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Abstract: Ecotourism activities are attracting more people each day, including national forest
parks. Unfortunately, the number of incidents involving visitors to natural parks grows at the
same pace. Among the most prevalent risks inside forests are getting lost and the occurrence
of natural disasters. In this work, we propose a system for monitoring and assisting visitors of
forest parks, based on a low power wide range wireless network, LoRa. The proposed visitor
assisting system is composed of mobile terminals that communicate between them and with fixed
infrastructure, using a protocol designed for exchanging visitor locations data. The infrastructure
consists of wireless gateways distributed on the trails, the totems. User terminals, the mobile nodes,
work collaboratively through a Delay and Disruption Tolerant Network (DTN), to cope with the
possibility that the gateway infrastructure does not cover the whole trail. In addition to improvements
and gains for minimizing risks, the proposal also brings contributions to the preservation of the
environment, raising awareness of the influence of human presence in the natural environment and
to the development of environmental education actions.

Keywords: ecotourism safety; forest radio propagation; monitoring system; cooperative positioning

1. Introduction

Ecotourism, according to the World Economic Forum [1], is an economic activity that strongly
contributes to income generation and distribution, especially in underdeveloped countries. In addition
to helping to reduce poverty, ecotourism helps to preserve endangered ecosystems. Indeed,
Environmental Conservation Units, such as parks and forest reserves, are extremely important because
they promote environmental education and integrate the society with nature. Nonetheless, the natural
environment presents inherent risks. Inside tropical forests, those mainly include getting lost, getting
hurt, being in an unfamiliar environment, and the occurrence of natural disasters, such as flash flooding
or forest fires.

Efficiently responding to the occurrence of lost visitors requires their geolocation, in addition to
means of communication—or the search and rescue operation may take too long. The use of global
navigation satellite systems (GNSS), such as the GPS, would make the task of determining the visitor’s
position straightforward. The problem is, it is not possible to rely on a GNSS within conservation
units, for example, inside dense forests or canyons. In these situations, alternative techniques need to
be explored.
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This work describes the project of a visitor assisting system where the localization is done
collaboratively, using a low power wide range wireless network, and a DTN (Delay and disruption
Tolerant Network) communication model. LoRa [2–4] is the wireless technology chosen, being the one
that provided the largest range inside the tropical forest. Only the LoRa physical layer is used once
our communication scenario does not justify the use of LoRaWAN [5,6]. Our main requirements for
the mobile terminal, which will be carried by the user (a bracelet, ideally), are lightweight, very low
energy consumption, and long-range communication. As such, we can consider this terminal as an
Internet of Things (IoT) device. As a consequence, we also have some constraints: low memory, low
processing capacity, and low data transmission rates.

The aim is to keep the project simple and inexpensive to facilitate its implementation in different
conservation units. The goal is to maximize wireless network coverage while reducing infrastructure.
This minimizes the cost of the project and also the environmental impacts that may be caused to fauna
and flora.

The architecture of the proposed visitor assistance system has mobile and fixed nodes, which
implement a security application. The mobile nodes are the visitor terminals and the fixed ones are
the totems, an infrastructure to forward traffic to the application servers. The security application
provides monitoring of visitors’ location, whether alone or in a group, and additionally allows help
requests. To support the application, we design a protocol for exchanging location messages. As the
application is designed to run directly above the LoRa physical layer, an alternate method to control
access to the medium is developed.

In a nutshell, the contributions of our work are:

• The proposal of a specific medium access control protocol for the LoRa network, which connects
user terminals to totems and among themselves. A lightweight variation of CSMA (Carrier-Sense
Multiple Access) is implemented using the different spreading factors of the LoRa PHY layer;

• A protocol for the collaborative localization of visitors inside the park, which builds upon the
one proposed in the CenWits project [7]. The proposed protocol includes visitor’s active requests
for rescue and dynamic group creation. Groups allow to optimize terminal memory and battery
utilization, as well as reducing the load offered to the network.

This work is organized as follows. Section 2 presents the main contributions of this work,
and Section 3 shows existing related work in the literature. Section 4 briefly analyzes radio propagation
in the forest environment. Section 5 details the visitor assistance system proposed, including
architecture, protocol, and application. Section 6 presents a case study, the crossing trail between
Petrópolis and Teresópolis cities. These two cities are in the mountainous region of the state of Rio
de Janeiro, both with part of their area comprised of the Serra dos Órgão National Park (PARNASO).
Finally, Section 7 concludes the paper and discusses our future work.

