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Abstract: Almost all vision technologies that are used to measure traffic volume use a two-step
procedure that involves tracking and detecting. Object detection algorithms such as YOLO and
Fast-RCNN have been successfully applied to detecting vehicles. The tracking of vehicles requires
an additional algorithm that can trace the vehicles that appear in a previous video frame to their
appearance in a subsequent frame. This two-step algorithm prevails in the field but requires
substantial computation resources for training, testing, and evaluation. The present study devised a
simpler algorithm based on an autoencoder that requires no labeled data for training. An autoencoder
was trained on the pixel intensities of a virtual line placed on images in an unsupervised manner.
The last hidden node of the former encoding portion of the autoencoder generates a scalar signal
that can be used to judge whether a vehicle is passing. A cycle-consistent generative adversarial
network (CycleGAN) was used to transform an original input photo of complex vehicle images and
backgrounds into a simple illustration input image that enhances the performance of the autoencoder
in judging the presence of a vehicle. The proposed model is much lighter and faster than a YOLO-based
model, and accuracy of the proposed model is equivalent to, or better than, a YOLO-based model. In
measuring traffic volumes, the proposed approach turned out to be robust in terms of both accuracy
and efficiency.
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1. Introduction

Detecting traffic volumes is the basis on which traffic management and operation is implemented.
For example, traffic signal control is totally dependent on the traffic volumes of each lane group that
shares a signal phase. Measuring traffic volumes in real time is inevitable for a signal controller to
adaptively assign signal phases to each lane group. Traffic volumes also determine the service level of a
highway segment with respect to congestion management. For the purpose of transportation planning,
an analyst depends on historical traffic volumes collected on an area-wide scale over a long-term
basis to decide how best to budget for transportation infrastructure. A conventional spot detector,
however, has limitations in accuracy and maintainability when implementing the aforementioned
tasks. Although loop detectors are pervasive in current traffic surveillance [1,2], they cannot be a future
option due to frequent breakdowns that entail large maintenance costs.

Traffic management centers that depend on probe vehicles also cannot measure traffic volumes
and focus on collecting information on traffic speeds or travel times. The present study proposed
a robust approach to constantly measure traffic volumes on an area-wide scale. Recently, computer
vision technologies have replaced the spot-detecting and probe-based schemes, because high-resolution
cameras are now more affordable and deep learning algorithms are easily accessible to engineers for
use in processing images.
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Prior to the success of deep learning, many rule-based algorithms had been developed to recognize
vehicles within an image. The rule-based algorithms can be broken down into three categories according
to taxonomy [3]. The first category uses the temporal difference method to capture moving objects by
utilizing the differences in two consecutive images [4,5]. The performance of this method is largely
affected by unexpected noises such as illumination drift due to changes in weather and to variations
in the moving speed of objects. The second category involves use of the optical flow method to
recognize moving vehicles from video frames by tracking changes in pixel intensities [6–9]. With
this method, motion vectors of moving vehicles are mathematically derived from changes in pixel
intensities. This method is also vulnerable when unexpected noise occurs and adds a computational
burden to derive the motion vectors. The last category is background subtraction, which had been
the most popular method before learning-based algorithms evolved [10,11]. This method utilizes
the difference between a target image and the background image to recognize vehicles. Securing a
consistent background image is a decisive factor in the success of this method. Some researchers
adopted a dynamic background to avoid the impact of environmental changes by considering local
features and motion histograms [12]. Even after obtaining a silhouette image from the background
subtraction, a robust algorithm is necessary to recognize vehicles from the blob image. Two different
approaches are available: Utilization of the convex hull theory [13] and devising an edge detector [14].

