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Abstract: In this letter, a compact dual-mode bandpass filter (BPF) with an ultra-wide stopband that
employs two folded open-loop resonators (FOLRs) and stub-loaded resonators (SLRs) is proposed.
The dual-mode resonators are optimized by loading two SLRs onto the folded open-loop resonators,
and this process is analyzed using the dual-mode theory. To miniaturize the device size and increase
chip performance, the proposed BPF is fabricated by a III–V compound semiconductor-fabrication
process using a high-performance GaAs substrate based on the integration passivation device (IPD)
fabrication process. A compact dual-mode BPF with low insertion loss and high return loss is designed
and fabricated. Two extra transmission zeros (TZs) located in the high-frequency range increase the
wide stopband, and the two TZs near the passband result in a higher selectivity. A resonant frequency
centered at 7.45 GHz with an insertion loss of −1.21 dB and a measured return loss of higher than
−23.53 dB and 3 dB fractional bandwidths of 5.8% are achieved. The stopband can be suppressed
up to 20 GHz owing to the two tunable TZs resulting in higher selectivity and wideband rejection.
The size of the filter was drastically optimized using a simplified architecture of two FOLRs and SLRs.

Keywords: dual-mode; bandpass filter; folded open-loop resonator; stub-loaded resonator

1. Introduction

The rapid development in current wireless-communication systems has resulted in remarkable
challenges and demands for high performance, low-cost, and high-yield microwave devices, such as
filters, couplers, power dividers, and balanced-to-unbalanced (balun). In particular, dual-band filters have
become key components in dual-band microwave devices. To meet the demand, dual-mode bandpass
filters (BPFs) have become attractive components in modern communication systems [1–6]. Until
today, BPFs have been produced and fabricated using Teflon-based printed circuit boards (PCBs) [7,8],
low-temperature co-fired ceramic (LTCC) [9,10], silicon-based semiconductor-fabrication technology [11],
and so on [12–14]. Compared with PCBs, the LTCC and silicon-based semiconductor-fabrication
techniques offer more advantages in terms of high integration and miniaturization. However, all these
approaches suffer defects, such as high substrate loss, low accuracy, and difficult integration with systems.

In particular, BPFs serve as an important component in microwave systems to reject out-of-band
noise from the system and environment. The fabrication accuracy of a critical dimension significantly
affects the center frequency and out-of-band response of a BPF. The GaAs substrate-based integration
passivation device (IPD) fabrication process has become one of the best approaches to meet these
challenges of modern radio-frequency (RF) components, modules, and systems owing to its excellent
performance in terms of high-quality factor, high self-resonant frequency, small size, low substrate
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loss, and so on [15,16]. A thick-metal fabrication process based on the IPD fabrication approach was
developed for this proposed dual mode BPF design. The fabrication-process details are introduced in
the Results and Discussion.

In this study, a dual-mode BPF is proposed, simulated, and fabricated using stub-loaded resonators
(SLRs) consisting of a folded open-loop resonator (FOLR) and a center-loaded stub. Zhang first
demonstrated that stub-loaded open-loop resonators can be used for a dual-band BPF design owing
to the dual-mode resonators [17]. However, in this dual-mode BPF design, the even-mode resonator
was designed with a high-frequency stopband to realize an ultrabroad out-of-band suppression of
up to 20 GHz. Two tunable extra transmission zeros (TZs) can be shifted by changing the impedance
of the designed even-mode resonator and the coupling between adjacent SLRs. Based on the above
description, modified SLRs are introduced to design a dual-mode BPF with ultra-high out-of-band
suppression using a high-performance GaAs-based IPD fabrication process. The flowchart of the
designed BPF is shown in Figure 1.
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For the odd-mode excitation, because of the electric wall at the middle of the open-loop 
resonator, the circuit will act as a shorted circuit in the SLRs. Therefore, the resonant frequency (fodd) 
can be expressed as Equation (1) [18].  