2. Contribution

This work is based on the CenWits [7] project, a system for locating and rescuing people in
wilderness areas. In CenWits, each hiker wears a MICA2 sensor mote equipped with a GPS receiver
and an RF transmitter, operating in the 900 MHz range. Each sensor is assigned a unique ID and
maintains its current location based on the signal received by its GPS receiver. It also emits beacons
periodically. When any two sensors are in the range of one another, they record the presence of each
other (witness information) and also exchange the witness information they recorded earlier. The key
idea here is that if two sensors come within range of each other at any time, they become each other’s
witnesses. Later on, if the hiker wearing one of these sensors is lost, the other sensor can convey the last
known (witnessed) location of the lost hiker. Furthermore, by exchanging the witness information that
each sensor recorded earlier, the witness information is propagated beyond a direct contact between
two sensors. To convey witness information to a processing center or a rescue team, access points are
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established. Whenever a sensor node is in the vicinity of an access point, all witness information stored
in that sensor is automatically dumped to the access point.

From this system, our work adds a communication protocol, in which the sighting record is one
of the messages. This protocol uses an initial handshake to optimize communication. Seven types of
messages are created additionally to the sighting record to allow medium access control; filtering the
data to be sent, reducing energy and time spent on transmission; active help request; and dynamic and
transparent organization of groups.

After propagation tests were carried out in the forest environment, briefly described in Section 4,
LoRa technology was chosen for the physical layer. This technology, besides presenting the best
performance in the forest among all those tested, also has a very interesting feature: the possibility
of communication using different spreading factors (SF) without interfering with each other. Thus,
taking advantage of these characteristics, we developed a medium access control mechanism that
uses a common signaling channel with SF12, and other channels for data exchange using the other
SF. Each terminal announces its presence on the common channel by sending a beacon. Once two
terminals enter each other’s coverage area, the handshake is initiated. One of the parameters agreed in
the handshake is the SF of the channel to be used for data exchange. The choice is based on the quality
of the received signal. However, before transmitting, the terminal listens to the chosen channel, in a
mechanism similar to Clear Channel Assessment (CCA) to avoid collisions.

In CenWits, memory management is made using two parameters, the time of creating a record
and the number of hops the record has already passed. However, these parameters are used only
locally. In our project, these same parameters are used as metadata together with a new parameter
that limits the maximum quantity of records, informed in the handshake, to describe the type of data
that the terminal wishes to receive. So before sending records, the data is filtered, reducing time and
energy spent on transmission. As communication is opportunistic, using the limited contact time
efficiently is essential so that the data load offered to the network can be actually drained. Transmitting
only the data that is requested also contributes to intelligent energy management, reducing battery
consumption. Finally, a shorter transmission time also reduces channel occupation and, consequently,
the probability of collisions.

The help request is an active signaling option on the part of the user who needs help. Thus, it is
possible to attend to emergencies in which the visitor with problems, despite being in the coverage
area of another node, is not visible or is not identified as being at risk, when in reality he is. So, he
is more quickly rescued. Other types of emergencies continue to be attended when the visitor stops
being reported in the sighting records of the other terminals, as in CenWits.

Finally, the proposed protocol allows the dynamic and transparent organization of groups.
The creation of groups is foreseen in CenWits, but statically and requires its configuration before
the visitors enter the trails. Dynamic group formation, without the need for visitor intervention,
allows expanding its benefits in terms of optimized use of memory and battery, also reducing the total
network load.

New fields and new types of messages are created, described in detail in Section 5.2, so that these
improvements can be implemented, resulting in a new protocol different from the simple exchange of
records proposed in CenWits.

The usage of LoRa, an important part of this proposal, also brings characteristics that make
transmission in the forest a little less arduous. LoRa implements a modulation based on Chirp Spread
Spectrum (CSS), which allows its operation with low values of received power, and resistance to
interference. As propagation is extremely difficult in forests, especially in humid tropical forests as is
the case at hand, these characteristics are very relevant. The specification of LoRa for the physical layer
is the basis for the contributions described here.
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3. Related Work

The use of positioning systems other than satellite-based has been increasing due to the growing
demand for Location-Based Services (LBS), mainly in places where satellite communication is limited
or unavailable. Those studies are important to the design of our visitor assistance system. On the
other hand, the integration of tourism activities, environment preservation, and safety demands
efficient communication systems. Miller et al. [8] discuss the importance of conservation tourism and
protected destination system as a trade-off between healthy activity and economical investment for
the host area. The authors suggest that a potential approach is the remote sensing data collected by
individuals. Remote sensors/platforms with human components are interesting because humans have
discretionary abilities influencing sensing that are not shared by other animals or platforms that are
coupled with sensors.

