
electronics

Article

A Single Error Correcting Code with One-Step Group
Partitioned Decoding Based on Shared Majority-Vote

Abhishek Das 1,* and Nur A. Touba 2

1 Intel Corporation, Austin, TX 78746, USA
2 Computer Engineering Research Center, University of Texas at Austin, Austin, TX 78712, USA;

touba@ece.utexas.edu
* Correspondence: abhishekdas@utexas.edu; Tel.: 737-247-0308

Received: 31 March 2020; Accepted: 25 April 2020; Published: 26 April 2020
����������
�������

Abstract: Technology scaling has led to an increase in density and capacity of on-chip caches. This has
enabled higher throughput by enabling more low latency memory transfers. With the reduction
in size of SRAMs and development of emerging technologies, e.g., STT-MRAM, for on-chip cache
memories, reliability of such memories becomes a major concern. Traditional error correcting codes,
e.g., Hamming codes and orthogonal Latin square codes, either suffer from high decoding latency,
which leads to lower overall throughput, or high memory overhead. In this paper, a new single
error correcting code based on a shared majority voting logic is presented. The proposed codes trade
off decoding latency in order to improve the memory overhead posed by orthogonal Latin square
codes. A latency optimization technique is also proposed which lowers the decoding latency by
incurring a slight memory overhead. It is shown that the proposed codes achieve better redundancy
compared to orthogonal Latin square codes. The proposed codes are also shown to achieve lower
decoding latency compared to Hamming codes. Thus, the proposed codes achieve a balanced
trade-off between memory overhead and decoding latency, which makes them highly suitable for
on-chip cache memories which have stringent throughput and memory overhead constraints.

Keywords: error correcting codes; single error correction; orthogonal Latin square codes; Hamming
codes; shared majority vote; cache; memories; group partitioning

1. Introduction

As technology scales further, the size and demand of high capacity on-chip cache memory
also increases. More products are adopting error correcting codes (ECC) in order to protect these
memories against soft errors. The vulnerability of SRAM caches to transient or soft errors grows
with increase in cache size [1]. Research has shown that on-chip caches, e.g., L1 cache, are also
vulnerable to soft errors with the increase in number of processor cores [2]. These soft errors can
result from cosmic radiation strikes [3] or can also be a result of process variations and defects such as
unformed vias. With technology scaling, the main goal has been to push towards higher frequency and
lower power. This translates to more reliability concerns and the need for faster addressing of such
concerns. Recent developments suggest leading manufacturers are using caches as large as 16 MB [4].
The emergence of newer technologies, e.g., spin transfer torque magnetic random-access memory
(STT-MRAM), show that such technologies can provide comparable latencies to enable high speed
data transfer [5] and lead to lower power consumption for on-chip cache memories.

The use of one-step decoding error correcting codes is prevalent in this domain since they offer
the advantages of low latency error correction. The essential limit in this case, is the larger word size
and higher frequencies. With the larger size, more bits need to be protected, and in the case of a single
error, more bits will need to be processed by the decoding circuit. This would result in higher latency

Electronics 2020, 9, 709; doi:10.3390/electronics9050709 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://dx.doi.org/10.3390/electronics9050709
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/5/709?type=check_update&version=2

Electronics 2020, 9, 709 2 of 14

due to increase in logic depth. However, with the push towards higher frequency, the decoding latency
needs to be reduced to enable high throughput. Thus, the two requirements are in conflict each other
and a balance is required depending on the application.

Orthogonal Latin square (OLS) codes [6] are a class of majority logic decodable codes which offer
very low latency decoding based on a majority vote. They have been successfully used in caches to
enable reliable operation [7]. These codes have also been extended to address post-manufacturing
defects while ensuring a certain level of reliability, even under ultra-low voltages, which causes high
bit error rates [8]. But the major issue with such codes is that they have very high data redundancy,
which leads to higher memory overhead. Thus, a significant portion of the cache memory is rendered
unusable, since it needs to store valuable parity information in order to correct errors.

Hamming codes are another attractive alternative for single error correction [9]. The most prevalent
use of these codes is a single error correcting double error detecting (SECDED) code. They have the
advantage of low data redundancy which leads to smaller memory overhead. However, these codes
have higher decoding latencies compared to OLS codes due to their syndrome matching-based
decoding, which has higher logic depth. However, as technology scales further and more products try
to push the frequency limit of operation, the latency of Hamming codes sometimes becomes a limiting
factor. This is especially true for cache memories, which require very low latency decoding in order to
enable good throughput.

Over the years, numerous research works have been proposed related to SRAMs and on-chip
caches. A new class of multiple-bit upset error correcting codes is proposed in [10]. Though these
codes can correct multiple adjacent bits, the latency is higher than traditional single error correcting
(SEC) Hamming codes, which can lead to reduced performance. An ultrafast single error correcting
code which achieves very low decoding latencies is proposed in [11]. However, the latency benefit
comes at the price of increased memory overhead, which is more than that of OLS codes. Unequal
error correcting schemes have also been proposed [12,13] wherein only certain special messages have
single error correction capabilities, while other messages only have single error detection capabilities.

Other architectural techniques have also been proposed to improve cache performance. A cache
architecture with variable-strength ECC is proposed in [14]. In this proposal, lines with zero or one
failures used general SECDED and stronger multi-bit ECC to protect a fraction of the cache after
switching to low voltage. A scheme to choose between regular ECC or error detection codes (EDC)
for blocks is proposed in [15]. To reduce performance penalty due to retrieval of backend copies for
corrupted blocks, a periodic scrubbing mechanism verifies the integrity of blocks protected by EDC
and replenishes corrupted data. These schemes are orthogonal to the current proposal and can be used
in tandem with the proposed codes to enhance the performance of their general SEC portion.

For on-chip cache memories, OLS codes in general have high memory overhead which prohibits
their adoption, while the low memory overhead Hamming code can possibly lead to a performance
bottleneck for low latency applications in the future. In this research work, a new single error correction
scheme is proposed which trades off the low decoding latency of OLS codes to optimize the data
redundancy. The proposed codes are targeted towards applications which need high performance,
while allowing some leeway in terms of memory overhead. The rest of the paper is organized as follows.
Section 2 gives background information on Hamming codes and OLS codes. Section 3 describes the
proposed work as well as an optimization technique to reduce the latency of the proposed codes by
slightly trading off memory overhead. Section 4 evaluates the proposed work against Hamming codes
and OLS codes. Section 5 presents the conclusion of this research work.

2. Background Information

Majority of single error correcting codes can be divided into two distinct types. One is a direct
syndrome matching based error correcting code, the most famous example of which is a Hamming
code. The other is a majority voting-based error correcting code, e.g., orthogonal Latin square code.
The next subsections describe these two basic codes in further detail.

Electronics 2020, 9, 709 3 of 14

2.1. Hamming Codes

Hamming codes are perhaps the most widely used error correcting codes for one-step
decoding applications. They are particularly attractive due to their low redundancy and adequate
decoding latency.

A (n, k) binary Hamming code, with k data bits and a total size of n bits, is essentially a linear block
code with a k-dimensional subspace of a n-dimensional vector space. The total size of the codeword in
this space is n bits, of which k is the number of data bits and p = (n − k) is the number of parity bits.
A linear code simply means that the sum of any two codewords is another codeword. A Hamming code
has a minimum distance of 3, which is the necessary condition for single error correction. This means
that any codeword C1 can change to non-codeword NC1 when there is a single error in the codeword.
Any other codeword C2 can change to NC2 but is never able to change to non-codeword NC1 through a
single error. Thus, whenever the non-codeword NC1 is received, it can easily be decoded that the actual
codeword stored was C1. An illustration for this distance approach is shown in Figure 1. In general,
in order to correct t errors, the code needs to have a minimum distance of (2t + 1).

Electronics 2020, 9, x FOR PEER REVIEW 3 of 16

2.1. Hamming Codes

Hamming codes are perhaps the most widely used error correcting codes for one-step decoding
applications. They are particularly attractive due to their low redundancy and adequate decoding
latency.

A (n, k) binary Hamming code, with k data bits and a total size of n bits, is essentially a linear
block code with a k-dimensional subspace of a n-dimensional vector space. The total size of the
codeword in this space is n bits, of which k is the number of data bits and p = (n − k) is the number of
parity bits. A linear code simply means that the sum of any two codewords is another codeword. A
Hamming code has a minimum distance of 3, which is the necessary condition for single error
correction. This means that any codeword C1 can change to non-codeword NC1 when there is a single
error in the codeword. Any other codeword C2 can change to NC2 but is never able to change to non-
codeword NC1 through a single error. Thus, whenever the non-codeword NC1 is received, it can
easily be decoded that the actual codeword stored was C1. An illustration for this distance approach
is shown in Figure 1. In general, in order to correct t errors, the code needs to have a minimum
distance of (2t + 1).