It should be noted that all these methods are rule-based rather than learning-based. This means
that their models cannot evolve even when more image data are available. Recently, deep-learning
algorithms such as YOLO v3 [15] and Fast-RCNN [16] scored a breakthrough in detecting objects
within an image and have been successfully utilized in vehicle counting [17–19]. It is likely that
learning-based algorithms will soon replace rule-based algorithms for traffic surveillance, since they
incorporate advantages in both accuracy and maintainability. Such learning-based algorithms for
vehicle detection, however, cannot accomplish the task of measuring traffic volumes. Traffic volume is
defined as the number of vehicles passing a cross section of a road segment during a specified period
such as 15 min or 1 h. It is necessary to track vehicles across time by continuously matching a vehicle
detected in the previous video frame with that in the next frame. A standard Kalman filter, which
assumes a constant velocity motion for the state equation and a linear relationship for the observation
equation, has been adapted to track vehicles detected by YOLO [20]. The state vector is composed of
the center coordinates, the height, the aspect ratio of a bounding box, and their velocities. The first
three elements of the state vector are derived from direct observations of the vehicle state. The Kalman
filter uses observations to iteratively predict and update the state vector.

Several algorithms are used to match the vehicle state forecasted by a Kalman filter with a
corresponding observation in the next time frame. This matching problem can be solved via the
Hungarian algorithm that uses the intersection over union (IOU) index [21]. Although the two-step
approach succeeded in yielding a robust measurement performance, a simpler and lighter model must
be developed.

Although a YOLO can be a robust vehicle detector, it requires a large computing resource for a
field implementation. Furthermore, YOLO requires additional training whenever the testbed changes.
Drawing a bounding box for every vehicle in training images entails considerable human effort, but it
is required in order to accurately recognize vehicles in photos taken from different viewpoints [22].

In the present study, we devised an autoencoder model that would overcome the drawbacks of
learning-based traffic volume counters. The proposed model requires neither human input to annotate
images nor an additional algorithm to track vehicles after detection. The proposed model was trained
in an unsupervised manner and thus eliminates the human effort needed to tag images with labels.
In addition, the model is much lighter than any other learning-based models that are used to detect and
track vehicles, because it utilizes only a small number of pixels within an image, which corresponds
to a virtual cross line drawn on a road segment. The pixel intensities on the virtual line constitute
a one-dimensional input vector, and the vector feeds an autoencoder as input and simultaneously
becomes a label for the corresponding output. An autoencoder consists of two functional parts. While
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the former encoding part abstracts an input vector into features of a smaller dimension, the latter
decoding part reproduces the original input vector from the abstracted features. Both parts have a
generally symmetrical structure. The encoding part of the present model reduces the input vector
into a scalar signal. After training, an autoencoder evaluated the signal from an input vector, and a
simple rule was adopted to judge the presence of a vehicle. The latter decoding part is used only in the
training stage to learn the parameters of an autoencoder.

As with other image-based object detection models, however, this autoencoder model was not
immune to the impact of shadows and various illuminations. Furthermore, real vehicle images assume
complex patterns, and thus signals representing the same vehicle are not consistent according to which
part of a vehicle passes the detection line. Due to these complications, the signals were imperfect in
judging whether a vehicle was occupying the virtual line sensor. To tackle the problem, original images
were simplified using a CycleGAN developed by [23], so that both vehicles and backgrounds would
have monotone colors. Such a transformation had already been successfully adopted in our previous
studies measuring traffic speed and delay [22,24].

Section 2 explains how an autoencoder is used to recognize a vehicle’s presence and shows how
the model architecture is set up. Section 3 describes how to choose a testbed and collect image data.
Section 4 shows how threshold values are selected to judge the vehicle presence and to count the
vehicle passages. In the last subsection of Section 4, the traffic volumes measured from the present
approach are compared with those from a YOLO+SORT algorithm [18]. Section 5 extends both the
proposed model and the reference model, and the results are compared. The first subsection of
Section 5 provides a brief description of the CycleGAN that was used to convert real photos into simple
images. The following subsections describe how an autoencoder model was trained and tested on the
synthesized images, and how a YOLO+SORT algorithm was fine-tuned using additional aerial photos.
In Section 5, the efficiency of the proposed model is compared with a reference model and a plausible
method to classify vehicle types based on the proposed model introduced. Finally, Section 6 draws
conclusions and suggests further studies to develop the present approach.

