
over the EC diversity. During the simulation in Python, different values for µ were checked to get
a suitable θ value. After executing the dataset for different k size ECs, the values of µ in the range of
0.5 to 0.9 were concluded. A smaller observed µ value results in the frequent repetition of sensitive
values in an EC, and higher observed value produces a more diverse EC. However, “what observed
value should be chosen for different size ECs?”, is explained below.

Consider again, the 2+-Sensitive 4-anonymous Table 4a, EC2 variance = 1.25, and EC3 variance = 0.69.
The difference is because of the duplicated sensitive value i.e., Flu, in EC3. We propose an efficient
way of removing the frequency repetition of sensitive values to achieve a more diverse EC. For this,
we calculated the θ value. For example, consider a fully diverse EC of size 4 with variance = 1.25 and
multiply it with an observed value, ranges between 0.5 and 0.9. Since, 1.25 * 0.5 = 0.625 is less than 0.69
and 1.25 * 0.6 = 0.75, which is greater than 0.69. The difference between the two values i.e., 1.25 and 0.69,
is because of only one duplicated value “Flu”. Thus, it depends on privacy requirements and the level
of diversity we are interested to achieve. In this paper, we perform a very strict θ calculation to get
fully diverse ECs. Therefore, for example in the implementation part of the proposed Algorithm 1,
we multiply a variance of 4 size EC with an observed value µ= 0.6 to have a fully diverse EC. The same
technique is applied to all other ECs as well. The θ obtained in this way in line 8 of the proposed
Algorithm 1 in Section 5.2, is then checked in the conditional part at line 10 inside a loop to check all
ECs concerning θ requirements.

Definition 10. θ-Sensitive k-anonymity: The modified microdata table T′ fulfills θ-sensitive k-anonymity,
if it fulfills k-anonymity and for each EC in T′, the variance for each EC must be at least θ.

iff |∀{Aqi
i × t(Aqi

in)}| ∈ T′ ≥ k ∧ (∀G : {Aqi
i ×As

i } ∈ T′ •As
n ← Count(Dist(As

i )) ≥ θ )

where G represents a QI-group or EC that already satisfies k-anonymity and is a set of As
i and Aqi

i . The value of As
n

must be equal to or greater than p, where As
n is the number of distinct sensitive values in a QI-group. The proposed

θ-sensitive k-anonymity model produces the anonymized Table 8a (with noise) from the original microdata
Tables 1a and 8b (without noise) from Table 4b. The Aqi values in Tables 8a and 8b are generalized through
local recoding (bottom-up generalization) which improves the utility of the anonymized data. The 4-diverse
ECs in Tables 8a and 8b have sensitive values from a minimum of three different sensitive categories in Table 3.
Therefore, these tables have more attribute privacy and are more protected from a sensitive variance attack.
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Table 8. a. θ-sensitive 4-anonymous (with noise). b. θ-sensitive 4-anonymous (without noise).

ID Age Zip Code Country Disease

1 =< 40 14054-14247 America HIV
2 =< 40 14054-14247 America Cancer
3 =< 40 14054-14247 America Hepatitis
4 =< 40 14054-14247 America Obesity

5 >= 40 13073-14243 Asia HIV
6 >= 40 13073-14243 Asia Phthisis
7 >= 40 13073-14243 Asia Asthma
8 >= 40 13073-14243 Asia Flu

9 =< 40 14063-14247 America Cancer
10 =< 40 14063-14247 America Flu
11 =<40 14063-14247 America Flu
12 =<40 14063-14247 America Indigestion
13 =<40 14063-14247 America Obesity

(a)

ID Age Zip Code Country Disease

1 =< 40 14054-14247 America Hepatitis
2 =< 40 14054-14247 America HIV
3 =< 40 14054-14247 America Cancer
4 =< 40 14054-14247 America Flu