A system capable of transmitting positioning data using LPWAN in outdoor environments is
developed in [9] by Carbonés, demonstrating that it is feasible to locate a static terminal with an
accuracy of 100 meters. The remote node sends data using the LoRaWAN protocol. Nearby gateways
receive this data and forward the packets via UDP/IP to the server along with information about the
received signal, such as the exact time the packet was received, the RSSI, the frequency, etc. The server
then processes the data from different gateways and routes messages to the application using an MQTT
client (Message Queuing Telemetry Transport) [10]. Finally, an algorithm running on the application
server estimates the position using the Time Difference Of Arrival (TDOA) method.

In [11], Baharudin et al. present a long-range WSN for tracking the geographic location of moving
objects. In the proposed system, the geographic location information of moving objects is collected with
a GPS and sent through LoRa modules. The results demonstrated the usability of GPS technology to
collect various additional data, such as speed and direction of travel, related to tracking the geographic
location of moving objects. This work also reflects the high potential of LoRa technology as a reliable
wireless communication interface for transmitting data from long-range sensors.

Bouras et al. [12] presented technology comparison scenarios for IoT concepts on rescue
monitoring. The paper focuses on rescue monitoring, and the goal is the usage of Wi-Fi and LoRa
for data transmission from IoT devices. A LoRa based gateway and Wi-Fi Router is used to connect
the end-device. The collected data is sent to server applications as captured from installed sensors
on the IoT modules and can be displayed to authorized users through a web or mobile application.
The results through simulation and real-time experiments indicate that LoRa can be an ideal candidate
for rescue monitoring.

Similar to the forest, maritime communications, presented by Sanchez in [13], are challenging due
to the adverse transmission conditions and the lack of a pre-provided infrastructure. Communications
in areas closer to the shore allow services as boat tracking and telemetry, data collection from moored
monitoring systems, etc. The authors present a boat tracking and monitoring system based on LoRa
and present the results extracted from a case of study where real-training sessions of Optimist Class
sailboats have been monitored. A transmission range study is also presented.

Some studies estimate the location based on the RSSI (Received Signal Strength Indicator) values
of the signal received from the infrastructure elements. In [14], RSSI is used in a system for locating
small turtles on the Wildlife Institute of India. Four fixed points are used covering a square area,
called by the authors of the environmental matrix. Based on the RSSI reading taken previously
along the sides of the square, adjacent grid points are mapped. These points allow defining the limit
values for the measured signal. Then, the RSSI values of signals sent by transmitters installed in
the animals are compared by the fixed points, locating them inside the cells where the intersection
occurs. Nevertheless, this approach is inefficient in the forest environment, since RSSI presents intense
variability. The forest environment is very challenging due to the difficulties of propagating the
electromagnetic wave. This difficulty becomes even more pronounced in humid tropical forests, such
as the Brazilian Atlantic Forest.
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Two works are very relevant for our purpose. They focus on locating visitors in natural parks,
but none of them consider physical layer aspects. In the works described in [7,15], the authors introduce
the concept of sighting registration as a way to subsidize the location of a sensor on a network with
intermittent connection and its joint use with GPS, if available. The sighting record consists of storing
the location data of the sensor when it contacts another sensor, together with the remote sensor
identification. Both works only use one type of message, the sighting record. There is no handshake
and, therefore, no metadata is produced to allow the filtering of records before transmitting them.
If sensor memory is full, excess data received is discarded.

CenWits [7] is a search and rescue system in the wild, which uses RF transceivers carried by
visitors, operating in the 900 MHz range. Each sensor receives its coordinates from location points,
or a GPS, if available, and passes it on to other nodes during subsequent encounters. This information
is uploaded at access points, distributed in several locations. This data, which consists of location
history, can be used to estimate the location of a lost visitor. The system is designed for a network that
provides only occasional connectivity. A prototype of CenWits has been implemented using Berkeley
Mica2 motes, but the authors do not detail the type of location where the tests were performed, urban
or natural.

The SenSearch project [15] is an outdoor GPS assisted personnel tracking system. SenSearch
is based on CenWits [7] and works in much the same way, but with the exclusive use of GPS for
determining the location, increasing the accuracy of the system. A study of the duty cycle is also
made, reducing the periods of activation of the GPS and the transceivers to improve the use of the
battery. The duty cycling may lead to a decrease in the localization accuracy of the system. This
is discussed in the performance evaluation, using analytical, simulation, and experimental results.
The experiments are held in urban areas, at the University of California-Merced campus and the
University of Colorado-Boulder campus.