C1 NC1 NC2 C2

Single Error Single Error

Error Correction Error Correction

>1 Error

Figure 1. Illustration of distance-3 code and the relationship between codewords and non-
codewords.

A Hamming code can be constructed based on a primitive generator polynomial of degree
log2(n). Thus, if n = 7, then the generator polynomial can simply be g(x) = 1 + x + x3. Alternatively, a
parity check matrix can be used to construct the Hamming code. A parity check matrix (H) is a matrix
that defines the code and filters for codewords through Equation (1), where cT is the transpose of a
word. If the given word c is a codeword, then the syndrome S in this case will be 0. 𝑆𝑦𝑛𝑑𝑟𝑜𝑚𝑒 𝑆 = 𝐻 × 𝑐் (1)

The construction procedure simply involves listing all possible columns of size log2(n), except
the all-zero column. All columns with weight-1 are the parity portion of the matrix. The rest of the
matrix represents the data portion. In order to compute the parity bits, the XOR of all the data bits,
whose corresponding column value is 1 for a particular row, is computed. The parity portion of the
H-matrix is ignored during code construction. An example of the parity check matrix for a (7, 4)
Hamming code with its parity equations is shown in Figure 2, where d represents data bits and p
represents parity bits.

1 1 1 0 1 0 01 1 0 1 0 1 01 0 1 1 0 0 1
d0 d1 d2 d3 p0 p1 p2H =

Figure 2. Parity check matrix of a (7, 4) binary Hamming code.

The encoding and decoding circuit of a (7, 4) Hamming code is shown in Figure 3. The decoding
procedure involves computing the syndrome, as shown in Equation (1). This essentially translates to
a bunch of XOR operations between the stored data bits and the parity bits. If the computed syndrome
is 0, then the codeword is non-erroneous and there is no need for any correction. For any single error,

Figure 1. Illustration of distance-3 code and the relationship between codewords and non-codewords.

A Hamming code can be constructed based on a primitive generator polynomial of degree log2(n).
Thus, if n = 7, then the generator polynomial can simply be g(x) = 1 + x + x3. Alternatively, a parity
check matrix can be used to construct the Hamming code. A parity check matrix (H) is a matrix that
defines the code and filters for codewords through Equation (1), where cT is the transpose of a word.
If the given word c is a codeword, then the syndrome S in this case will be 0.

Syndrome S = H × cT (1)

The construction procedure simply involves listing all possible columns of size log2(n), except
the all-zero column. All columns with weight-1 are the parity portion of the matrix. The rest of the
matrix represents the data portion. In order to compute the parity bits, the XOR of all the data bits,
whose corresponding column value is 1 for a particular row, is computed. The parity portion of the
H-matrix is ignored during code construction. An example of the parity check matrix for a (7, 4)
Hamming code with its parity equations is shown in Figure 2, where d represents data bits and p
represents parity bits.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 16

2.1. Hamming Codes

Hamming codes are perhaps the most widely used error correcting codes for one-step decoding
applications. They are particularly attractive due to their low redundancy and adequate decoding
latency.

A (n, k) binary Hamming code, with k data bits and a total size of n bits, is essentially a linear
block code with a k-dimensional subspace of a n-dimensional vector space. The total size of the
codeword in this space is n bits, of which k is the number of data bits and p = (n − k) is the number of
parity bits. A linear code simply means that the sum of any two codewords is another codeword. A
Hamming code has a minimum distance of 3, which is the necessary condition for single error
correction. This means that any codeword C1 can change to non-codeword NC1 when there is a single
error in the codeword. Any other codeword C2 can change to NC2 but is never able to change to non-
codeword NC1 through a single error. Thus, whenever the non-codeword NC1 is received, it can
easily be decoded that the actual codeword stored was C1. An illustration for this distance approach
is shown in Figure 1. In general, in order to correct t errors, the code needs to have a minimum
distance of (2t + 1).

C1 NC1 NC2 C2

Single Error Single Error

Error Correction Error Correction

>1 Error

Figure 1. Illustration of distance-3 code and the relationship between codewords and non-
codewords.

A Hamming code can be constructed based on a primitive generator polynomial of degree
log2(n). Thus, if n = 7, then the generator polynomial can simply be g(x) = 1 + x + x3. Alternatively, a
parity check matrix can be used to construct the Hamming code. A parity check matrix (H) is a matrix
that defines the code and filters for codewords through Equation (1), where cT is the transpose of a
word. If the given word c is a codeword, then the syndrome S in this case will be 0. 𝑆𝑦𝑛𝑑𝑟𝑜𝑚𝑒 𝑆 = 𝐻 × 𝑐் (1)

The construction procedure simply involves listing all possible columns of size log2(n), except
the all-zero column. All columns with weight-1 are the parity portion of the matrix. The rest of the
matrix represents the data portion. In order to compute the parity bits, the XOR of all the data bits,
whose corresponding column value is 1 for a particular row, is computed. The parity portion of the
H-matrix is ignored during code construction. An example of the parity check matrix for a (7, 4)
Hamming code with its parity equations is shown in Figure 2, where d represents data bits and p
represents parity bits.

1 1 1 0 1 0 01 1 0 1 0 1 01 0 1 1 0 0 1
d0 d1 d2 d3 p0 p1 p2H =

Figure 2. Parity check matrix of a (7, 4) binary Hamming code.

The encoding and decoding circuit of a (7, 4) Hamming code is shown in Figure 3. The decoding
procedure involves computing the syndrome, as shown in Equation (1). This essentially translates to
a bunch of XOR operations between the stored data bits and the parity bits. If the computed syndrome
is 0, then the codeword is non-erroneous and there is no need for any correction. For any single error,

Figure 2. Parity check matrix of a (7, 4) binary Hamming code.

The encoding and decoding circuit of a (7, 4) Hamming code is shown in Figure 3. The decoding
procedure involves computing the syndrome, as shown in Equation (1). This essentially translates to a
bunch of XOR operations between the stored data bits and the parity bits. If the computed syndrome
is 0, then the codeword is non-erroneous and there is no need for any correction. For any single
error, the syndrome bits will be identical to the column of the corresponding data bit that has flipped.
Consider the code in Figure 2 and assume that d2 has an error. In that case the new word y can be
represented as the actual codeword c added with an error vector e. The error vector e has an entry of 1

Electronics 2020, 9, 709 4 of 14

only at the 3rd position since bit d2 is in error, as shown in Equation (2). The syndrome of this word is
now the syndrome generated from the error vector, since the syndrome of a codeword is 0, as shown in
Equation (3). Thus, any single error is identified by the syndrome it produces. The decoding procedure
then involves matching the syndrome to the corresponding columns of a data bit, as shown in Figure 3.

e = (0 0 1 0 0 0 0) (2)

S = H × yT = H × (c + e)T = H × eT (3)

Electronics 2020, 9, x FOR PEER REVIEW 4 of 16

the syndrome bits will be identical to the column of the corresponding data bit that has flipped.
Consider the code in Figure 2 and assume that d2 has an error. In that case the new word y can be
represented as the actual codeword c added with an error vector e. The error vector e has an entry of
1 only at the 3rd position since bit d2 is in error, as shown in Equation (2). The syndrome of this word
is now the syndrome generated from the error vector, since the syndrome of a codeword is 0, as
shown in Equation (3). Thus, any single error is identified by the syndrome it produces. The decoding
procedure then involves matching the syndrome to the corresponding columns of a data bit, as shown
in Figure 3. 𝑒 = (0 0 1 0 0 0 0) (2) 𝑆 = 𝐻 × 𝑦் = 𝐻 × (𝑐 + 𝑒)் = 𝐻 × 𝑒் (3)

S0

S1

S2

d0

d1

d2

d3

Syndrome
Computation

Syndrome
Matching

d0

d1

d2

d3

Data
Correction

Decoding Logic

d0

d1

d2

d3

p0

p1

p2

p0

p1

p2

d0

d1

d2

d3

Encoding Logic

Figure 3. Encoding and decoding circuit of a (7, 4) Hamming code.

2.2. Orthogonal Latin Square Codes

OLS codes are based on Latin squares and use a majority voter for their decoding procedure [6].
A Latin square of size m is a m × m square matrix such that the rows and columns of the matrix are a
permutation of the numbers 0 to (m − 1), and each number only appears once in each row or column.
Two Latin squares are orthogonal if, when superimposed on each other, they produce a unique
ordered pair of elements in the new superimposed matrix.