Figure 1. The flowchart of the proposed bandpass filter (BPF), including the goal, methodology,
evaluation, and results.

2. Filter Design and Theoretical Analysis

The topological structure of the proposed dual-mode SLR is shown in Figure 2, which consists of
a pair of dual-mode SLRs including folded open loop resonators with an open stub and a pair of 50 Ω
input/output feed lines. Because the SLR is located at the middle of the open-loop resonator, odd and
even-mode analyses can be used to explain its characteristics because of this symmetrical structure.
Based on the dual-mode theory, the equivalent circuits of the proposed SLR under odd and even-mode
excitations are shown in Figure 2b,c.
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For the odd-mode excitation, because of the electric wall at the middle of the open-loop resonator,
the circuit will act as a shorted circuit in the SLRs. Therefore, the resonant frequency (fodd) can be
expressed as Equation (1) [18].

fodd =
c

(4La + 4Lc + 2Wa + 4Wb)
√
εe f f

(1)

where c is the speed of light in free space and εeff represents the effective dielectric constant of the
substrate, and the symbols La, Lc, Wa, Wb in Equation (1) are related to Figure 2a. We observe that fodd
is only determined using the outer length of the folded open-loop resonator. Figure 2a shows that
the proposed SLRs are electrically shorted from the simulated current density during the odd-mode
operation, which verifies the abovementioned phenomenon.

For the even-mode excitation, a magnetic wall exists along the center of the open-loop resonator,
and no current flows across the center. Thus, an open circuit exists, as shown in Figure 2c. From the
simulated current-density result (Figure 3b), we can also observe a very low current density at the
symmetrical plane of the proposed folded open loop with SLRs. Therefore, the resonant frequency
(feven) can be expressed as Equation (2).

feven =
c

(2La + 2Lc + Wa + 2Wb + 2Lb)
√
εe f f

(2)

Compared with Equation (1), it can be found that the length of the SLR (Lb) related to Figure 2a
significantly affects the tunable BPF design and can separately shift the even-mode response; however,
it does not influence the odd mode resonant frequency. In this designed BPF, we also utilize two
tunable TZs in the high-frequency range by changing the even-mode resonant response.

Figure 3 shows the current densities at different resonant frequencies simulated using the Sonnet
EM simulation tool. Figure 3c,d shows that the odd and even-mode excitations of the proposed BPF
are similar to those shown in Figure 3a,b, respectively. Under the odd-mode operation, because of the
electric wall, the introduced SLRs are electrically shorted, and the current densities of the SLRs are
relatively low at both the right and left sides, as shown in Figure 3c.
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Figure 3. Current density of proposed resonator and BPF at different resonant frequencies: (a) and (c)
7.45 GHz (odd-mode), (b) and (d) 13.92 GHz (even-mode).

However, under the even-mode operation, a magnetic wall exists along the center of the symmetric
plane; almost all of the current is concentrated on the proposed folded open-loop resonators and SLRs;
and a null current density at the center part of the open-loop resonator can also be observed, as shown
in Figure 3d. Simultaneously, the right part of the modified open-loop resonator also shows a voltage
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null; thus, all the input signals are isolated in this even-mode operation. As a result, the even-mode
resonance of the proposed FOLR and SLRs can be optimized to increase the out-of-band suppression
at a higher frequency to realize a wide stopband. The designed BPF based on the proposed SLR
consists of two symmetrical folded open-loop resonators, SLRs, and input/output feed lines, as shown
in Figure 4a. The RF response of the proposed BPF is simulated using full-wave electromagnetic (EM)
Sonnet software and measured by an Agilent 8510C vector network analyzer (VNA). The detailed
layer information of the fabricated BPF is shown in Figure 4b. The fabricated BPF chip is connected to
the PCB using Au wire-bonding technique. To minimize the effect of the Teflon substrate, negligible
vias are made in the blank parts of the Teflon substrate and connected to the large aluminum ground,
as shown in Figure 4c. The top and 3D-views of the fabricated BPF are shown in Figure 4d.
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schematic view of the BPF layout. (b) Layer information of fabricated BPF. (c) Picture of fabricated BPF
on PCB with Al ground for measurement and (d) scanning electron microscopy (SEM) images of the
fabricated BPF.