YushanNet [16] is another system for tracking walkers and the collected hiking traces can provide
more precise information to rescue teams if there are hikers lost in the mountains. A demonstration is
implemented in Yushan National Park, Taiwan. The park is a subtropical high mountain national park.
The central ideas are based on [7,15], which apply a DTN technique and make use of opportunistic,
ad hoc, and short-range wireless communications to disseminate data in a network. Hikers carry a
matchbox-sized device, which consists of a ZigBee-based mote and a GPS receiver, and the device
records its hiking trace, along with encounter information with other devices. In addition to supplying
information about hikers’ whereabouts to park administrators and rescue services, the system allows
family members to log on to a website and check that hikers have reached their planned destinations.
The system design is demonstrated using a small-scale network scenario.

Also focused on natural environments, the WebPark [17,18] was a research and development
project funded by the European Community, through the IST (Information Societies Technology)
program, between October 2001 and September 2004. In the end, it was integrated into commercial
service by the company Camineo (http://camineo.com/index.php?lang=en). The project aims to
develop a series of LBS for visitors to natural and protected areas. It presents the concept and
development of a service for searching for species information in a recreation area. WebPark uses
caching in a client-server architecture to reduce the impact of the lack of a continuous connection to the
Internet. This connection is made via the mobile data network GPRS (General Packet Radio Service),
in which the coverage is intermittent in the considered area [19].

Public visits to parks may threaten the integrity not only of the visitor but also of the natural
resources and the quality of the visitor experience. For providing visitor tracking data to the staff of
conservation units, in [20], a computer simulation modeling application is presented. The goal is to
deal with the visitation to the Arches National Park (Utah, USA) without damage to the environment.
A travel simulation model of daily visitor use throughout the Park’s road and trail network and at
selected attraction sites was developed. Simulations were conducted to estimate a daily social carrying

http://camineo.com/index.php?lang=en


Electronics 2020, 9, 696 6 of 24

capacity for Delicate Arch, one of its main attractions, and for the Park as a whole. In our project,
similar information is generated, but we build a prototype to monitor the movement of visitors.

The proposal of Son et al. [21] is closely related to our work. It considers the forest environment,
proposing a technological approach to fire detection. The proposed forest fire surveillance system
is designed for the mountains of South Korea. It consists of a wireless sensor network (WSN),
a middleware, and a web application. The sensors measure the temperature, humidity, and detect
smoke. The middleware program and the web application analyze the data and information collected,
generating a real-time alarm when the fire occurs.

Finally, the CenWits [7] project is extremely relevant for this work because it served as a basis
for the elaboration of the system proposed here. Nevertheless, the location application proposed in
this project used to provide the visitor monitoring and security service adds new types of messages
and fields in its headers to allow for improvements and new features. These adjustments allow a
faster service to visitors at risk, better media access control, efficient use of wireless communication
technology and the resources of mobile terminals.

In the present work, we designed an application for visitor assistance within the rain forest
environment. LoRa technology is used to exchange data with multiple hops, using DTN techniques,
allowing the collaborative geolocation within the natural environment, using wearable terminals
and access points, named communication totems. Our work builds upon the state of the art,
investigating the use of Low Power Wide Area Network (LPWAN) technology in the forest and
proposing appropriate communication protocols for the monitoring and rescuing of people visiting
those natural parks.

4. Environment

The forest is an environment hostile to propagation. From the viewpoint of radio signals, the forest
is a random medium with many discrete scatters, such as the randomly distributed leaves, branches,
and tree trunks. Radio waves propagating in the vegetation naturally experience multiple scattering,
diffraction, and absorption of radiation. These different propagation mechanisms, when combined,
result in severe fading of the received signal [22]. Figure 1a,b show the vegetation and the trail where
the experiments were done.

(a) Vegetation. (b) Trail.

Figure 1. Vegetation and experiment location.
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Large- and small-scale fading are related to slow and sudden variations in the signal envelope,
respectively. Large-scale fading, or shading, is caused by path loss and slow, predictable variations
around the average. Small-scale fading refers to sudden, fast, and small displacement attenuation.
The main cause of small-scale fading is the occurrence of the multipath phenomenon, which
consists of overlapping different versions of the same signal with different phases at the receiver.
The composition of these signals can severely attenuate the received signal, reducing the received
power and signal-to-noise ratio (SNR), and thereby reducing the link range and packet delivery ratio.
As a result, the maximum range of LoRa in the forest, considering SF12, the most robust spreading
factor, is reduced from several kilometers in the open air to just 250 m.