5 >= 40 13073-14243 Asia HIV
6 >= 40 13073-14243 Asia Phthisis
7 >= 40 13073-14243 Asia Asthma
8 >= 40 13073-14243 Asia Flu

9 =< 40 14063-14247 America Cancer
10 =< 40 14063-14247 America Obesity
11 =< 40 14063-14247 America Flu
12 =< 40 14063-14247 America Indigestion

(b)

5.2. The Proposed θ-Sensitive k-Anonymity Algorithm

The proposed θ-sensitive k-anonymity algorithm starts execution by checking the k size to create
an EC (minimum cardinality k = 2), at line 3. The algorithm can be executed on different size of k.
However, if the minimum cardinality fails, the condition becomes f alse and jumps to line 50. If it is
true, the f or loop works from line 5 to 7, to calculate the variance for each m size Gqi

i or ECi that belongs
to k-anonymous ECs and assigns them to an array i.e., VECi .

Line 8 multiplies an average observed value µ and variance σ2 for an EC to get a threshold θ
(i.e., Equation (1)). This θ value ensures the maximum level of diversity in an EC. θ mainly depends
on µ. If µ is smaller for an EC, low diverse EC will be obtained and vice versa. What level of
diversity we want to have in an EC is completely controlled by µ. Deeply observing l-diversity [15]
and t-closeness [16] and performing experiments while executing the algorithm in Python, the µ value
is kept to achieve maximum diversity. The algorithm starts working from lines 9–49, which checks
the obtained variances against user input k for each m size EC to θ. At line 10, if VEC is greater than θ,
line 46 is executed and the algorithm moves on to next EC. If it is less than θ, the current EC is named
as ECc, and the next index EC is named as ECb. Lines 12–45, each part inside if statement has two
major functionalities; swapping and require noise addition.

The else part of an if statement executes the ECs from first till ECn−1, and its first part processes
the last EC (lines 13–25). At line 12, if ECc is the last class, i.e., ECn, then from As

ECn
the value of MSn is

calculated. Similarly, the value of MSn−1 is calculated from ECn−1. At line 15, a crossCheck() function
checks the existence of most frequent As that does not exist in each other ECs. The swap() function
may be executed. The purpose of the cross-check is not to further increase or decrease VECn−1 because
it has already been processed by the else part of the current if statement. This function is for the last EC
to increase its diversity. If any of the As value from ECn exists in ECn−1 or vice versa, the swapping at
line 17 will not be performed. If swapping is performed, VECn is calculated to check with θ (line 20).
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If VECn is still less than θ, then the algorithm jumps to line 43 to add a distinct As value as noise to
increase its variance and to achieve a high diversity.

To process the first EC until the ECn−1, the else part of if statement executes (line 12). The algorithm
finds an ECb with θ greater than ECc (lines 27–31). The if statement checks ECb f ound condition, when
it is satisfied, then a function mfsv() is executed on both ECc and ECb, which calculates the most
frequent sensitive values in both ECs. Before swapping the values for MSc and MSb, a function
backCheck() checks the existence of MSb in ECc, which is an EC ahead of ECb. If the value of MSb

exists in ECc, then that MS value is removed from a temporary array in Algorithm 1.

Algorithm 1: θ-sensitive k-anonymity

Input: Microdata Table (MT)
Output: : θ− sensitive k− anonymous table (MMT)

1 Procedure : θ− sensitive k− anonymity (MMT, θ, k)
2 Let k ⊆MMT
3 if|k| ≥ 2 then
4 Condition = true;
5 for each m size EC in Gqi

i : {Aqi
i × As

i } ∈ k do I Gqi
i set, consists of Aqi

i &As
i

6 VECi ← Compute vari(As
ECi

) I vari(As
ECi

), calculate variance for each m size EC.
7 end for
8 θ← µ ∗ σ2 I θ, required threshold
9 for each m size ECi in Gqi