The underlying principle of a t-error correcting OLS code is that there are (2t + 1) independent
sources for re-constructing each data bit. These (2t + 1) independent sources involve the data bit itself
and 2t parity check equations. The different data bits participating in the parity check equations are
unique in the sense that any data bit occurs at-most in one of the parity check equations. Thus, for
any number of errors ≤ t, at-most t sources are corrupted. The remaining (t + 1) sources remain
uncorrupted from errors. A majority logic decoding simply picks the binary value which occurs in
the maximum number of its inputs. As a result, the majority vote of (2t + 1) independent sources with
t-errors still yields the correct data bit. OLS codes have k = m2 data bits, where m is the size of the
orthogonal Latin square. The number of check bits is 2tm, where t is the maximum number of errors
that the code can correct. OLS codes are modular in design, which means that to correct additional
errors, adding 2m check bits for each error is sufficient.

For a single error correcting code, only 2m parity bits are required. An example of the parity
check matrix for the SEC code for k = 4 (i.e., m = 2) is shown in Figure 4. Thus, in this case the majority
voter chooses amongst 3 independent sources (one is the data bit and two more from parity
equations), at most one of which can be corrected. An alternate decoding procedure involves
computing the syndrome and taking the AND of the two syndrome equations any data bit is part of.

Figure 3. Encoding and decoding circuit of a (7, 4) Hamming code.

2.2. Orthogonal Latin Square Codes

OLS codes are based on Latin squares and use a majority voter for their decoding procedure [6].
A Latin square of size m is a m × m square matrix such that the rows and columns of the matrix are a
permutation of the numbers 0 to (m − 1), and each number only appears once in each row or column.
Two Latin squares are orthogonal if, when superimposed on each other, they produce a unique ordered
pair of elements in the new superimposed matrix.

The underlying principle of a t-error correcting OLS code is that there are (2t + 1) independent
sources for re-constructing each data bit. These (2t + 1) independent sources involve the data bit
itself and 2t parity check equations. The different data bits participating in the parity check equations
are unique in the sense that any data bit occurs at-most in one of the parity check equations. Thus,
for any number of errors ≤ t, at-most t sources are corrupted. The remaining (t + 1) sources remain
uncorrupted from errors. A majority logic decoding simply picks the binary value which occurs in the
maximum number of its inputs. As a result, the majority vote of (2t + 1) independent sources with
t-errors still yields the correct data bit. OLS codes have k = m2 data bits, where m is the size of the
orthogonal Latin square. The number of check bits is 2tm, where t is the maximum number of errors
that the code can correct. OLS codes are modular in design, which means that to correct additional
errors, adding 2m check bits for each error is sufficient.

For a single error correcting code, only 2m parity bits are required. An example of the parity check
matrix for the SEC code for k = 4 (i.e., m = 2) is shown in Figure 4. Thus, in this case the majority
voter chooses amongst 3 independent sources (one is the data bit and two more from parity equations),
at most one of which can be corrected. An alternate decoding procedure involves computing the
syndrome and taking the AND of the two syndrome equations any data bit is part of. This is because if
a data bit is in error, it affects both its syndrome equations and thus the output of the AND gate is 1.
If a data bit is not in error, it can at most corrupt one of the outputs of the AND gate, thus resulting in a
0. The output of the AND gate is then XORed with the data bit to produce the correct output.

Electronics 2020, 9, 709 5 of 14

Electronics 2020, 9, x FOR PEER REVIEW 5 of 16

This is because if a data bit is in error, it affects both its syndrome equations and thus the output of
the AND gate is 1. If a data bit is not in error, it can at most corrupt one of the outputs of the AND
gate, thus resulting in a 0. The output of the AND gate is then XORed with the data bit to produce
the correct output.

1 1 0 0 1 0 0
0 1 0 0 0 1 01 0 1 0 0 0 1

d0 d1 d2 d3 p0 p1 p2H = p3

0 0 1 1 0 1 0 0010
Figure 4. Parity check matrix of a (8, 4) orthogonal Latin square code.

The encoding procedure involves the computation of parity bits. This is the XOR operation of
all the data bits which are 1 in the row of the parity check matrix for which the parity bit is 1. The
decoding procedure involves the majority vote between the data bit itself and the 2t parity check
equations constructed from the rows of the parity check matrix. Thus, the decoder for data bit di will
have parity check equations from each row of the parity check matrix for which the column di is a 1.
The main advantage of the OLS codes is the simplicity of the decoder circuit, which makes it very
useful for memories with random accesses. The majority logic decoding circuit has very low latency
thereby increasing decoding speed and enabling faster read operations. The encoding circuit and
alternate decoder logic for each bit in Figure 4’s parity check matrix is shown in Figure 5.

d0

d1

d2

d3

p0

p1

p2

S0

S1

S2

Syndrome
Computation

Majority
Voter

p3

S3

d0

d1

d2

d3

d0

d1

d2

d3

Data
Correction

p0

p1

p2

d0

d1

d2

d3 p3

Decoding LogicEncoding Logic

Figure 5. Encoding and decoding circuit of a (8, 4) orthogonal Latin square code.

3. Proposed Codes

The key idea of the proposed codes is based on repeating the data portion of the parity check
matrix of a binary single error correcting orthogonal Latin square code. By design, the parity check
matrix of a single error correcting OLS code will have all unique columns in order to identify and
correct all single errors. However, by repeating a SEC OLS code, let’s say for example r times, the
number of non-unique or repeated columns is now r. Thus, if any of the corresponding data bits of
the r repeated columns is in error, then the syndrome will be the same. A simple majority in this case
would actually then mistakenly flip all the data bits corresponding to the repeated columns.

To alleviate this issue of mis-correction, we introduce the notion of groups. A group is a single
data portion of the parity check matrix which does not have any repeated columns within itself. Thus,
within a group, all columns are unique. This essentially ensures that any single error within a group
can easily be identified and corrected. Since there can be non-unique columns between different

Figure 4. Parity check matrix of a (8, 4) orthogonal Latin square code.

The encoding procedure involves the computation of parity bits. This is the XOR operation of all
the data bits which are 1 in the row of the parity check matrix for which the parity bit is 1. The decoding
procedure involves the majority vote between the data bit itself and the 2t parity check equations
constructed from the rows of the parity check matrix. Thus, the decoder for data bit di will have parity
check equations from each row of the parity check matrix for which the column di is a 1. The main
advantage of the OLS codes is the simplicity of the decoder circuit, which makes it very useful for
memories with random accesses. The majority logic decoding circuit has very low latency thereby
increasing decoding speed and enabling faster read operations. The encoding circuit and alternate
decoder logic for each bit in Figure 4’s parity check matrix is shown in Figure 5.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 16

This is because if a data bit is in error, it affects both its syndrome equations and thus the output of
the AND gate is 1. If a data bit is not in error, it can at most corrupt one of the outputs of the AND
gate, thus resulting in a 0. The output of the AND gate is then XORed with the data bit to produce
the correct output.

1 1 0 0 1 0 0
0 1 0 0 0 1 01 0 1 0 0 0 1

d0 d1 d2 d3 p0 p1 p2H = p3

0 0 1 1 0 1 0 0010
Figure 4. Parity check matrix of a (8, 4) orthogonal Latin square code.

The encoding procedure involves the computation of parity bits. This is the XOR operation of
all the data bits which are 1 in the row of the parity check matrix for which the parity bit is 1. The
decoding procedure involves the majority vote between the data bit itself and the 2t parity check
equations constructed from the rows of the parity check matrix. Thus, the decoder for data bit di will
have parity check equations from each row of the parity check matrix for which the column di is a 1.
The main advantage of the OLS codes is the simplicity of the decoder circuit, which makes it very
useful for memories with random accesses. The majority logic decoding circuit has very low latency
thereby increasing decoding speed and enabling faster read operations. The encoding circuit and
alternate decoder logic for each bit in Figure 4’s parity check matrix is shown in Figure 5.

d0

d1

d2

d3

p0

p1

p2

S0

S1

S2

Syndrome
Computation

Majority
Voter

p3

S3

d0

d1

d2

d3

d0

d1

d2

d3

Data
Correction

p0

p1

p2

d0

d1

d2

d3 p3

Decoding LogicEncoding Logic

Figure 5. Encoding and decoding circuit of a (8, 4) orthogonal Latin square code.

3. Proposed Codes

The key idea of the proposed codes is based on repeating the data portion of the parity check
matrix of a binary single error correcting orthogonal Latin square code. By design, the parity check
matrix of a single error correcting OLS code will have all unique columns in order to identify and
correct all single errors. However, by repeating a SEC OLS code, let’s say for example r times, the
number of non-unique or repeated columns is now r. Thus, if any of the corresponding data bits of
the r repeated columns is in error, then the syndrome will be the same. A simple majority in this case
would actually then mistakenly flip all the data bits corresponding to the repeated columns.