2. An Autoencoder Recognizes the Presence of Vehicles

Autoencoders have been utilized to reduce the dimensions of input features [25,26], to remove
the noise from corrupted input data [27,28], and to pretrain the weights of a supervised deep learning
model [29,30]. In addition to these typical uses, autoencoders have been used for many other
purposes [31]. An autoencoder belongs to the category of unsupervised learning models because
it requires no human effort to label or annotate data for training. This is a great advantage of an
autoencoder-based model when adapted to measuring traffic volumes. A standard autoencoder was
employed in the present study to reduce the dimensions of an input feature into only a scalar signal
without supervision. We expected the signal to be fully qualified to recognize the presence of a vehicle.

A cross line drawn on a road segment was assumed to be a virtual detector for counting traffic
volumes. The width of the line was set as only a pixel, so that the input and output vectors for
an autoencoder could be one-dimensional. Pixel intensities along the line vary according to the
presence and absence of vehicles. The proposed approach was devised under the expectation that an
autoencoder could recognize such differences in pixel intensities according to the presence or absence
of a vehicle. The former encoder portion of the present autoencoder was established to be symmetrical
with the latter decoder portion. Both the encoding and decoding portions of the autoencoder are
composed of eight hidden layers, respectively. A single hidden node placed in the middle acts as a
potential output node that produces a scalar signal to recognize the presence of a vehicle. The latter
decoder portion is used only in the training stage.

Loss f unction = E
[
(F(X) −X)T

· (F(X) −X)
]

(1)
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The discrepancy between the input and the output was set as the loss function to be minimized
when training the autoencoder. The mean square error (MSE) was chosen to be the loss function.
In Equation (1), X is a one-dimensional input vector of the autoencoder. In practice, the absolute
value of pixel intensities subtracted from those of an empty road are used as input after normalization.
F(X) is the estimated output vector of the autoencoder. A stochastic gradient descent algorithm was
used to train the model, and the batch size was 48. Training data were extracted from video frames
of 100 min. Ten percent of the training data were randomly chosen to secure the convergence while
sidestepping over-fitting.

Once the model training is complete, only the encoder portion computes a signal that can be
used to recognize the presence of a vehicle. Dense layers are stacked to build both the encoder and
decoder portions. The number of hidden nodes dwindles to 1 through the encoder portion and is then
amplified up to the original input dimensions through the decoder portion. Figure 1 shows the entire
architecture of the autoencoder adopted in the present study. For brevity, the activation using the
rectified linear unit (ReLU) after each hidden layer is omitted in the figure. A scalar node in the middle
is activated with a sigmoid function. The model architecture was set up after testing as many plausible
alternative structures as possible.
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Figure 1. Architecture of the proposed autoencoder used to recognize the presence of a vehicle.

To facilitate the recognition of vehicle presence, the last signal of the encoder is activated by a
sigmoid function, such that the signal ranges between 0 and 1. It is likely that the signal for vehicle
presence will approach either of the boundary values. However, which value indicates the presence
of a vehicle is unknown even after training the autoencoder. To understand the boundary value for
vehicle presence, an analyst must intuitively examine the video stream used for training by comparing
signal estimates with the vehicle presence. Based on the examination, a threshold value should be
manually chosen to determine the presence or absence of vehicles. This engineering judgment could be
the only limitation in the proposed approach. Although the threshold value may also vary according
to the times of day and the weather conditions, it is difficult in practice to prepare different threshold
values in advance. We suggest a revolutionary method in the fourth section to overcome this difficulty
by transforming complex real photos into simple illustrations based on a CycleGAN.