i : {Aqi
i × As

i } ∈ k do I Gqi
i set, consists of Aqi

i and As
i

10 if VECc < θ then
11 ECb ← ECc + 1
12 if ECn = ECc

13 MSn ← Compute mfsv(As
ECn

) Imfsv(), max frequent As
ECn

14 MSn−1 ← Compute mfsv(As
ECn−1

) Imfsv(),max frequent As
ECn−1

15 notExist← crossCheck(MSECn , MSECn−1 ) I crossCheck(), check both side existence
16 if notExist
17 swap(MSn, MSn−1) I swap(), last and 2nd last ECs MS values
18 end if
19 VECn ← Compute vari(As

ECn
)

20 if VECn < θ

21 Break
22 jump to else part of condition line 43
23 else
24 Break
25 end if
26 else
27 for ECbtill ECnin Gqi

i : {Aqi
i × As

i } ∈ K
28 if VECb > θ

29 Break loop
30 end if
31 Break loop
32 if ECb = found
33 MSc ← Compute mfsv(As

ECc
) Imfsv(), max frequency As

ECc

34 MSb ← Compute mfsv(As
ECb

) Imfsv(), max frequency As
ECb

35 MSb ← backCheck(MSECc , MSECb ) I backCheck() find MS value in MSECb , not exists in MSECc

36
37 swap(MSc, MSb) I swap(), exchange MS values
38 VECc ← Compute vari(As

ECc
) I vari(), again compute variance

39 if VECc > θ

40 ECc+ = 1
41 end if
42 else
43 NS← Compute addNoise(As

ECc
) I addNoise(), until variance>θ

44 end if
45 end if
46 else
47 ECc+ = 1
48 end if
49 end for
50 else
51 Condition = false;
52 end if
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MSECb and next MS in same ECb is checked with MSc. This process continues until it finds
a As value in MSECb that do not exist in MSc. Line 37 then swaps these two MS values along with
their corresponding records. Two important purposes are achieved through this swap function.
First, reducing the frequency of repeated As and second, increasing diversity in ECc which results
in increasing VECc . The VECc is again calculated and is checked with θ, if it is greater than θ, counter
for ECc moves to the next EC.

Here, the absence of the else statement adds noise instantly, in a situation when the variance is less
than θ, because more than one swapping for a specific ECc is possible. We add noise only once after
completely checking the frequency of each As in an EC. For example, if to produce a 4-anonymous EC
table from Table 1a, after one swapping e.g., ‘HIV’ swaps with ‘Obesity’, the resulting EC1 in Table 8a
will become 3-diverse and its variance will not meet θ, the else part might add noise to increase variance
even though there is a duplicated As ‘Cancer’ value that still exists in ECc. To reduce the frequency of
the next duplicated As value i.e., ‘Cancer’, by swapping it with another As in ECb if one exists, noise is
not added at this moment. This is achieved by going control back to line 10, and since this increased
variance is still less than θ, the procedure repeats and from an ECb a new As is swapped with the next
duplicated As value. In this way, two swapping procedures are performed and 2-diverse ECc will
become 4-diverse without adding any unnecessary noise, which results in increasing data utility and
a more diverse EC.

ECb is found because of a variance greater than θ, there are chances that no EC exists in a given
dataset having a higher variance than θ, in this case, the loop will not break (line 29). In that case,
the algorithm will jump to line 43. It will add a dummy record with distinct As value(s) via
function addNoise(). Such an addition is considered as noise to the real data just like the addition
of noise in differential privacy [22,23]. This algorithm performs very intelligent swapping and adds
noise intelligently. The purpose of these two functions (i.e., swap() and addNoise()), is to increase
the diversity keeping the utility as high as possible, which is easily achieved in our algorithm as shown
in the experimental evaluation, Section 6.