To alleviate this issue of mis-correction, we introduce the notion of groups. A group is a single
data portion of the parity check matrix which does not have any repeated columns within itself. Thus,
within a group, all columns are unique. This essentially ensures that any single error within a group
can easily be identified and corrected. Since there can be non-unique columns between different

Figure 5. Encoding and decoding circuit of a (8, 4) orthogonal Latin square code.

3. Proposed Codes

The key idea of the proposed codes is based on repeating the data portion of the parity check
matrix of a binary single error correcting orthogonal Latin square code. By design, the parity check
matrix of a single error correcting OLS code will have all unique columns in order to identify and correct
all single errors. However, by repeating a SEC OLS code, let’s say for example r times, the number of
non-unique or repeated columns is now r. Thus, if any of the corresponding data bits of the r repeated
columns is in error, then the syndrome will be the same. A simple majority in this case would actually
then mistakenly flip all the data bits corresponding to the repeated columns.

To alleviate this issue of mis-correction, we introduce the notion of groups. A group is a single
data portion of the parity check matrix which does not have any repeated columns within itself. Thus,
within a group, all columns are unique. This essentially ensures that any single error within a group
can easily be identified and corrected. Since there can be non-unique columns between different groups,
we introduce additional rows in the parity check matrix to differentiate between different groups.
The total number of additional parity bits needed for this purpose is given by pg = ceiling (log2 g),
where g is the total number of groups. Thus, if any parity check matrix is repeated r times, then g = r+1.

An example of a parity check matrix with number of data bits k = 4 and a repetition of three is
shown in Figure 6. In this case, the different groups have been placed inside the differently colored
boxes. The lower two rows (inside the blue box) are used to identify which group the error belongs to.
The total number of data bits that can be protected using the above configuration is 16.

Electronics 2020, 9, 709 6 of 14

Electronics 2020, 9, x FOR PEER REVIEW 6 of 16

groups, we introduce additional rows in the parity check matrix to differentiate between different
groups. The total number of additional parity bits needed for this purpose is given by pg = ceiling
(log2 g), where g is the total number of groups. Thus, if any parity check matrix is repeated r times,
then g = r+1.

An example of a parity check matrix with number of data bits k = 4 and a repetition of three is
shown in Figure 6. In this case, the different groups have been placed inside the differently colored
boxes. The lower two rows (inside the blue box) are used to identify which group the error belongs
to. The total number of data bits that can be protected using the above configuration is 16.

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 00 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 100 00 00 00 01 01 01 01 10 10 10 10 1 11 1 1 11 1 00 00 00 00

0000
00001 00 1

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

Group-0 Group-1 Group-2 Group-3
p0 p1 p2 p3 p4 p5

Parity Bits
Repetitions (3)

H =
{Group

Identification
Columns

Figure 6. Parity check matrix of the proposed codes with four groups of four data bits each.

As an example, let’s consider that data bit d4 is in error. The corresponding syndrome bits for
this error is given by Equation (4). Now, if any of the data bits d0, d8 or d12 are in error instead of d4,
the syndrome bits S0:S3 will still be the same. Thus, a simple majority vote in this case is not sufficient
to identify the erroneous bit. Instead, an additional column match is required, apart from the majority
voting logic, to identify which group the error belongs to. Matching the syndrome bits S4:S5 to the
lower two rows of the parity check matrix indicates that the error must lie within Group-1. Since all
columns within a group are unique, once the group within which the error has occurred is identified,
a majority vote can capture which data bit is in error. Thus, taking a majority vote for each data bit in
Group-1 yields the correct data and flips the erroneous bit d4.

𝑆𝑦𝑛𝑑𝑟𝑜𝑚𝑒 𝑆 =
⎝⎜
⎜⎛

𝑆଴𝑆ଵ𝑆ଶ𝑆ଷ𝑆ସ𝑆ହ⎠⎟
⎟⎞ = ⎝⎜⎜

⎛101001⎠⎟⎟
⎞

 (4)

Thus, the proposed codes share the same majority voter for the data bits corresponding to the
repeated columns across all groups. The group identification is done by matching the syndrome bits
to the bits in the lower pg rows (i.e., group identifying bits), similar to the syndrome matching-based
decoding of Hamming codes. We discuss the detailed encoding and decoding procedure in the
subsequent subsections. The detection of double errors is not the focus of the paper, since to facilitate
a double error detection mechanism, a parity bit computed from the XOR of all the data bits is
enough. In all types of codes, if the syndrome corresponding to this parity bit is zero, while other
syndrome bits are non-zero, then a double error has occurred, and an uncorrectable error flag can be
raised. This is true for traditional Hamming codes and orthogonal Latin square codes, and the same
mechanism can be used for the proposed codes as well.

3.1. Encoding Procedure

The encoding procedure is similar to that of a regular orthogonal Latin square code. In the parity
check matrix, we consider each row one at a time. The row assigns the corresponding parity bit, which

Figure 6. Parity check matrix of the proposed codes with four groups of four data bits each.

As an example, let’s consider that data bit d4 is in error. The corresponding syndrome bits for
this error is given by Equation (4). Now, if any of the data bits d0, d8 or d12 are in error instead of d4,
the syndrome bits S0:S3 will still be the same. Thus, a simple majority vote in this case is not sufficient
to identify the erroneous bit. Instead, an additional column match is required, apart from the majority
voting logic, to identify which group the error belongs to. Matching the syndrome bits S4:S5 to the
lower two rows of the parity check matrix indicates that the error must lie within Group-1. Since all
columns within a group are unique, once the group within which the error has occurred is identified,
a majority vote can capture which data bit is in error. Thus, taking a majority vote for each data bit in
Group-1 yields the correct data and flips the erroneous bit d4.

Syndrome S =



S0

S1

S2

S3

S4

S5


=



1
0
1
0
0
1


(4)

Thus, the proposed codes share the same majority voter for the data bits corresponding to the
repeated columns across all groups. The group identification is done by matching the syndrome bits to
the bits in the lower pg rows (i.e., group identifying bits), similar to the syndrome matching-based
decoding of Hamming codes. We discuss the detailed encoding and decoding procedure in the
subsequent subsections. The detection of double errors is not the focus of the paper, since to facilitate a
double error detection mechanism, a parity bit computed from the XOR of all the data bits is enough.
In all types of codes, if the syndrome corresponding to this parity bit is zero, while other syndrome bits
are non-zero, then a double error has occurred, and an uncorrectable error flag can be raised. This is
true for traditional Hamming codes and orthogonal Latin square codes, and the same mechanism can
be used for the proposed codes as well.

3.1. Encoding Procedure

The encoding procedure is similar to that of a regular orthogonal Latin square code. In the parity
check matrix, we consider each row one at a time. The row assigns the corresponding parity bit,
which is 1, to the particular row. By design, any row has exactly one of the parity bits as 1. The parity
bit value is the XOR operation of all the data bits whose corresponding column value is a 1 for the
particular row. As an example, consider the parity bit p0 in Figure 6. In order to compute p0, we look at
all the columns that are 1 in the first row, which is given by Equation (5).

p0 = d0 ⊕ d1 ⊕ d4 ⊕ d5 ⊕ d8 ⊕ d9 ⊕ d12 ⊕ d13 (5)

In terms of hardware resources, the parity bits can be computed by taking the XOR of the
corresponding data bits. Thus, the parity bits can be constructed in a single step or single cycle.

Electronics 2020, 9, 709 7 of 14

The parity bits can then either be appended to the original data bits and stored in memory, or they can
be stored in a separate location relative to the address of the data bits being stored. The total number
of parity bits p for k data bits and R repetitions of the base parity check matrix is shown in Equation (6).
The total number of data bits protected by these p bits is k(R + 1).

p = 2R
√

k + log2(R + 1) (6)

3.2. Decoding Procedure

An example of the decoding circuit for the parity check matrix in Figure 6 is shown in Figure 7.
The decoding procedure involves an additional step compared to traditional orthogonal Latin square
codes to identify the group in which the error lies. This group identification is done using direct
syndrome matching for the additional lower pg rows added during the construction procedure. This is
done in parallel for each group and is ANDed with the majority voting circuit for each column
within a group. Thus, all columns within a group share the same AND output based on the lower pg

rows. In addition, identical columns across groups share the same majority circuit based on the base
orthogonal Latin square code.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 16

d0 d1 d4 d5 d8 d9 d12 d13 d2 d3 d6 d7 d10 d11 d14 d15

d0 d2 d4 d6 d8 d10 d12 d14 d1 d3 d5 d7 d9 d11 d13 d15

d8 d9 d10 d11 d12 d13 d14 d15

d12 d13 d14 d15d4 d5 d6 d7

S0 S1 S4

S2 S3 S5

S0 S1 S4S2 S3 S5S0 S1S2 S3 S4 S5 S4 S5 S4 S5

Majority Voters Group Identifiers

d1 d4 d5 d8 d9 d12 d13d2 d3 d6 d7 d10 d11 d14 d15d0

d1 d4 d5 d8 d9 d12 d13d2 d3 d6 d7 d10 d11 d14 d15d0

Syndrom
e

Com
putation

Data
Correction

Figure 7. Decoding circuit of the proposed codes for four groups with four data bits each

The above procedure leads to much lower redundancy due to the shared nature of parity bits.