3. Testbed and Data Collection

An intersection approach with four lanes was chosen as the testbed to train and test the proposed
autoencoder. One hundred minutes of video stream were taken from 35 m above the intersection.
Figure 2 shows a snapshot of the video stream. For each critical intersection in the Seoul metropolitan
area, a 25–35 m high pole is planted to hang a CCTV for multipurpose surveillance. We assumed
that the CCTV could be used for the purpose of traffic surveillance since it provides street photos
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from a bird’s-eye view. The coverage of the testbed was 13 m wide and 34 m long. The virtual line
detector was placed ahead of the stop line to avoid the condition whereby a vehicle would occupy
the line during a red signal phase. Another reason to draw a virtual detection line closely to the stop
line was because a lane change is not permitted when a vehicle is passing the stop line. Even though
our ultimate goal was to measure traffic volumes, an autoencoder simply recognizes the presence or
absence of a vehicle on a virtual detection line. How the autoencoder output is used to measure traffic
volumes will be described in the next section.
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The proposed autoencoder model was trained and tested in a single testbed. Usually, testing
results are most accurate when the model was trained in the same environment. It is rational that the
proposed autoencoder should be trained for each site, since training the model is not a burdensome
task without supervision. Trying to find a universal model that can cover all different locations is
unnecessary for the present model. Basically, reducing the model size is more important for a real-time
application than finding a heavier universal model with many parameters.

To assess the performance of the autoencoder, vehicle presence was manually identified during
the entire time period. That is, the actual presence of vehicles on the virtual detection line was recorded
every 0.2 s. Based on the ground truth, the precision and recall for the proposed autoencoder was
computed (see the next section).

The present study was focused on confirming whether an autoencoder could be used to measure
traffic volumes in the field on a real-time basis. To test the proposed approach, true traffic volumes
were observed in the testbed. The number of vehicles passing the virtual detection line of each lane
was counted for every two cycles of the traffic signal (=2.5 × 2 min). Based on these data, the final
performance of the proposed approach was tested and compared with that of a reference model.

There are two types of object detectors based on deep learning technologies. A Fast-RCNN is
accurate but has a disadvantage in computation time because it adopts a two-stage detection algorithm
wherein a preprocess of regional proposals precedes a detection task. If a tracking stage is added
when measuring traffic volumes, the model should go through three stages, which is not appropriate
for a real-time application. On the other hand, a YOLO is a single-stage detection algorithm that
has the merit of computation time, which has made the model widely accepted for the real-time
recognition of objects. Since traffic volumes should be measured on a real-time basis, instead of the
other two-stage models, we adopted a YOLO model as a reference to be compared with the proposed
model. As mentioned earlier, the latest YOLO (version 3) with default weights is incapable of detecting
vehicles in photos taken from a bird’s-eye view. To fine-tune the YOLO model, we manually drew
bounding boxes for all the vehicles in 1500 video frames of the testbed.
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4. The Model Performance Based on Real Photos

All analyses in this section are based on real photos from video shoots. First, this section introduces
a simple rule-based methodology to choose threshold values used to recognize the presence and
absence of vehicles from the signal output of a trained autoencoder. Next, the precision and recall are
computed for the autoencoder based on the chosen thresholds. Last, the performance of the proposed
approach in measuring traffic volumes is compared with that of a “state-of-the-art” model based on
YOLO and SORT [18].

4.1. Choosing Threshold Values to Measure Traffic Volumes

The trained autoencoder provided signals for the test data and the signal profile, as shown in
Figure 3. Once a signal profile that a trained autoencoder emits is available, it is possible to find a
threshold value with the naked eye by watching the video simultaneously with the signal profile.
We selected a threshold value to recognize the presence of vehicles in such a way. When compared
with actual video, signal values closer to 1 indicated that a vehicle was occupying the virtual detection
line, whereas those closer to 0 corresponded to the background. Unfortunately, there is no rigorous
way to drive an optimal boundary between the presence and absence of vehicles. We chose a threshold
directly from the signal profile, such that it could be slightly larger than the lowest signal value for the
background. The signal value for the background was almost 0, and the chosen threshold was set at
0.06. This manual choice did no harm in recognizing the presence of vehicles, which is verified in the
next subsection by computing the precision and recall based on the ground truth.
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Although signals are derived from a sigmoid function, 0.5 cannot be selected as a threshold value
because the signals corresponding to the presence of vehicles fluctuates significantly. The signal profile
in Figure 3 shows variations in the signals of a vehicle’s presence. This fluctuation could have been due
to inconsistent shapes and colors of vehicles. If vehicle shapes and colors were consistent, it would be
possible to establish a more robust way to choose a threshold value. A CycleGAN [23] will be adopted
in the next section to transform real photos into simple illustrations with consistent vehicle shapes
and colors.