The sanitized Table 4a from p+-sensitive k-anonymity is prone to homogeneity, categorical
similarity, and sensitive variance attacks, and Table 8a from θ-sensitive k-anonymity secures the data
from such attacks because of more diversity, even at the category level, i.e., the maximum value for
category c is 4 through θ-sensitive k-anonymity, where, for Table 4a, the maximum value for c is 2.
Table 8a provides more protection against the categorical similarity attack. Further swapping of
values is not possible in the last EC; thus, a single tuple is added as noise to increase the diversity
and to prevent categorical similarity attack and sensitive variance attack. Such a small amount of
noise does not highly affect the utility of the data. Table 4b is a base table to obtain Table 8b using
the θ-sensitive k-anonymity approach. Table 8b is also highly diverse at the categorical level and there
are no repeated sensitive values. Thus, there is no need to add noise and to have a high value of
variance. The anonymized data, both in Tables 8a and 8b, obtained through the proposed θ-sensitive
k-anonymity algorithm, have no attribute disclosure risk and are defensive against homogeneity [11],
categorical similarity, and sensitive variance attacks, and even secure from skewness attacks [12].

5.3. Analysis of θ-Sensitive k-Anonymity Model Using Formal Modeling and Analysis

The proposed θ-sensitive k-anonymity model mitigates the vulnerability discussed in Section 4.
Modeling the θ-sensitive k-anonymity via HLPN has the same end-user, data publisher, and unknown
adversary, as shown in Figure 2. Tables 9 and 10, respectively, show variable types and places, and their
corresponding descriptions.

The θ-sensitive k-anonymity algorithm was modeled through the HLPN rules for the microdata
input. The data publisher initially verifies the k-value input. The original data is k-anonymized
(bottom-up generalization) after finalizing the individual records in an EC obtained through variance
calculations. In Rule (2), the k-anonymity masks the data. In Rule (2):
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R(MaskData) B ∀ i2 ∈ x2, i3 ∈ x3, i4 ∈ x4 |

i4[1] BMask {i2[2]} ∧ i4[2] BMask{i2[3]} ∧ x4′ B x4 ∪ {i4[1], i4[2], i3}

Table 9. Types used in HLPN for θ-sensitive k-anonymity.

Data Types Descriptions

M Size of an EC
Condition Boolean value 1 or 0
σ A float type value to define Sigma
µ A float type value to define Mu
θ A float type value to define Theta
Found ECb Equivalence class b when it is found
AdjECc Adjust Equivalence class c
AdjECn Adjust Equivalence class n
VarECs Variance of different Equivalence classes
VarAdjECn Adjust variance for Equivalence class n
VarAdjECc Adjust variance for Equivalence class c

Table 10. Mapping of data types in θ-sensitive k-anonymity model.

Places Descriptions

ϕ(MT) P (Aid
×Aqi

×As)
ϕ(MMT) P (ECc × ECb × ECn × k)
ϕ(KValue) P (k)
ϕ(CondTF) P (Condition)
ϕ(Sigma) P (σ)
ϕ(Mu) P (µ)
ϕ(Theta) P (θ)
ϕ(Found ECb) P (ECb)
ϕ(VarECs) P (VECc ×VECb ×VECn )
ϕ(AdjECc) P (ECc)
ϕ(AdjECn) P (ECn)
ϕ(StrictECn−1) P (ECn−1)
ϕ(VarAdjECn) P (VECn )
ϕ(VarAdjECc) P (VECc )
ϕ(Need Noise) P (VECc ×Aid

×Aqi
×As)

ϕ(PublshdData) P (Aqi
×As)

ϕ(BK) P (Aid
×Aqi)

ϕ(SA Disc) P (Aqi
i × Asi

i × Aid
i )

If an input k is less than the minimum size of an EC (i.e., <2) the condition fails. For cardinality
having a minimum value of 2 or above, the algorithm executes. The k-anonymity for true or false are
depicted in Rule (3).