To evaluate the feasibility of LoRa in the rain forest, a measurement campaign was carried out to
identify the behavior of a radio link within this environment. We have performed practical experiments
with LoRa at 915 MHz. Two prototype nodes based on Arduino microcontrollers are used. Figure 2a
shows a map of the test site, and Figure 2b shows the prototypes. This experimental equipment is
summarized in Table 1, and its configuration parameters are listed in Table 2.

(a) (b)

Figure 2. Measuring location map and prototypes. (a) Map of the site of experiments at PARNASO
(https://www.icmbio.gov.br/parnaserradosorgaos/). (b) The pole-mounted prototype node.

https://www.icmbio.gov.br/parnaserradosorgaos/
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Table 1. Hardware components used in the prototype nodes.

Description Value

Controller Arduino Uno R3
Wireless interface Dragino RF96

GPS Receiver U-blox NEO-6M
Antenna Monopole 7dBi

Transmission antenna height 1.5 m
Supply Current in Receive Mode 10.8 mA

Supply Current in Transmit Mode 120 mA

Table 2. Configuration parameters.

Description Value

Frequency 915 MHz
Bandwidth 500 kHz
Code Rate 4/5

Transmission Power 14 dBm

The Log-distance distribution is widely used to model large-scale fading [23]. To describe the
behavior of the signal considering only large-scale fading, it is necessary to eliminate local variations
caused by small-scale fading. For this, the averages of the various measurements performed were used.
This behavior can be seen in Figure 3, which shows the RSSI histogram and the Probability Density
Function (PDF) for the measured data.

Figure 3. Probability Density Function (PDF) of average power measurements (W) for LoRa SF12 at a
distance of 250 m.

Figure 4 shows the RSSI histogram and the PDF for small-scale fading estimated using
instantaneous power measurement. We observe that the Nakagami-m [24] distribution is the one that
best fits forest propagation.



Electronics 2020, 9, 696 9 of 24

Figure 4. PDF of instantaneous power measurements (W) for LoRa SF12 at a distance of 250 m.

Signal attenuation in the forest environment is composed of small-scale fading superimposed on
large-scale fading. In this situation, the PDF of the envelope can be considered as the composition of
two probability distributions, and calculated by their convolution.

Although the Log-distance distribution is the best fit to large-scale fading, its combination
with multipath model distributions results in open formulas. This resulting formulation is difficult
to use in calculations, such as bit error rate, diversity schemes, outage probability, and coverage
prediction, according to [25]. The Gamma distribution is then proposed as an approximation to the
Log-distance distribution.

Figure 5 presents the composite probability density function, optimized for the data obtained
in the field. Power data were used, normalized by the local average at each measurement point,
comprising a total of 10,893 samples. This composition of the two types of attenuation is used to
generate power levels in the receiver, in the simulation of the proposed network. The goal of the
simulation is to extrapolate the results of the prototype measurements to a larger number of nodes,
considering a realistic positioning of totems in the trail.

Figure 5. Nakagami-m and Gamma composite PDF.
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5. The Proposed Visitor Assistance System

In this work, communication within the forest is used to support a location monitoring system
for visitors to an environmental conservation unit. The proposed monitoring system is comprised
of a sparse infrastructure of wireless access points, called totems, and wearable mobile terminals,
used by visitors, as well as a location application and a protocol for message exchange between
devices. The proposal includes a DTN composed of fixed and mobile points. The mobile points are the
terminals of the visitors who, operating collaboratively, forward the packages between themselves
and to the fixed points, the totems. The totems function as data kiosks, concentrating information and
interconnecting with the park’s central server and the Internet. Figure 6 presents a network scheme,
showing the communication between totems and mobile terminals, as well as the communication of
mobile terminals with each other.

Figure 6. Network scheme.

5.1. Infrastructure

Totems communicate with mobile terminals using LoRa technology, developed by Semtech for
LPWAN [4,26]. LPWAN is designed to connect equipment over long distances, with a low transmission
rate and low power consumption. They are therefore suitable for the use of battery-operated terminals,
small lightweight and low cost, as required in this work. Only the physical layer (PHY) of LoRa is used,
operating at the frequency of 915 MHz. LoRaWAN specifies a star network topology, with the gateway
being the central node. Thus, since point-to-point communication between terminals is required in our
project, LoRaWAN is not used.