Once a vehicle’s presence is recognized, the raw signal profile can be updated in a clearer manner,
as shown in Figure 4. Another threshold is the necessity to judge whether a series of signals belongs
to a vehicle’s passage. It is simple to count vehicles based on the updated signal profile, because the
time gap between consecutive vehicles cannot be decreased to a minimum value in an intersection
approach. Thus, a period of background shorter than the minimum gap was ignored and incorporated
with the previous and next intervals of a vehicle’s presence. The highway capacity manual (HCM,
2020) defines the saturation flowrate in an intersection approach for various geometric and operational
conditions. The minimum headway derived from the saturation flowrate under ideal conditions is
1.8 s. This means that no vehicle could pass the stop line within 1.8 s right after the preceding vehicle
has passed it. The minimum gap is shorter than the minimum headway according to the time it
takes for the vehicle length to pass. The minimum gap (=0.5 s) chosen in the present study was very
conservative. This minimum gap is globally applicable. However, the threshold value to recognize the
vehicle presence is expected to vary from site to site.
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4.2. The Performance of the Autoencoder at Judging the Presence of Vehicles

The precision and recall of the trained autoencoder was computed to evaluate its performance
for detecting the presence of vehicles. As mentioned earlier, to validate the autoencoder model we
manually recognized the presence of vehicles. To facilitate the labeling task, only the video frames
for green signals were utilized. Out of 100-min video frames, 80 min were used for training, and the
remainder was reserved for testing. Table 1 shows the precision and recall for both the training and
the testing data. Unlike the prior expectation, the testing results were ameliorated somewhat when
compared with the training results. This might be due to a coincidence wherein the test dataset
includes fewer problematic situations. The test results showed that the proposed autoencoder is not
error free. A remedy was needed to increase the model performance, and that will be introduced in the
next section.

Table 1. The precision and recall of the proposed autoencoder to identify the presence and absence of
vehicles on the virtual detection line.

Train Data Test Data

Positive
(Ground

Truth)

Negative
(Ground

Truth)
Sum

Positive
(Ground

Truth)

Negative
(Ground

Truth)
Sum

Positive
(Predicted) 19,806 456 20,262 4230 84 4314

Negative
(Predicted) 1355 51,603 52,958 202 11,164 11,366

Sum 21,161 52,059 73,220 4432 11,248 15,680
Precision 0.977 0.981

Recall 0.936 0.954

4.3. The Performance of the Proposed Approach to Measure Traffic Volumes Compared with that of a
Yolo-Based Model

The accuracy of measuring traffic volumes for the test data is introduced in this subsection. Since
the autoencoder was not perfect in judging the presence of vehicles, its accuracy in measuring the traffic
volumes entailed some errors. The traffic volume measured by the autoencoder-based methodology
was overestimated when compared with observations. This implies that the methodology mistakenly
double-counted some vehicle passages (Table 2).

A YOLO-based model was selected as a reference to validate the proposed model. The reference
model adopted a two-step approach that involved detecting and tracking. The YOLO detects vehicles,
and then a SORT algorithm tracks them [18]. Table 2 compares the accuracy of both the reference and
the proposed methodology. Unexpectedly, the accuracy of the reference model was inferior to that
of the proposed model. This resulted from the fact that the original YOLO had been trained only on
vehicle images taken from the ground view, whereas testing images were taken from an aerial view.
In the next section, the model will be fine-tuned using extra labeled images taken from an aerial view
to enhance the performance. A CycleGAN-based remedy will also be used to allow the proposed
model to overcome the inaccuracy.
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Table 2. Comparing the accuracy of the proposed model with that of the reference model.