Figure 5a shows that the resonant frequency of the designed BPF can be shifted by length
L3 corresponding to Equation (1). Meanwhile, the location of third TZ is also shifted obviously.
Consequently, the length of L3 is fixed to 900 µm with a center frequency of 7.45 GHz. In our previous
study, the 3-dB fractional bandwidth (FBW) was determined using an external quality factor (Qe),
which is related to the position of the input/output feed lines [1].

As the distance of the feed line (W4) increases from 200 to 500 µm, the FBW value continues to
decrease, indicating that Qe continued to increase as shown in Figure 5b. The bigger Qe is, the higher is
the BPF selectivity and the closer the first and second TZs become. Moreover, the fourth TZ is also
shifted to a higher frequency to achieve a wider stopband. Although the height distance of the feed
line can modify Qe, the fourth TZ is also simultaneously shifted. Nevertheless, the SLR length can only
shift the fourth TZ by itself, as shown in Figure 5c. When the SLR length changes from 200 to 800 µm,
the fourth TZ is shifted from 19.15 to 15.93 GHz, which implies that the response of the even-mode
resonator can effectively shift the fourth TZ to realize a wide out-of-band suppression. Even though
the fourth TZ is shifted to a lower frequency, the suppression level increases, and a trade-off exists
in optimized parameter L4. In this study, we modify the traditional even-mode operation from a
bandpass type to realize a bandstop type using a folded open-loop resonator. Hence, the second
resonant frequency is transferred to the bandstop response to increase the out-of-band suppression.
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Figure 5d shows that as the gap (g) between two adjacent folded open-loop resonators increases from
80 to 160 µm, the third TZ is shifted to a low frequency from 15.26 to 14.03 GHz, and the return loss
decreases from 18.92 to 30.19 dB; however, the other TZs are not affected. In conclusion, optimized
parameters L3, W4, L4, and g are fixed as 700, 400, 600, and 100 µm, respectively.
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3. Results and Discussion

The proposed BPF was fabricated on a high-performance, low-loss, 6-in GaAs substrate with
a relative permittivity of 12.85 and loss tangent of 0.006 using an advanced III–V compound
semiconductor fabrication process, as shown in Figure 6. The fabrication started with wafer cleaning
using acetone/isopropanol/deionized water for 5 min/1 min/3 min, respectively, to remove residues
from the substrate. Then, a 200-nm-thick Si3N4 passivation layer was deposited by plasma-enhanced
chemical vapor deposition (PECVD). The relative permittivity and loss tangent of the PECVD- deposited
Si3N4 layer were 7.5 and 0.002, respectively. These values could increase the breakdown voltage
and reduce the leakage current as well as improve the adhesion between the substrate and the
first metal layer. Next, a thin Ti/Au seed metal with a thickness of 20/80 nm was deposited by DC
sputtering, following electroplating mask patterning using a standard photoresist lithography process.
A thick metal layer of Cu/Au (4.5 µm/0.5 µm) was deposited using the electroplating process. Then,
the photoresist mask was stripped by a lift-off process and the undesired seed metal was removed by
reactive-ion etching to achieve chip isolation. Finally, the GaAs substrate was polished to 200 µm and
diced to separate the devices.
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Figure 6. Schematics of the proposed BPF device fabrication. (a) Wafer passivation of 200 nm thick
Si3N4 deposited by PECVD and 100 nm thick gold seed metal deposited by sputtering. (b) Plating
mask lithography and development. (c) Cu/Au (4.5 µm/ 0.5 µm) metallization by plating. (d) Removal
of photoresist by lift-off and seed metal dry etching for chip isolation.