The LoRa PHY uses Forward Error Correction and Chirp Spreading Spectrum modulation
(CSS) [6], which varies the frequency without changing the phase between adjacent symbols.
The Spread Factor (SF) defines the ratio between bit rate and chirp rate. LoRa specification defines
six different spreading factors (SF7, SF8, SF9, SF10, SF11, and SF12), which allow the formation of
orthogonal channels. Links with different spreading factors do not collide [3]. The SF defines the
symbol duration and, together with the Bandwidth and Code Rate (CR) parameters, defines the data
transmission rate. The CR defines how many bits are used for redundancy in the message, to perform
error recovery. A higher SF increases the sensitivity of the reception threshold in terms of power,
but also increases the duration of symbols and, as a consequence, decreases the transmission rate of
the link [27].
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Totems announce their coordinates through beacon messages and serve as communication
gateways to mobile terminals, forwarding their data to the cloud. Figure 7 illustrates the scenario.
We assume that communication between totems and the cloud will use any available means: cellular,
Wi-Fi, etc. The specification of this communication is beyond the scope of this article.

Figure 7. Short-term static scenario.

The fixed infrastructure must be reduced, favoring the low cost of the whole system and
considering that the area to be covered by the monitoring system is typically large—ecological
conservation units. The totems must be positioned in places that allow optimizing the coverage,
considering the signal on the trails, the attenuation caused by the height difference between the
antennas and the risks of each stretch of the trail.

Nevertheless, the difficulties of propagation in the forest inevitably lead to a smaller radio range.
Thus, the communication network in the forest will present connectivity gaps. Therefore, the proposed
monitoring system is based on a DTN composed of fixed and mobile points. The mobile points are the
visitors’ terminals which, operating collaboratively, forward packets between themselves and to the
fixed points, the totems. Figure 8 shows mobile terminals moving toward each other and exchanging
records. Totems perform as data kiosks, concentrating information and interconnecting with the park’s
server. Packet forwarding between DTN nodes is done opportunistically when terminals have contact
with each other or with a totem.

Figure 8. Two mobile nodes scenario.

To keep the solution as simple as possible, we do not employ the whole DTN protocol stack [28],
or the bundle protocol [29], in the proposed monitoring system. Instead, the main DTN techniques
are implemented directly on top of LoRas physical layer, saving memory and processing resources.
The terminals exchange data with each contact, using a store-carry-forward approach. The DTN
concept of custody transfer is partially implemented since it only occurs in the communication
between a mobile terminal and a totem. Mobile terminals exchange location data periodically with the
totems and with each other, allowing the visitor’s movement to be monitored.

5.2. Protocol and Application

The proposed application is monitoring the visitor’s location, aiming at faster and more effective
action by search and rescue teams. This monitoring is done transparently, without disturbing personal
experience in the natural environment. The idea is that a wearable terminal, in the shape of a bracelet
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or key chain, sends location data periodically. Location can be obtained through a GPS, a totem or by
exchanging location data in collaboration with other visitors.

Mobile terminals establish contact with each other when entering their coverage area,
approximately a circle with a diameter of 500 m for LoRa SF12. Location data must be exchanged
during this contact time, which depends on the speed of the person carrying the device. Considering
the experimental measurements presented in [30], the shortest average contact time, which occurs
when visitors are trained hikers, is about 2.5 min. During this interval, the terminals must discover each
other’s presence, negotiate communication parameters and exchange records of location information.
Every minute, the terminal emits a beacon that allows the start of communication with another
node. This period keeps battery consumption low while still allowing at least two communication
opportunities during each contact interval. The opportunity must not be unique as the transmission is
unreliable and the beacon may be lost. The beacon contains the terminal identification, its last known
position, and a timestamp associated to this position. This information is used to estimate their location
and travel.

The location application used to provide the visitor monitoring and security service is based
on [7,15]. They propose to estimate the visitor’s location through the exchange of messages between
RF sensors. The concept of witness sensor is presented, which makes a sighting record to store and
transmit location information, aiming to describe the movement of other sensors. When people meet
along the way, the sensors become witnesses to each other and exchange their location data, which will
be sent to a central repository via an access point. This data, which makes up the history of previous
locations of various sensors, can be used to estimate their locations.

Our application runs directly on the physical layer, using its own medium access control
mechanism. This simple mechanism is a variation of CSMA, with Clear Channel Assessment (CCA)
considering the use of different spreading factors. Beacons are sent using SF12, but sighting records
are exchanged using another SF, which allows the highest possible baud rate. The choice of SF is made
based on the RSSI and SNR of the received beacon. If the measured values of RSSI and SNR are within
the threshold that allows operation for a given SF, it is chosen. If not, another higher SF is evaluated.
The lowest possible SF is always chosen to increase the transmission rate. The exception is SF7, used
only for communication within groups.