Accuracy Comparison Autoencoder Model YOLO v3 Model

Lane 1 Lane 2 Lane 3 Lane 4 Lane 1 Lane 2 Lane 3 Lane 4

C1~2 Predicted/
Ground truth 35/34 31/30 18/18 21/21 22/34 29/30 18/18 20/21

C3~4 Predicted/
Ground truth 39/39 42/40 17/17 19/19 38/39 39/40 14/17 17/19

C5~6 Predicted/
Ground truth 46/44 39/39 22/20 16/16 36/44 38/39 20/20 10/16

C7~8 Predicted/
Ground truth 41/43 45/46 21/20 18/18 31/43 44/46 32/20 13/18

Total
Predicted /

Ground truth 161/160 157/155 78/75 74/74 127/160 150/155 84/75 60/74

Error (%) +0.6% +1.3% +4% 0% −20.6% −3.2% +12% −18.9%

5. The Model Performance Based on Synthesized Images

The dependence on real photos is an aspect of the proposed autoencoder that prevents it from
sufficiently recognizing the presence of vehicles. Pixel intensities on the detection line are inconsistent
while a vehicle is passing the line, because the shape and color of the vehicle varies. A robust way
to change an original photo into a simpler image is introduced in this section under the assumption
that the performance of the autoencoder could be enhanced if the shape and color of a vehicle were
consistent within an image.

A CycleGAN was used to preprocess input images so that a vehicle image could be simpler and
more consistent in both color and shape. It should be noted that a CycleGAN is not a prerequisite for
an autoencoder to measure traffic volumes, but instead is an assistant tool to refine input images for
the best accuracy.

5.1. The Introduction of a Cycle-Consistent Adversarial Network (CycleGAN)

The use of deep learning technologies in computer vision has recently trended toward the
development of generative models to synthesize images [23,32,33]. In the use of these technologies,
the approach of Zhu et al. [23] has been noteworthy in that an image in one context can be transformed
to its corresponding image in another context. A CycleGAN has been used to change the photos of a
summer landscape into those of a winter landscape, female photos into male photos, or satellite images
into real physical maps. This capability of a CycleGAN also facilitates traffic surveillance that depends
on images. We have already used images synthesized by a CycleGAN to enhance the accuracy of
measuring both traffic speeds and delays [22,24]. This scheme was adopted in the present study to
obtain images that were more consistent at recognizing the presence of vehicles on the detection line.

A CycleGAN is composed of two types of CNN models that are alternately updated during
training. A generator converts images in one context to corresponding images in the other context,
whereas a discriminator judges which context an image belongs to. Generators are trained to minimize
the discrepancies between the images in one context and the images that are cycled from them.
The training of discriminators must address two different objectives. A discriminator judges real
photos as true and synthesized images as fake. Adversarial learning, however, attempts to deceive
a discriminator so that it cannot discern a cycled image from the original real photo. For details
concerning the training of a CycleGAN, readers can refer to previously published studies listed in the
references [23,24].

Two separate image sets in different contexts are necessary to train a CycleGAN. In the present
study, original photos were taken in the field, and cartoon-like illustrations were obtained from a traffic
simulator (VISSIM v5.0, PTV, Karlsruhe, Germany). When training a CycleGAN two image sets do not
have to be paired, which is a tremendous advantage. That means that no human effort is required to
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tag photos with labels in order to train a CycleGAN. The only requirement was traffic simulation that
would mimic real traffic conditions. Most traffic simulators provide an animation module to visualize
the simulation results. This function facilitates the generation of images that contain vehicles that
are consistent in shape and color. Figure 5 shows examples of real photos and their corresponding
images that were synthesized using a CycleGAN. The synthesized images include jelly-like vehicle
shapes, each of which is represented by a constant color. In the next subsection, the enhancement in
the performance of the autoencoder will be examined based on precision and recall.
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5.2. Enhancing the Performance of the Autoencoder to Better Judge the Presence of Vehicles