In comparison to a traditional OLS code, which would have had 16 majority voting circuits, i.e., one
for each data bit, the proposed codes have 4 majority voters belonging to the base code, which are
shared across groups. The disadvantage of such a method is that it increases the logic depth of the
circuit, which leads to a slightly higher latency compared to traditional orthogonal Latin square
codes.

3.3. Comparison to Hamming Codes

Hamming codes have the advantage of providing low redundancy but come at the cost of higher
decoding latency. Part of the decoding latency is caused by the syndrome matching-based decoding
which, depending on the number of bits being protected, can reach very high logic depths. By
contrast, for the proposed codes, the majority voting circuit always has a fixed depth regardless of
the number of bits being protected. The syndrome matching of group identification bits is limited by
the number of groups in the proposed codes.

We can strike an adequate balance between the number of groups and the size of the base
orthogonal Latin square codes to enable lower latency and high throughput. This leads to the
proposed codes having a higher redundancy (or higher number of parity bits) but a lower decoding

Figure 7. Decoding circuit of the proposed codes for four groups with four data bits each

The above procedure leads to much lower redundancy due to the shared nature of parity bits.
In comparison to a traditional OLS code, which would have had 16 majority voting circuits, i.e., one for
each data bit, the proposed codes have 4 majority voters belonging to the base code, which are shared
across groups. The disadvantage of such a method is that it increases the logic depth of the circuit,
which leads to a slightly higher latency compared to traditional orthogonal Latin square codes.

Electronics 2020, 9, 709 8 of 14

3.3. Comparison to Hamming Codes

Hamming codes have the advantage of providing low redundancy but come at the cost of higher
decoding latency. Part of the decoding latency is caused by the syndrome matching-based decoding
which, depending on the number of bits being protected, can reach very high logic depths. By contrast,
for the proposed codes, the majority voting circuit always has a fixed depth regardless of the number
of bits being protected. The syndrome matching of group identification bits is limited by the number
of groups in the proposed codes.

We can strike an adequate balance between the number of groups and the size of the base
orthogonal Latin square codes to enable lower latency and high throughput. This leads to the proposed
codes having a higher redundancy (or higher number of parity bits) but a lower decoding latency
compared to Hamming codes. The proposed codes are highly configurable, and depending on the
application requirements, can be configured to have either low memory overhead (redundancy) or
lower decoding latency to enable high throughput.

3.4. Latency Optimization

For the proposed codes, the parity bits involved in group identification can have significant logic
depth in their syndrome computation portion. This is because the proposed codes use log2(g) bits to
identify the potential group that the error might lie in, where g is the total number of groups. This leads
to a high number of data bits being involved in a single parity bit computation. The maximum number
of data bits involved in such a parity computation can be 50% of all data bits, i.e., the parity bit might
involve XORing 50% of all data bits in the message. This high logic depth can cause a bottleneck in
terms of performance or throughput enhancement.

For cases where the number of groups is more than two, the performance can be enhanced by
trading off a certain amount of redundancy. Instead of using log2(g) bits, we use g parity bits to identify
each group individually. This ensures that the maximum number of data bits that are XORed for
group identification purposes is limited by the total number of data bits in any group. This leads to
an increase in redundancy, since more parity bits now need to be stored to identify the group that is
in error. However, this latency optimization scheme ensures that the maximum logic depth in the
syndrome computation step is much less. An example of the parity check matrix for such a latency
optimized code with 4 groups and 16 data bits is shown in Figure 8.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 16

latency compared to Hamming codes. The proposed codes are highly configurable, and depending
on the application requirements, can be configured to have either low memory overhead
(redundancy) or lower decoding latency to enable high throughput.

3.4. Latency Optimization

For the proposed codes, the parity bits involved in group identification can have significant logic
depth in their syndrome computation portion. This is because the proposed codes use log2(g) bits to
identify the potential group that the error might lie in, where g is the total number of groups. This
leads to a high number of data bits being involved in a single parity bit computation. The maximum
number of data bits involved in such a parity computation can be 50% of all data bits, i.e., the parity
bit might involve XORing 50% of all data bits in the message. This high logic depth can cause a
bottleneck in terms of performance or throughput enhancement.

For cases where the number of groups is more than two, the performance can be enhanced by
trading off a certain amount of redundancy. Instead of using log2(g) bits, we use g parity bits to
identify each group individually. This ensures that the maximum number of data bits that are XORed
for group identification purposes is limited by the total number of data bits in any group. This leads
to an increase in redundancy, since more parity bits now need to be stored to identify the group that
is in error. However, this latency optimization scheme ensures that the maximum logic depth in the
syndrome computation step is much less. An example of the parity check matrix for such a latency
optimized code with 4 groups and 16 data bits is shown in Figure 8.

The group identification combinational circuit will now instead be given by a single bit instead
of the combination of parity bits corresponding to the lower log2(g) rows. The difference between this
proposed latency optimization and the original proposal for data bit d4 of the parity check matrix in
Figure 8 is shown in Figure 9.

An analysis for latency optimization is presented next to illustrate the latency benefit obtained.
The latency optimization comes from two parts. The first part involves the maximum number of
inputs needed to compute the syndrome bits. Let us consider k data bits in the base group and g
groups in the proposed codes. For the unoptimized proposal, at least 50% of the groups have all 1s
(since the LSB of the log2(g) bits used for group identification switches between 0 and 1 for every
group). Thus, the critical depth for syndrome computation will have the number of inputs as the
maximum of either the repeated data bits for general parity bit or the parity bits from the group
identification column, as shown in Equation (7). Comparatively for the latency optimized case, each
group has its own parity bit. Thus, the maximum number of inputs for syndrome computation is
given by Equation (8). To illustrate the difference, let’s consider an example with k = 256 and g = 4.
This results in a total of 1024 bits being protected. The maximum number of inputs to syndrome
computation for the unoptimized case will be 2 × 256 = 512. For the latency optimized case, this will
only be 4 × 16 = 64.

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 00 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1
0 0 0 0 01 01 01 01 10 10 10 10
1 1

1 1
1 1

1 1
00 00 00 00

0000
00001 00

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

Group-0 Group-1 Group-2 Group-3
p0 p1 p2 p3 p4 p5

Parity Bits
Repetitions (3)

H =

Gr
ou

p
Id

en
tif

ica
tio

n
Co

lu
m

ns

00000
00000

0 0 0 0 00 0 0 0 0
1 00 10 0

001

p6 p7

0 0 0 00 0 0 0 0 0 0 00 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 00 0 0 0

Commented [M1]: Reminder: make sure you write between

... and ...

Figure 8. Parity check matrix for proposed latency optimization with four groups of four data bits each.

The group identification combinational circuit will now instead be given by a single bit instead of
the combination of parity bits corresponding to the lower log2(g) rows. The difference between this
proposed latency optimization and the original proposal for data bit d4 of the parity check matrix in
Figure 8 is shown in Figure 9.

Electronics 2020, 9, 709 9 of 14
Electronics 2020, 9, x FOR PEER REVIEW 10 of 16

Figure 8. Parity check matrix for proposed latency optimization with four groups of four data bits
each.

S0

S1

S4

S5

d4
d4

d4
d4

S0

S1

S5

Original Proposal Latency Optimization

d12

d13

d14

d15

d4

d5

d6

d7
d4

d5

d6

d7

Figure 9. Latency optimization of decoder circuit due to reduction in logic depth.

 𝑆௖௥௜௧,௨௢ = max (𝑔√𝑘, ቔ𝑔2ቕ × 𝑘) (7) 𝑆௖௥௜௧,௟௢ = max (𝑔√𝑘, 𝑘) (8)

The second part of the latency optimization involves data correction, as shown in Figure 9. For
the unoptimized case, since multiple groups can have 1s in them, all the bits are involved in data
correction. Thus, the maximum number of inputs involved in computing the final decision (i.e.,
whether the bit has flipped or not) will include two syndrome bits from the base OLS code and all
the bits from the group identification column, as shown in Equation (9). Thus, it is a function of the
total number of groups. Comparatively, for the latency optimized case, the total number of inputs
will always be three, since each group has its own syndrome bit. Thus, errors in any other group will
not change this syndrome bit, and it can be used in decoding. 𝐷௖௥௜௧ = 2 + logଶ(𝑔) (9) 𝑑௨௢ = ඃlogଶ(𝑆௖௥௜௧,௨௢)ඇ + ⌈logଶ(𝐷௖௥௜௧)⌉ (10) 𝑑௟௢ = ඃlogଶ(𝑆௖௥௜௧,௟௢)ඇ + 2 (11)

Assuming only 2-input gates and inverters integrated into the two inputs cases, i.e., inverters
are not a separate depth, the total logic depth for the unoptimized case is given by Equation (10),
while that for the latency optimized case is given by Equation (11). Figure 10 shows the logic depth
comparison for the unoptimized case and latency optimized case for different values of base data bits
k and different groups g.