R(Check k) B ∀ i5 ∈ x5, i6 ∈ x6 |
Count(i5[1]) ≥ i5[3]→ i6[1] B TRUE ∨ Count(i5[1]) � i5[3]→ i6[1] B FALSE∧ x6′ B x6∪ {i6[1]}

The threshold θ is calculated in Rule (4). Variance for a fully diverse ECs for a specific k is
calculated using the var() function. The important contributed functions are swap() and addNoise()
functions, through which the algorithm processes all ECs. Transition Adjust Var performs all these
swapping and noise additions in corresponding ECs. In Rule (5), Compute Var transitions for the initial
ECs. For the rest of the ECs, the same transition can be used in the same manner. In Rule (4):

R(Calc Theta) B ∀ i10 ∈ x10, i11 ∈ x11, i12 ∈ x12|
i12 B {i11 ∗ (i10)2

} ∧ x12′ B x12∪ {i12}
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In Rule (5):

R(Compute Var) B ∀ i8 ∈ x8, i9 ∈ x9|
i9[1] B Compute Var(i8[1])∧ i9[2] B i8[2]) ∧ x9′ B x9 ∪ {i9[1], i9[2]}

The θ-sensitive k-anonymity model’s main functionalities are described in Rule (6) and Rule (7).
Variance in each k-anonymous EC with respect to θ is checked in Rule (6). If variance of ECc is greater
than θ (i.e., (i14[1] > i13)), move to next ECc and update the value in place MMT. If the variance of
ECc is less than θ (i.e., (i14[1] < i13)), then transaction stops. We try to find ECb, and swap required
available As values from ECb. After performing all needed swapping, if the variance of AdjECc is still
less than θ (i.e., (i32 < i13)), the noise is added to increase its diversity. In Rule (6):

R(Check Variance) B ∀ i13 ∈ x13, i14 ∈ x14, i15 ∈ x15, i19 ∈ x19, i23 ∈ x23, i24 ∈ x24, i32 ∈ x32, i33 ∈ x33|
∧{(( i14[1] > i13)→ i16[1] B i15[1] + 1
∧x16′ B x16[2] ∪ {i16})∨ ((i14[1] < i13)→ i16[2] B i15[1] + 1
∧x16′ B x16[2] ∪ {i16})∨ ((i14[2] > i13))→ i19∧ x19

′

B x19∪ {i19} )∨ ((i24 < i13)→ i25
∧x25 B x25∪ {i25})∨ ((i32 < i13)→ i33∧ x33 B x33∪ {i33})}

The proposed θ-sensitive k-anonymity algorithm starts by processing each k size EC. The function
Comp mfsv( ) computes the max frequency of As

ECc
and As

ECb
, named as MSECc and MSECb , respectively.

A one-way checking function: backCheck(), checks for the existence of MSECb at FoundECb that do
not exist in earlier ECc.
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Figure 2. HLPN for θ-sensitive k-anonymity.

MSb is swapped with MSc after the checking succeeds and is saved in place AdjECc. ECc minimizes
the frequency of the As value and increases diversity. While processing the last EC, i.e., ECn, swapping
is not possible in the forward direction. Thus swapping with previous EC is performed with a condition
that the variance of already processed ECn−1 should not be decreased with θ. The crossCheck()
function confirms two-way checking, that the values for both MSn and MSn−1 are distinct and it should
not change the variance of ECn−1 at place StrictECn−1 to an undesired value again. In that case, we call
it strict ECn−1. In other words, in addition to increasing the diversity in ECn, it is also not increasing
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the frequency of As value at place ECn−1. Values are then swapped and are saved at place AdjECn.
Rule (7) shows the whole process. In Rule (7):

R(Adjst Var) B ∀ i17 ∈ x17, i20 ∈ x20, i21 ∈ x21, i28 ∈ x28, i29 ∈ x29|
(i17[1] , i17[3])→ Comp mfsv(i20[1], i17[1]) ∧ True