As expected, the performance of the autoencoder to judge the presence of vehicles was considerably
improved when synthesized images were used instead of real photos for training and testing (compare
Tables 1 and 3). The profile of raw signals from the enhanced autoencoder is quite different from
that of the original autoencoder, which was based on real photos (see Figures 3 and 6). The updated
profile more closely approximated the final profile after recognizing vehicle passages based on chosen
thresholds (see Figures 6 and 7).
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Table 3. The precision and recall of the autoencoder when synthesized images are used as input.

Train Data Test Data

Positive
(Ground

Truth)

Negative
(Ground

Truth)
Sum

Positive
(Ground

Truth)

Negative
(Ground

Truth)
Sum

Positive
(Predicted) 20,051 376 20,427 4206 32 4238

Negative
(Predicted) 942 51,851 52,793 213 11,229 11,442

Sum 20,993 52,227 73,220 4419 11,261 15,680

Precision 0.982 0.992

Recall 0.955 0.952
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Figure 7. Final signal profile of vehicle passages when using synthesized images for the test data.

Figure 8 was drawn to directly show the reason for the performance enhancement. The signal of a
real vehicle varies while passing the virtual detection line (=yellow line), whereas that of a jelly-type
vehicle shape synthesized from a CycleGAN is much more consistent. This confirms that the proposed
methodology has a great advantage when directly applied to field operation.
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5.3. The Performance of the Updated Autoencoder in Measuring Traffic Volumes Compared with that of a
Yolo-Based Model

The performance of the autoencoder to measure traffic volumes was improved considerably when
synthesized images were used. The accuracy of the updated autoencoder approached 100%, which is
much higher than that of the naive autoencoder trained on real photos (compare Tables 2 and 4).

Table 4. The accuracy comparison between the updated model and reference model.

Accuracy Comparison Autoencoder Model (Updated) YOLO v3 Model (Fine Tuned)

Lane 1 Lane 2 Lane 3 Lane 4 Lane 1 Lane 2 Lane 3 Lane 4

C1~2 Predicted/Ground
truth 34/34 30/30 18/18 21/21 34/34 20/20 18/18 21/21

C3~4 Predicted/Ground
truth 39/39 40/40 17/17 19/19 47/39 40/40 16/17 19/19

C5~6 Predicted/Ground
truth 44/44 39/39 20/20 16/16 44/44 39/39 20/20 16/16

C7~8 Predicted/Ground
truth 41/43 45/46 20/20 18/18 41/43 45/46 25/20 16/18

Total
Predicted/Ground

truth 158/160 154/155 75/75 74/74 166/160 154/155 79/75 72/74

Error (%) −1.3% −0.6% 0% 0% +3.8% −0.6% +5.3% −2.7%

The performance of the updated autoencoder to measure traffic volumes was compared with
that of a YOLO-based model. For a fair comparison, a YOLO-based model was also updated with
extra labeling data. One thousand and five hundred pictures from an aerial view were annotated with
bounding boxes to fine tune the original YOLO v3 model with default weights. This took almost a
week with two coding experts hired. Drawing a bounding box for every vehicle within all images
is a very labor-intensive task, which makes the use of a YOLO-based model less practical for use in
traffic surveillance. The performance of the YOLO-based model after fine tuning was comparable to
that of the proposed model (Table 4). It should be noted that the proposed model does not require
human effort for the task of labeling. Both the autoencoder and the CycleGAN belong to the category
of unsupervised learning.