Figure 9. Latency optimization of decoder circuit due to reduction in logic depth.

An analysis for latency optimization is presented next to illustrate the latency benefit obtained.
The latency optimization comes from two parts. The first part involves the maximum number of inputs
needed to compute the syndrome bits. Let us consider k data bits in the base group and g groups
in the proposed codes. For the unoptimized proposal, at least 50% of the groups have all 1s (since
the LSB of the log2(g) bits used for group identification switches between 0 and 1 for every group).
Thus, the critical depth for syndrome computation will have the number of inputs as the maximum
of either the repeated data bits for general parity bit or the parity bits from the group identification
column, as shown in Equation (7). Comparatively for the latency optimized case, each group has
its own parity bit. Thus, the maximum number of inputs for syndrome computation is given by
Equation (8). To illustrate the difference, let’s consider an example with k = 256 and g = 4. This results
in a total of 1024 bits being protected. The maximum number of inputs to syndrome computation for
the unoptimized case will be 2 × 256 = 512. For the latency optimized case, this will only be 4 × 16 = 64.

Scrit,uo = max(g
√

k,
g
2
× k) (7)

Scrit,lo = max(g
√

k, k) (8)

The second part of the latency optimization involves data correction, as shown in Figure 9. For the
unoptimized case, since multiple groups can have 1s in them, all the bits are involved in data correction.
Thus, the maximum number of inputs involved in computing the final decision (i.e., whether the bit
has flipped or not) will include two syndrome bits from the base OLS code and all the bits from the
group identification column, as shown in Equation (9). Thus, it is a function of the total number of
groups. Comparatively, for the latency optimized case, the total number of inputs will always be
three, since each group has its own syndrome bit. Thus, errors in any other group will not change this
syndrome bit, and it can be used in decoding.

Dcrit = 2 + log2(g) (9)

duo = log2(Scrit,uo) + log2(Dcrit) (10)

dlo = log2(Scrit,lo) + 2 (11)

Assuming only 2-input gates and inverters integrated into the two inputs cases, i.e., inverters
are not a separate depth, the total logic depth for the unoptimized case is given by Equation (10),
while that for the latency optimized case is given by Equation (11). Figure 10 shows the logic depth
comparison for the unoptimized case and latency optimized case for different values of base data bits k
and different groups g.

Electronics 2020, 9, 709 10 of 14
Electronics 2020, 9, x FOR PEER REVIEW 11 of 16

Figure 10. Comparison of maximum decoder logic depth for unoptimized proposal and latency
optimized proposal.

4. Evaluation

The proposed codes are evaluated against both Hamming codes and OLS codes in this section
in terms of data redundancy (memory overhead), encoding latency, encoder area, encoder power
consumption, decoder area, decoder power consumption and decoding latency. All the codes have
been implemented using the Dataflow model in Verilog and have been exhaustively tested for correct
functionality. The codes were also synthesized using the Open Cell library in 15 nm FreePDK
technology [16] using Synopsys Design Compiler. Comparisons have been made for both the
encoding and the decoding circuit between Hamming codes, OLS codes, the basic proposed codes
and the latency optimized proposed codes for different data sizes of k = 32, 64, 128, 256, 512 and 1024
and different group sizes (or repetitions) of g = 2, 4, 8 and 16 based on the number of data bits for the
proposed codes.

Table 1 compares the encoding circuit of the different codes with different repetition values for
the proposed codes. For OLS codes, all the parity equations are consistent, and each parity equation
is a XOR of a fixed number of data bits which is equal to the size of the Latin square. Thus, the encoder
has very low latency. However, they suffer from higher memory overhead (redundancy) due to the
inherent structure of the code wherein fewer data bits are involved in each parity check equation.
Hamming codes on the other hand have very low redundancy, but this comes at the cost of higher
encoding latency, since more data bits are involved in each parity check equation, which increases
the logic depth.

Table 1. Comparison of encoding circuit between the different codes.

#Data
bits Code Groups #Check

bits
Area
(µm2)

Latency
(ps)

Pdyn
(mW) PDA *

32 Hamming code - 6 25.66 60.35 30.26 0.047
32 OLS code - 12 23.00 17.08 15.45 0.006
32 Proposed Codes 2 9 26.98 32.62 22.55 0.020
32 Proposed Codes 8 7 27.87 54.93 36.98 0.057
32 Proposed (LO) 8 12 30.43 51.76 28.13 0.044
64 Hamming code 1 7 53.53 67.90 70.11 0.255

0

2

4

6

8

10

12

14

16

g
=

2,
 k

 =
 4

g
=

2,
 k

 =
 1

6

g
=

2,
 k

 =
 6

4

g
=

2,
 k

 =
 2

56

g
=

4,
 k

 =
 4

g
=

4,
 k

 =
 1

6

g
=

4,
 k

 =
 6

4

g
=

4,
 k

 =
 2

56

g
=

8,
 k

 =
 4

g
=

8,
 k

 =
 1

6

g
=

8,
 k

 =
 6

4

g
=

8,
 k

 =
 2

56

g
=

16
, k

 =
 4

g
=

16
, k

 =
 1

6

g
=

16
, k

 =
 6

4

g
=

16
, k

 =
 2

56

M
ax

im
um

 Lo
gi

c D
ep

th

Configuration

Unoptimized Proposal Latency Optimized Proposal

Figure 10. Comparison of maximum decoder logic depth for unoptimized proposal and latency
optimized proposal.

4. Evaluation

The proposed codes are evaluated against both Hamming codes and OLS codes in this section
in terms of data redundancy (memory overhead), encoding latency, encoder area, encoder power
consumption, decoder area, decoder power consumption and decoding latency. All the codes have
been implemented using the Dataflow model in Verilog and have been exhaustively tested for correct
functionality. The codes were also synthesized using the Open Cell library in 15 nm FreePDK
technology [16] using Synopsys Design Compiler. Comparisons have been made for both the encoding
and the decoding circuit between Hamming codes, OLS codes, the basic proposed codes and the
latency optimized proposed codes for different data sizes of k = 32, 64, 128, 256, 512 and 1024 and
different group sizes (or repetitions) of g = 2, 4, 8 and 16 based on the number of data bits for the
proposed codes.

Table 1 compares the encoding circuit of the different codes with different repetition values for the
proposed codes. For OLS codes, all the parity equations are consistent, and each parity equation is a
XOR of a fixed number of data bits which is equal to the size of the Latin square. Thus, the encoder
has very low latency. However, they suffer from higher memory overhead (redundancy) due to the
inherent structure of the code wherein fewer data bits are involved in each parity check equation.
Hamming codes on the other hand have very low redundancy, but this comes at the cost of higher
encoding latency, since more data bits are involved in each parity check equation, which increases the
logic depth.

Table 1. Comparison of encoding circuit between the different codes.

#Data bits Code Groups #Check bits Area (µm2) Latency (ps) Pdyn (mW) PDA *

32 Hamming code - 6 25.66 60.35 30.26 0.047
32 OLS code - 12 23.00 17.08 15.45 0.006
32 Proposed Codes 2 9 26.98 32.62 22.55 0.020
32 Proposed Codes 8 7 27.87 54.93 36.98 0.057
32 Proposed (LO) 8 12 30.43 51.76 28.13 0.044

64 Hamming code 1 7 53.53 67.90 70.11 0.255
64 OLS code 1 16 49.55 17.08 35.40 0.030
64 Proposed Codes 4 10 57.07 74.09 67.45 0.285
64 Proposed Codes 16 8 56.62 76.30 80.41 0.347
64 Proposed (LO) 4 12 60.60 45.14 63.24 0.173
64 Proposed (LO) 16 20 61.05 51.63 60.40 0.190

128 Hamming code - 8 109.71 78.53 152.06 1.310
128 OLS code - 24 103.07 30.12 87.46 0.272
128 Proposed Codes 2 17 110.59 56.37 112.60 0.702
128 Proposed Codes 8 11 120.32 75.61 160.86 1.463
128 Proposed (LO) 8 16 123.86 66.28 134.05 1.101

Electronics 2020, 9, 709 11 of 14

Table 1. Cont.