Different from [7,15], the proposed system allows an active help request by the user. This is done
by creating two new message types and adding a field, the help flag. The messages are the help request
and rescue notification, identified by the help flag. These adjustments allow the faster rescue of the
endangered visitor. There is no need to wait for a long time for the problem to be noticed through the
absence of data from this specific visitor in other visitors’ records.

Additionally, groups composed of visitors who travel together are used to avoid the continuous
exchange of messages between terminals that are constantly within range of each other. Only the
group leader sends messages on behalf of other terminals in the group. A new message type and two
new fields are also created to allow the dynamic formation of groups and the election of their leader.
The choice of a leader is based on the participants’ available battery capacity.

Figure 9 shows the messages used in the proposed protocol. The following fields may be present
depending on the message:

• Type (4 bits)—indicates the message type. Currently, eight messages are defined, leaving space
for future extensions. The defined types are:

1. help request—actively sent by the user at risk, requesting help, without the need to wait for
processing other visitors’ records;

2. rescue notification—reports that there is a rescue team on the way, send by paramedics at
the park headquarters;

3. totem beacon—announces the presence of a totem and its coordinates as a reference
for the visitor;
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4. totem ack—confirms receipt of records sent by the terminal;
5. terminal beacon—announces the presence of a mobile terminal, its most recent coordinates,

obtained via GPS or received from a totem, and a timestamp associated to this last
known position;

6. request/acceptance of records transmission—used during the initial handshake,
to request/accept the transmission of records, as well as to inform the parameters to be used
in the transmission and avoid transmitting unwanted records;

7. record—stores sighting data from another terminal or update position of the own terminal,
used to estimate the displacement of each visitor;

8. group leader election—message used for group leader election.

• Help Flag (HF, 4 bits)—informs if the visitor requested for help.
• ID (mobile or totem) (15 bits)—an integer that identifies the totem or the mobile terminal. The first

addresses are fixed and assigned to totems; the others are assigned on demand to terminals.
Terminal addresses should remain unique to allow ubiquitous identification of visitors throughout
the area during the monitored interval, set to 24 h. If the terminal is not located within the time
limit within this range, rescue will be sent even without request.

• Acknowledge (ACK, 1 bit)—indicates that it is a confirmation message for receiving records. If the
records were received with errors or only partially, this field has a value of zero.

• Group Flag (GF, 1 bit)—indicates if the terminal issuing the message is a group leader. Together
with the mobile ID of the leader forms the group ID.

• Record Time (16 bits)—records the moment of contact with another mobile terminal.
• Latitude and Longitude (24 bits each)—stores the last coordinate obtained, accurate to 2.4 m.

Geographic coordinates can be obtained by GPS every minute, if the GPS signal is available,
or received from a totem when the mobile terminal is within range. The GPS receiver used in the
experiments has an accuracy of 2.5 m [31].

• Location Time (16 bits)—stores the moment the coordinates were obtained.
• Hop Count (4 bits)—contains the number of times the message was forwarded, incremented with

each transmission.
• Max Records (11 bits)—reports the maximum number of sighting records that the terminal accepts

to receive or received by a totem.
• Battery (4 bits)—reports an estimate of battery life.
• Channel (CH, 2 bits)—identifies the LoRa spreading factor to be used for record exchange.

Figure 9. Message types and format.

Message exchange between terminals and between terminals and totems is defined by the
communication protocol developed for the application. Communication is asynchronous, as shown
in Figures 10 and 11. We illustrate protocol operation with an example. It begins with the reception of
a beacon. Terminal B records the presence of terminal A. Terminal B then sends its ID and requests
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permission to transmit its stored records. Terminal B also declares the channel chosen to exchange
records, and its reception limits values for hop count, record time and the maximum number of records
to be received. If A, the remote terminal that originated the beacon, has available memory, it stores
the current contact data, sends its own reception limits for hop count, record time and the maximum
number of records, and accepts the transmission.

Figure 10. Communication between terminals.

Figure 11. Communication between totem and terminal.