B backCheck(i20[1], i17[1])
∧i21 B swap(i20[1], i17[1]) ∧ x21′ B x21∪ {i21}
(i17[1] = i17[3])→ Comp mfsv(i17[3], i28[1]) ∧ True

B crossCheck(i17[3], i28[1])
∧i29 B swap(i17[3], i28[1]) ∧ x29′ B x29∪ {i29[1]}

If the variance of AdjECc is still less than θ (i.e., (i34[1] < i35)), a dummy record called noise is
added whenever needed throughout the variance adjustment process. In Rule (8), we have given
the final noise addition case for last AdjECn. Its purpose is to increase the variance at a level greater
than θ. It will produce a highly diverse EC even if there are not enough diverse records in MMT.
In Rule (8):

R(Add Noise) B ∀ i34 ∈ x34, i35 ∈ x35, i36 ∈ x36|
(i34[1] < i35)→ i36 B addNoise(i34[2], i34[3], i34[4])
∧x36′ B x36∪ {i36[1], i36[2], i36[3]}

In Rule (9), an adversary attacks against the individual’s As values. Adversary combines
the already available BK (i.e., i40[2]) with the published data (i.e., i38[2]) and performs attack to disclose
the patient’s identity (i.e., i2[2]) and the sensitive values (i.e., i2[3]). θ-sensitive k-anonymity model
can provide better privacy protection to prevent from attribute disclosure attacks because it considers
the high value of variance due to swapping and noise addition in corresponding ECs. The diversity
of sensitive attribute values in ECs prevents the adversarial BK and is more effective as compared
to the p+-sensitive k-anonymity model. Therefore, the adversary did not get private information for
the target individual and the attack results in a null value. In Rule (9):

R(S−Variance Attack) B ∀ i38 ∈ x38, i40 ∈ x40, i41 ∈ x41|
Att_Dis(i38[2], i40[2]) , (i2[1] ∪ i2[2] ∪ i2[3])
(i41[2] ∪ i41[3]) = ∅

6. Experimental Evaluation

In this section, the experiments that were performed to show the effectiveness of the proposed
θ-sensitive k-anonymity privacy model in comparison to the p+-sensitive k-anonymity model are
described. The proposed algorithm wisely diversified the AS values in a balanced way inside each EC
without using the categorical approach. The utility and quality of the anonymized released data were
checked with numerous quality measures.

6.1. Experimental Setup

All experiments were performed on a machine with an Intel Core i5 2.39 GHz processor with
4 GB RAM, using the Windows 10 operating system. The algorithm was written in Python 3.7.
We used the Adults database, which contained age, zip code, salary, and occupation attributes, which is
openly accessible at the UC Irvine Machine Learning Repository, https://archive.ics.uci.edu/ml/datasets.
We considered the age, zip code, salary as Aqis and occupation as As.

Experimental results show the usefulness of the proposed θ-sensitive k-anonymity privacy model
and protection against the categorical similarity attack and sensitive variance attack as compared
to the p+-sensitive k-anonymity model. The quality of the sanitized publicly released data was
evaluated with four utility metrics: discernibility penalty (DCP) [18,38,39], normalized average

https://archive.ics.uci.edu/ml/datasets
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QI-group (CAVG) [17,18,38], noise calculation, and query accuracy [18,33]. The execution time of both
algorithms was analyzed at the end of the experiments.

6.2. Discernibility Penalty (DCP)

The DCP proposed in [38] and used in [18,39] is an assignment of penalty (cost) to each tuple
in the generalized data set. Through this penalty, the sanitized tuple cannot be distinguished among
other tuples in the result set. Minimizing the discernibility cost is an optimal objective. The penalty for
a tuple t that belongs to an EC of size |EC|, i.e., t ε EC, will be |EC| and the penalty for each EC is |EC|2.
The complete DCP penalty for the overall sanitized released dataset R∗ can be seen in Equation (2).