6. The Model Efficiency and the Potential to Classify Vehicle Types

One of the main purposes of the present study is to develop a lighter model that could be
implemented on a real-time basis using edge computing. A one-dimensional input instead of a full
image has a great advantage in saving computer memory onsite. The comparison of computing time
and memory usage is introduced in Table 5. The number of parameters in the proposed model was
much smaller than that in a YOLO. The proposed model turned out to be much lighter and faster than
a YOLO when recognizing vehicles for a frame. Even when a CycleGAN was used to preprocess an
input image, a YOLO did not outperform the proposed model in computing speed.

Table 5. The efficiency comparison between the proposed model and reference model.

Number of Parameters Evaluation Time per Frame

Autoencoder model 59,361 0.00007 s

CycleGAN + Autoencoder model 9,525,101 0.032 s

YOLO v3 model 61,581,727 0.078 s

The proposed model did not include the intrinsic function of classifying vehicle types, whereas
other image-based models such as YOLO can easily classify vehicle types. A plausible methodology
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is proposed to classify vehicle types via a simple rule-based approach. It is possible that the vehicle
length could be approximately measured under the assumption that the length would be proportional
to the passing time. This assumption has been widely accepted when the vehicle type was estimated
based on signals from a conventional loop detector. The moving average of a vehicle’s passage time
was dynamically updated and used as a basis on which the vehicle length was determined. If a
vehicle passage time is larger than a threshold value, the vehicle is categorized into a group of large
trucks or buses (Figure 9). We determined a threshold value to be 1.67-fold of the average of vehicle
passage times.Electronics 2020, 9, x FOR PEER REVIEW 12 of 14 
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On the other hand, a YOLO has the ability to directly classify vehicle types. We reduced the
number of classes of a YOLO model and trained it from scratch using our own labeled images without
depending on pretrained parameters. A YOLO version 3 was trained so that it could classify three
different types of vehicles such as cars, small vehicles, and large vehicles. Small vehicles include SUVs
and small trucks, and large vehicles include buses, large trucks, and trailers. For the comparison with
the proposed model with only two classes, cars and small vehicles were categorized into a single group
of small vehicles. As shown in Table 6, the proposed model turned out to be capable of classifying
vehicle types, even though the performance was slightly inferior to that of a YOLO.

The motorcycles were excluded in measuring traffic volumes. The passage of a motorcycle left
smaller signals than vehicles. These signals of motorcycles could be a cause of false positives. Although
a carefully chosen threshold turned out to minimize the errors, rigorous measures should be taken to
recognize motorcycles, which will depend on two-dimensional signals in the further study.

Table 6. The accuracy comparison for classifying vehicle types.

Accuracy
Comparison

Autoencoder CycleGAN + Autoencoder YOLO v3

Lane 1 Lane 2 Lane 3 Lane 4 Lane 1 Lane 2 Lane 3 Lane 4 Lane 1 Lane 2 Lane 3 Lane 4

Small Vehicle 152/150 155/155 74/73 71/72 149/150 154/155 73/73 72/72 156/150 154/155 77/73 70/72

Large Vehicle 9/10 2/0 4/2 3/2 9/10 0/0 2/2 2/2 10/10 0/0 2/2 2/2

7. Conclusions

A novel methodology to measure traffic volumes without supervision was developed in the
present study. An autoencoder was trained to recognize the presence of vehicles on a cross section
of a roadway based solely on pixel intensities. The proposed methodology requires no human effort
to tag images with labels. The performance of the proposed model trained on synthesized images
approximated that of a YOLO-based model that was fine-tuned with the extra labeling of images.
When considering the human effort required for the labeling task, the proposed methodology seems
more promising for use in the field.

The proposed methodology, however, demonstrated a critical drawback wherein vehicle types
could not be distinguished. It is possible to approximately classify vehicle types if a constant speed is
assumed for all moving vehicles. This assumption is acceptable when the detection line is placed on
the stop line of an intersection approach. Speed estimation that depends on spot detectors usually
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adopts such an assumption. Further study is expected to develop a traffic volume counter that could
classify each vehicle type.
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