The 3D schematic and the cross-sectional view of the finally fabricated BPF are shown in Figure 4a.
The detailed dimensions are as follows: L1 = 1600 µm, L2 = 300 µm, L3 = 700 µm, L4 = 600 µm,
W1 = 100 µm, W2 = 500 µm, W3 = 850 µm, W4 = 400 µm, t1 = 10 µm, t2 = 200 µm, and g = 100 µm.
The total chip size is 3.3 × 2.0 mm2. Figure 4c shows that the fabricated BPF on the GaAs substrate was
connected to the input and output connectors via 50 Ω impedance-matching transmission lines on
the designed PCB using die-attaching and gold wire-bonding techniques. The RF performance was
measured and characterized using the Agilent 8510C VNA.

Figure 7 shows the simulated and measured S-parameters of the proposed BPF with an open-loop
resonator and SLR. A high performance BPF is achieved with ultra-high out-of-band suppression
using SLR. The center frequency of the measured results was located at 7.45 GHz with a low insertion
loss of −1.21 dB, a return loss of −23.53 dB, and a 3-dB FBW of 5.8%. Four TZs are located at 6.42,
8.72, 15.26, and 17.97 GHz with attenuation levels of −50.33, −53.66, 62.66, and −55.32 dB, respectively.
The measured RF performance shows a good agreement with the simulated one, thereby verifying
the proposed design concept and the advanced III–V compound semiconductor-fabrication processes.
The reasons for the slight difference between the measurement and simulation results could be
attributed to the lack of an accurate connection among the connectors because of the manual soldering
of the PCB input and output matching lines [19]. Table 1 compares ours to similar reported designs,
which also proves the superior merits of this proposed BPF chip.

Table 1. Comparisons to other similar fabricated designs.

Reference Substrate &
Process

Center
Frequency

Insertion
Loss Return Loss εr Size (mm2)

[20] Silicon, IPD 2.45 3.0 14 11.68 2.8 × 1.6
[21] Glass, IPD 2.2 2.2 18 4.6 1.7 × 0.8
[22] Glass, IPD 4.2 3.2 14.4 5.2 1.5 × 1.3
[23] Silicon, MEMS 5.5 3.26 17.8 11.68 1.3 × 0.75

This Work GaAs, IPD 7.45 1.21 23.5 12.85 3.3 × 2.0
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4. Conclusions

In this study, a FOLR with SLRs has been researched for a dual mode BPF based on even and
odd-mode operations. This BPF was designed, simulated, and fabricated using high-performance
GaAs-based IPD fabrication with two SLRs and center-loaded resonators. The passband of the measured
results resonated at 7.45 GHz with a low insertion loss of −1.21 dB and an FBW of 5.8%. The four
TZs were located at 6.42, 8.72, 15.03, and 18.26. Four tunable TZs shifted by the modified open-loop
resonator and the even-mode resonator of the SLRs increased the high-frequency suppression up to
20 GHz, resulting in higher selectivity and wideband rejection. The characteristics of the dual-mode
stub-loaded open-loop resonator were investigated to modify the extra TZs to realize high performance
BPFs. Furthermore, the measured results showed a very good agreement with the simulated results.
This proposed BPF with an ultra-wide stopband, which has significant design flexibility, compact
topological structure, and high selectivity, could be an attractive candidate for RF systems.
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Abbreviation

The following abbreviations are used in this manuscript:

BPF Bandpass filter
EM Electromagnetic
FOLR Folded open-loop resonator
FBW Fractional bandwidth
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IPD Integration passivation device
LTCC Low-temperature co-fired ceramic
PCBs Printed circuit boards
PECVD Plasma-enhanced chemical vapor deposition
RF Radio-frequency
SEM Scanning electron microscopy
SLRs Stub-loaded resonators
TZs Transmission zeros
VNA Vector network analyzer
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