DCP (R∗) =
|{EC}|∑
i=1

|ECi|
2 (2)

where {EC} are the total number of ECs in R∗. A baseline can be obtained from the most optimal DCP
score calculations as shown in [10]. For example, if k = 2 and the number of anonymized tuples are 10,
the DCP optimal score will be 22 + 22 + 22 + 22 + 22 = 20. This optimal score is called the baseline.
The approach to generate groups followed in this paper was based on k size, inclusive of the noise
tuple(s). Higher k means bigger group size, so the baseline moves up because of a high DCP score.
The p+-sensitive k-anonymity model generated groups based on p. It means the number of tuples can
be greater than p in a k-anonymous class. Figure 3 shows the DCS score for θ-sensitive k-anonymity,
including a comparison with p+-sensitive and baseline. In comparison to p+-sensitivity, the DCP score,
through the proposed θ-sensitive k-anonymity algorithm, is almost equal to the baseline, which implies
that the proposed model assigned an optimal penalty to each EC and produced an optimal DCP score.
The magnified subplots in Figure 3 with k = 12 and k = 16 for θ-sensitive k-anonymity shows the very
minor difference with baseline. This minor difference can also be seen in Table 11, with an average
DCP score of 47.2 or 0.002679% with a baseline obtained from the simulation while calculating the DCP
for the anonymized dataset R∗.
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Table 11. DCP experiment values for each k.

k Baseline θ-Sensitive p+-Sensitive

2 320300 320303 571227
4 640600 640605 778626
6 960900 960912 1214207
8 1281200 1281215 1467959
10 1601500 1601520 1876310
12 1921800 1921824 2096543
14 2242100 2242145 2632775
16 2562400 2562470 3017773
18 2882700 2882812 3315591
20 3203000 3203166 3628936
Average Val. 1761650 1761697.2 2059994.7

Diff. of θ and p+ avg. values with base avg. value – 47.2 298344.7

Percent Closer to baseline – 0.002679235 14.65

% diff. between θ and p+ – 14.64 –

This means that our proposed approach θ-sensitive, k-anonymity is 14.64% better than p+-sensitive
k-anonymity and 0.002679% closer to the baseline.

6.3. Normalized Average (CAVG)

CAVG is another mathematically sound measurement that measures the quality of the sanitized
data by the EC average size. It was proposed in [38] and applied in [17,18]. Below in Equation (3),
CAVG can be calculated as

CAVG = (
|R∗|
|{EC}|

) ÷ k (3)

where |R∗| is the overall sanitized released dataset and |{EC}| are the total number of ECs in R∗. Data
utility and CAVG are inversely proportional. Low CAVG value indicates high information utility.
The optimal goal is to have a minimum size of ECs in R∗. Figure 4 shows CAVG for p+-sensitive
k-anonymity and θ-sensitive k-anonymity over k-anonymity. p+-sensitive has lower data utility over
small k, where there is a high data utility for large k. The proposed technique has a very balanced
and sustainable utility for each input value of k. Thus, the proposed θ-sensitive k-anonymity model
performs efficiently for all sizes of k, compared to the p+-sensitive k-anonymity model.
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6.4. Noise Addition

Among different masking methods, one popular approach is the perturbation of data, i.e., noise
addition. These are dummy tuples, added to the original data that helps in achieving the required
diversity similar to the differential privacy [22,23]. The reason is if there are not enough As values to
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swap with, especially in the second last and last ECs, the gap is filled with the noise tuples to prevent
with disclosure risk. So, one of the reasons for such a good performance of the proposed model is
the cost of noise addition. Figure 5 shows the number of tuples added as a noise for different values
of k. These tuples are added to achieve the required value of the threshold θ. For different values of
k, the algorithm responds differently but the maximum number of noise tuples added for a specific
value of k is only six tuples. In the processed “Adult” dataset, the total number of tuples was 160,150
and only 34 noise tuples, i.e., 0.021% of the total size, were added in total. Such an amount of utility
loss is negligible. This small amount of noise addition is sometimes due to get a round number when
dividing the dataset size by the k size input, for example, 160150/4 = 40037.5 and 160152/4 = 40038.
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6.5. Query Accuracy