#Data bits Code Groups #Check bits Area (µm2) Latency (ps) Pdyn (mW) PDA *

256 Hamming code - 9 222.51 98.49 314.71 6.897
256 OLS code - 32 212.34 23.98 179.63 0.915
256 Proposed Codes 4 18 229.15 75.26 269.01 4.639
256 Proposed Codes 16 12 244.63 78.52 338.41 6.500
256 Proposed (LO) 4 20 234.46 53.72 259.44 3.268
256 Proposed (LO) 16 24 248.61 59.98 278.71 4.156

512 Hamming code - 10 448.56 127.05 656.90 37.437
512 OLS code - 46 432.64 43.90 413.10 7.846
512 Proposed Codes 2 33 449.45 90.83 487.35 19.895
512 Proposed Codes 8 19 467.14 92.59 584.26 25.271
512 Proposed (LO) 8 24 474.66 65.07 539.39 16.660

1024 Hamming code - 11 901.10 155.72 1336.60 187.552
1024 OLS code - 64 877.66 30.87 818.09 22.165
1024 Proposed Codes 4 34 909.95 96.20 1066.50 93.359
1024 Proposed Codes 16 20 943.13 116.45 1251.60 137.460
1024 Proposed (LO) 4 36 921.01 81.79 1028.70 77.491
1024 Proposed (LO) 16 32 953.30 85.11 1080.80 87.691

= number of; Proposed (LO) = latency optimized proposed codes; * PDA = power × delay × area/106.

The proposed codes as well as the latency optimized proposed codes strike an adequate balance
between the data redundancy and encoding latency when compared to OLS codes and Hamming
codes. This is because the number of data bits participating in each parity check is more than in
OLS codes, but either equal to Hamming codes (for original proposal) or less than Hamming codes
(for latency optimized version). In all, from the experiments we see that the original version of the
proposed code achieves up to 45% improvement in encoding latency compared to Hamming codes
while achieving up to 68.75% improvement in memory overhead compared to OLS codes. Similarly,
the latency optimized version of the proposed codes achieves up to 49% improvement in encoding
latency compared to Hamming codes while achieving up to 50% improvement in memory overhead
compared to OLS codes.

Table 2 compares the decoding circuit of the different codes. The amount of memory overhead
remains the same for all cases. However, it can be seen that, similar to the encoding circuitry, Hamming
codes are able to achieve the minimum memory overhead while incurring the highest decoder latency
overhead. At the other end of the spectrum, OLS codes achieve very low decoder latency, but that
comes at the cost of significantly higher memory overhead. The proposed codes achieve a balance
between both the decoder latency overhead and memory overhead compared to Hamming codes and
OLS codes. The original version of the proposed codes achieves up to 38% improvement in decoder
latency compared to Hamming codes. The latency optimized version of the proposed codes achieves
up to 43.75% improvement in decoding latency compared to Hamming codes.

Table 2. Comparison of decoding circuit between the different codes.

#Data bits Code Groups #Check bits Area (µm2) Latency (ps) Pdyn (mW) PDA *

32 Hamming code - 6 54.71 100.58 67.28 0.37
32 OLS code - 12 48.56 53.08 58.16 0.15
32 Proposed Codes 2 9 51.36 65.95 65.62 0.22
32 Proposed Codes 8 7 55.30 93.18 74.18 0.38
32 Proposed (LO) 8 12 54.26 77.32 70.87 0.30

64 Hamming code 1 7 106.27 127.43 132.80 1.80
64 OLS code 1 16 96.93 52.37 140.41 0.71
64 Proposed Codes 4 10 106.17 97.13 161.50 1.67
64 Proposed Codes 16 8 110.40 114.38 150.29 1.90
64 Proposed (LO) 4 12 111.28 86.32 178.06 1.71
64 Proposed (LO) 16 20 107.59 97.67 150.04 1.58

Electronics 2020, 9, 709 12 of 14

Table 2. Cont.

#Data bits Code Groups #Check bits Area (µm2) Latency (ps) Pdyn (mW) PDA *

128 Hamming code - 8 206.24 149.25 237.74 7.32
128 OLS code - 24 195.04 65.00 323.50 4.10
128 Proposed Codes 2 17 203.34 100.13 325.57 6.63
128 Proposed Codes 8 11 213.37 121.96 293.66 7.64
128 Proposed (LO) 8 16 218.68 93.53 333.80 6.83

256 Hamming code - 9 406.49 160.88 443.51 29.00
256 OLS code - 32 390.07 65.51 740.05 18.91
256 Proposed Codes 4 18 409.83 111.43 596.54 27.24
256 Proposed Codes 16 12 424.03 129.20 532.40 29.17
256 Proposed (LO) 4 20 414.94 112.72 749.09 35.04
256 Proposed (LO) 16 24 431.26 125.28 725.73 39.21

512 Hamming code - 10 804.62 211.45 823.46 140.10
512 OLS code - 46 780.14 86.93 1668.90 113.18
512 Proposed Codes 2 33 794.84 164.07 1338.20 174.51
512 Proposed Codes 8 19 820.89 223.12 1161.50 212.74
512 Proposed (LO) 8 24 829.44 143.83 1472.60 175.68

1024 Hamming code - 11 1596.21 267.03 1598.80 681.47
1024 OLS code - 64 1560.28 100.35 3802.50 595.37
1024 Proposed Codes 4 34 1599.11 164.88 2252.70 593.95
1024 Proposed Codes 16 20 1631.70 231.88 1962.00 742.34
1024 Proposed (LO) 4 36 1609.14 157.93 2771.80 704.40
1024 Proposed (LO) 16 32 1642.32 150.20 2877.80 709.88

= number of; Proposed (LO) = latency optimized proposed codes; * PDA = power × delay × area / 106.

Figure 11 shows the comparison of memory overhead and decoder latency for the different codes
across different numbers of data bits. As can be seen, Hamming codes provide the least memory
overhead but that comes at the cost of high decoder latency. OLS codes instead have very low decoder
latency but come at the expense of high memory overhead. The proposed codes, both the base
version and the latency optimized version, provide a balanced trade-off between decoder latency and
memory overhead.Electronics 2020, 9, x FOR PEER REVIEW 14 of 16

Figure 11. Comparison of memory overhead and decoder latency for the different codes across
different number of data bits.

Figure 12. Comparison of memory overhead-delay product of decoder between OLS codes and
proposed codes.

From both Table 1 and Table 2, it can be seen that OLS codes have an overall good performance
in terms of latency, area and power consumption, but OLS codes do suffer from high memory
overhead. The proposed codes focus on reducing the high memory overhead of OLS codes while still
maintaining an adequate decoder latency to enable good performance. Thus, a memory-overhead
delay product (MODP) metric is used to make this comparison. Figure 12 shows the MODP
comparison normalized to OLS codes (i.e., OLS codes will have a MODP of 1) for both the
unoptimized proposal and latency optimized proposal. Since there are multiple possibilities of the
number of groups for the proposed codes, the best MODP value is plotted against OLS codes. It can
be seen that the proposed codes are able to achieve much better MODP compared to OLS codes, with
the MODP as low as 0.33 times OLS codes. This is possible due to the low memory overhead of the
proposed codes. The key takeaway from this figure is that the proposed codes are able to achieve
much lower memory overhead without a corresponding significant rise in decoding latency.

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

De
co

de
r L

at
en

cy
 (p

s)

#Checkbits

Hamming Codes OLS Codes Proposed Codes Proposed Codes (Latency Optimized)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
66

0.
57

0.
50

0.
41 0.
43

0.
33

1.
12

0.
86

0.
75

0.
66

0.
55 0.
58

0.00

0.20

0.40

0.60

0.80

1.00

1.20

32 64 128 256 512 1024

M
OD

P
(n

or
m

al
ize

d
to

 O
LS

 C
od

es
)

#Data bits

OLS codes Proposed codes (unoptimized) Proposed codes (Latency Optimized)

Figure 11. Comparison of memory overhead and decoder latency for the different codes across different
number of data bits.

From both Tables 1 and 2, it can be seen that OLS codes have an overall good performance in
terms of latency, area and power consumption, but OLS codes do suffer from high memory overhead.
The proposed codes focus on reducing the high memory overhead of OLS codes while still maintaining
an adequate decoder latency to enable good performance. Thus, a memory-overhead delay product
(MODP) metric is used to make this comparison. Figure 12 shows the MODP comparison normalized
to OLS codes (i.e., OLS codes will have a MODP of 1) for both the unoptimized proposal and latency
optimized proposal. Since there are multiple possibilities of the number of groups for the proposed
codes, the best MODP value is plotted against OLS codes. It can be seen that the proposed codes are
able to achieve much better MODP compared to OLS codes, with the MODP as low as 0.33 times OLS

Electronics 2020, 9, 709 13 of 14

codes. This is possible due to the low memory overhead of the proposed codes. The key takeaway
from this figure is that the proposed codes are able to achieve much lower memory overhead without a
corresponding significant rise in decoding latency.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 16

Figure 11. Comparison of memory overhead and decoder latency for the different codes across
different number of data bits.