Query accuracy measures precision for aggregate queries to check the utility of the anonymized
data. It has been used by various research works [18,33]. To answer the aggregate queries, the built-in
COUNT operator is used, where Aqis are the query predicates. Consider R∗ to be a sanitized release
from original microdata R having maximum m as Aqis; Aqi

i (1 ≤ i ≤ m), where D(Aqi
i ) is the domain of

ith QI. The SQLQuery in Equation (4) for the COUNT query will work as

SQLQuery = select COUNT(∗) from R∗ where Aqi
1 ∈ D(Aqi

1 ) AND . . . AND Aqi
m ∈ D(Aqi

m) (4)

Against each query, at least one or a few number of tuples should be selected from each EC based
on query predicates. Two important parameters for query predicates are (1) query dimensionality
q, and (2) the query selectivity ϑ. Query dimensionality comprises of the number of QIs in query
predicate while query selectivity is the number of values for each attribute Ai, (1 ≤ i ≤ n). The query

selectivity is calculated as, ϑ =
|TQ |

|R| , where |TQ| are the output number of tuples after using query Q
on relation R, and |R| are the total number of tuples in the whole dataset. Query error i.e., Error(Q),
is calculated in Equation (5).

Error(Q) =
|count(R∗) − count(R)|

count(R)
(5)

where count(R∗) depicts result set from the COUNT query on an anonymized dataset while count(R)
is the result set from the COUNT query on the original microdata. More selective queries have a high
error rate.

Figure 6a shows the query error for the input value of k. We compare the p+-sensitive k-anonymity
and θ-sensitive k-anonymity using the query error rate for 1000 randomly generated aggregate queries.
The error rate increases for the high value of k because of the high range in Aqis. This selects a greater
number of tuples than the original microdata and hence high error rate. In Figure 6b, it is depicted that
the more we select tuples based on predicates, the higher the error rate will be in the anonymized data.
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6.6. Execution Time

Figure 7 shows the execution time for both p+-sensitive k-anonymity model and for the proposed
θ-sensitive k-anonymity model. The execution time for both of the algorithms increased with an increase
in value of k because of the increase in Aqis generalization range. Since we did not consider the sensitive
values categorization, our approach took a small amount of time to execute as compared to its
counterpart. In the θ-sensitive k-anonymity model, a higher execution time for k = 10, k = 16 and k = 20
was because of the time taken to add more noise tuples to achieve the required diversity.
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7. Conclusions

In this paper, the huge amount of data (i.e., Big Data) collected through the IoT-based devices were
anonymized using the proposed θ-sensitive k-anonymity privacy model in comparison to p+-sensitive
k-anonymity model. The purpose was to prevent an attribute disclosure risk in anonymized data.
The p+-sensitive k-anonymity model was considered to be vulnerable to a privacy breach from
sensitive variance, categorical similarity, and homogeneity attacks. These attacks were mitigated by
implementing the proposed θ-sensitive k-anonymity privacy model using Equation (1). In the proposed
solution, the threshold θ value decides the diversity level for each EC of the dataset. The vulnerabilities
in the p+-sensitive k-anonymity model and the effectiveness of the proposed θ-sensitive k-anonymity
model were formally modeled through HLPN, which further ensures the validation of the proposed
technique. The experimental work proved the privacy implementation and an improved utility of
the released data using different mathematical measures. For future work consideration, the proposed
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algorithm can be extended to 1:M (single record having many attribute values) [40], to multiple sensitive
attributes (MSA) [41–43], or can be modeled by considering the dynamic data set [44] approach.
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