Figure 12. Comparison of memory overhead-delay product of decoder between OLS codes and
proposed codes.

From both Table 1 and Table 2, it can be seen that OLS codes have an overall good performance
in terms of latency, area and power consumption, but OLS codes do suffer from high memory
overhead. The proposed codes focus on reducing the high memory overhead of OLS codes while still
maintaining an adequate decoder latency to enable good performance. Thus, a memory-overhead
delay product (MODP) metric is used to make this comparison. Figure 12 shows the MODP
comparison normalized to OLS codes (i.e., OLS codes will have a MODP of 1) for both the
unoptimized proposal and latency optimized proposal. Since there are multiple possibilities of the
number of groups for the proposed codes, the best MODP value is plotted against OLS codes. It can
be seen that the proposed codes are able to achieve much better MODP compared to OLS codes, with
the MODP as low as 0.33 times OLS codes. This is possible due to the low memory overhead of the
proposed codes. The key takeaway from this figure is that the proposed codes are able to achieve
much lower memory overhead without a corresponding significant rise in decoding latency.

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

De
co

de
r L

at
en

cy
 (p

s)

#Checkbits

Hamming Codes OLS Codes Proposed Codes Proposed Codes (Latency Optimized)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
66

0.
57

0.
50

0.
41 0.
43

0.
33

1.
12

0.
86

0.
75

0.
66

0.
55 0.
58

0.00

0.20

0.40

0.60

0.80

1.00

1.20

32 64 128 256 512 1024

M
OD

P
(n

or
m

al
ize

d
to

 O
LS

 C
od

es
)

#Data bits

OLS codes Proposed codes (unoptimized) Proposed codes (Latency Optimized)

Figure 12. Comparison of memory overhead-delay product of decoder between OLS codes and
proposed codes.

5. Conclusions

In this paper, a new single error correcting code was presented based on a shared majority voting
decoding logic. The proposed codes trade off decoder latency for an improvement in memory overhead
by sharing the majority voting logic across groups with a repeated parity check matrix. This allows
for the use of a much lower degree Latin square, owing to the repetition, than would have been used
otherwise. Experiments and comparison to existing OLS codes show that the proposed codes achieve
significant improvement in terms of memory overhead while incurring a slight overhead in decoding
and encoding latency. A latency optimization technique is also presented which improves the decoding
latency while incurring a slight penalty on memory overhead. However, the overall memory overhead
is still lower than OLS codes. It is also shown that the proposed codes achieve much better decoding
latency compared to the prevalent Hamming codes. Thus, the proposed codes can provide an excellent
balance/trade-off between memory overhead and decoding latency, specifically for on-chip memory
applications, which need the low decoding latency not found in a Hamming code but do not have
enough resources to tolerate the high memory overhead of an OLS code.

Author Contributions: Conceptualization, A.D. and N.A.T.; Methodology, A.D.; Investigation, A.D.; Validation,
A.D.; Resources, N.A.T.; Writing – Original Draft Preparation, A.D.; Writing – Review & Editing, A.D.; Supervision,
N.A.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yan, J.; Zhang, W. Evaluating Instruction Cache Vulnerability to Transient Errors. In Proceedings of the
ACM Workshop on Memory Performance: Dealing with Applications, Systems and Architectures (MEDEA),
Seattle, WA, USA, 1–2 September 2006; pp. 21–28. [CrossRef]

2. Tang, L.; Mars, J.; Vachharajani, N.; Hundt, R.; Soffa, M.L. The Impact of Memory Subsystem Resource
Sharing on Datacenter Applications. In Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, USA, 4–8 June 2011; pp. 283–294. [CrossRef]

3. Baumann, R.C. Radiation-Induced Soft Errors in Advanced Semiconductor Technologies. IEEE Trans. Device
Mater. Reliab. 2005, 5, 305–316. [CrossRef]

http://dx.doi.org/10.1145/1166133.1166136
http://dx.doi.org/10.1145/2000064.2000099
http://dx.doi.org/10.1109/TDMR.2005.853449

Electronics 2020, 9, 709 14 of 14

4. Frumusanu, A. The Apple IPhone 11, 11 Pro & 11 Pro Max Review: Performance, Battery, & Camera
Elevated. Available online: https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-
review (accessed on 16 October 2019).

5. Imani, M.; Patil, S.; Rosing, T. Low Power Data-Aware STT-RAM Based Hybrid Cache Architecture.
In Proceedings of the IEEE International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA,
USA, 15–16 March 2016; pp. 88–94. [CrossRef]

6. Hsiao, M.Y.; Bossen, D.C.; Chien, R.T. Orthogonal Latin Square codes. IBM J. Res. Dev. 1970, 14, 390–394.
[CrossRef]

7. Wilkerson, C.; Gao, H.; Alameldeen, A.R.; Chishti, Z.; Khellah, M.; Lu, S.-L. Trading off Cache Capacity
for Reliability to Enable Low Voltage Operation. In Proceedings of the ACM International Symposium on
Computer Architecture (ISCA), Beijing, China, 21–25 June 2008; pp. 203–214. [CrossRef]

8. Datta, R.; Touba, N.A. Post-Manufacturing ECC Customization Based on Orthogonal Latin Square Codes
and Its Application to Ultra-Low Power Caches. In Proceedings of the IEEE International Test Conference,
Austin, TX, USA, 2–4 November 2010. [CrossRef]

9. Hamming, R.W. Error Detecting and Error Correcting Codes. Bell Syst. Tech. J. 1950, 29, 147–160. [CrossRef]
10. Das, A.; Touba, N.A. Low Complexity Burst Error Correcting Codes to Correct MBUs in SRAMs.

In Proceedings of the ACM Great Lakes Symposium on VLSI (GLSVLSI), Chicago, IL, USA, 23–25 May 2018;
pp. 219–224. [CrossRef]

11. Adalid, L.S.; Gil, P.; Gil-Tomás, J.; Gr, D.; Baraza-Calvo, J.C. Ultrafast Single Error Correction Codes for
Protecting Processor Registers. In Proceedings of the IEEE European Dependable Computing Conference
(EDCC), Paris, France, 7–11 September 2015; pp. 144–154. [CrossRef]

12. Alam, I.; Schoeny, C.; Dolecek, L.; Gupta, P. Parity++: Lightweight Error Correction for Last Level Caches.
In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN-W), Luxembourg City, Luxembourg, 25–28 June 2018; pp. 114–120. [CrossRef]

13. Schoeny, C.; Sala, F.; Gottscho, M.; Alam, I.; Gupta, P.; Dolecek, L. Context-Aware Resiliency: Unequal
Message Protection for Random-Access Memories. IEEE Trans. Inf. Theory 2019, 65, 6146–6159. [CrossRef]

14. Alameldeen, A.R.; Wagner, I.; Chishti, Z.; Wu, W.; Wilkerson, C.; Lu, S.-L. Energy-Efficient Cache Design
Using Variable-Strength Error-Correcting Codes. In Proceedings of the ACM International Symposium on
Computer Architecture (ISCA), San Jose, CA, USA, 4–8 June 2011; pp. 461–471. [CrossRef]

15. Huang, P.; Subedi, P.; He, X.; He, S.; Zhou, K. FlexECC: Partially relaxing ECC of MLC SSD for better cache
performance. In Proceedings of the USENIX Annual Technical Conference, Philadelphia, PA, USA, 19–20
June 2014; pp. 489–500.

16. Martins, M.; Matos, J.M.; Ribas, R.P.; Reis, A.; Schlinker, G.; Rech, L.; Michelsen, J. Open Cell Library in
15nm FreePDK Technology. In Proceedings of the ACM International Symposium on Physical Design (ISPD),
Monterey, CA, USA, 29 March–1 April 2015; pp. 171–178. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review
https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review
http://dx.doi.org/10.1109/ISQED.2016.7479181
http://dx.doi.org/10.1147/rd.144.0390
http://dx.doi.org/10.1109/ISCA.2008.22
http://dx.doi.org/10.1109/TEST.2010.5699221
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1145/3194554.3194570
http://dx.doi.org/10.1109/EDCC.2015.30
http://dx.doi.org/10.1109/DSN-W.2018.00048
http://dx.doi.org/10.1109/TIT.2019.2918209
http://dx.doi.org/10.1145/2000064.2000118
http://dx.doi.org/10.1145/2717764.2717783
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background Information
	Hamming Codes
	Orthogonal Latin Square Codes

	Proposed Codes
	Encoding Procedure
	Decoding Procedure
	Comparison to Hamming Codes
	Latency Optimization

	Evaluation
	Conclusions
	References