Both terminals also have to agree on which SF will be used to exchange the records. Upon receiving
a beacon, Terminal B evaluates the RSSI and SNR level of the communication. Then B proposes the
switch to another SF that allows a higher baud rate; when it is not possible, SF11 will be used.
The definition of SF is made by the terminal that receives the beacon and informed along with its
metadata (record time and hop count), sending its identification in the field CH. The choice of a
channel can be accepted or changed by terminal A. If the values of RSSI and SNR in the reception
of messages sent by B do not allow operation in the SF defined, then the terminal A changes to
another higher SF. Only two bits in the message are needed for this purpose, once only SF8, SF9, SF10,
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and SF11 are available. SF12 is used exclusively for beacon transmission and the initial handshake,
whereas SF7 is used for group communication. Exchanging the records using a different spreading
factor reduces collisions by leaving the common channel provided by SF12 clear for more time.
Before starting the transmission, terminal A listens to the chosen channel in a mechanism similar to
CCA to avoid collisions.

After receiving all the transmissions from B, Terminal A then sends its own stored records. Hop
count and record time allow improving terminal memory management by avoiding receiving records
that are old or have been forwarded too many times. The max records field allows limiting the number
of records received, even if they are in agreement with the hop count and record time parameters.
Records that have values above the informed thresholds are not sent. Help request records are the
first to be transmitted. After these, previous contact records with other devices and, finally, rescue
notifications are forwarded.

Help request messages are sent upon the visitor’s initiative. For those emergency messages, it is
important to reduce latency. To accelerate the rescue, copies of emergency messages must be passed on
to all other mobile nodes, passing through the visitor at risk until he is rescued or receives a notification.
The terminals that receive the message also replicate it until they reach the nearest totem or receive a
notification. Only nodes that already have a copy should discard an emergency message.

The response to the emergency message is a rescue notification message, informing the visitor that
help is on the way, terminating the sending of help request messages. Notification messages should be
sent by the totems closest to the location where the visitor at risk is. Thus, messages are replicated to
other terminals that have a greater chance of reaching the visitor quickly and, therefore, be delivered
with less latency. Figure 12 illustrates this communication.

Figure 12. Communication in an emergency situation.

To make bandwidth usage more efficient, the monitoring system has the possibility to create
groups of visitors traveling together or in close proximity. Groups are created without the need for
visitor intervention. Upon the receipt of 30 beacons generated by the same terminal within 30 minutes,
group formation or inclusion in an existing group is initiated. The terminals involved then proceed on
leader election using messages sent using SF7. This message contains the terminal ID and an estimate
of the time for the battery to be exhausted. The leader will be the terminal with the longest expected
battery life. Ties are broken based on the highest terminal ID. Once the group is formed, both the leader
and other group participants have the same set of sighting records. The group stays synchronized by
the leader beacon, identified by the group ID. The group ID consists of the leader ID and the group
flag (GF) field. One who is not a group leader will have the GF field with zero value. The leader GF
will have value 1.
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Only the leader will send beacons and exchange sighting records with other contacting terminals.
In this way, the other participants in the group save battery since the supply current in transmit mode
is ten times greater than in receive mode, as shown by the values described in Table 1. There is no need
for the leader to replicate data received from a terminal outside the group to the other participants,
as everyone listens to the broadcast for the group ID. This way, every terminal in the group keeps the
same sighting record set. If the leader’s beacon is not received for an interval longer than 10 minutes,
a new leader election begins. If during the election, the terminal does not receive messages from
other terminals, it is assumed that it is no longer part of any group and the person is moving alone.
If the leader’s battery charge falls below a pre-established threshold, the device stops sending beacons
forcing a new election. Communication within groups is done using SF7, which provides the smallest
radio range, as its members are always close. This way a higher baud rate can be used while reducing
the consumption and the chances of interfering with other communications. Sending beacons, either
by a terminal traveling alone or by a group leader, is done using SF12.

The communication between terminal and totem (Figure 11) is also asynchronous and started by
beacon reception, following a similar handshake with the choice of an SF for a record sending channel.
Nevertheless, the totems advertise their coordinates every five seconds since totems have no power or
storage constraints, differently from mobile terminals. On the other hand, it is important to increase
the probability that a device entering a totem area will be able to communicate. Totems also record the
presence of mobile terminals. The totems inform which trail the visitor is on: typically, there may be
different trails inside a natural park.

A prediction is then made of when the visitor will pass the next totem of this same trail. This
prediction is refined by accumulating records about each visitor and by estimating their average travel
speed. Ideally, totems should be located at least at the entrances and junctions of trails, as well as places
with specific hazards such as waterfalls and caves. In Section 5.3, we have proposed an optimization
model for the positioning of totems considering risks and other specific requirements of each spot that
was mapped as a point of interest by the administration of the natural park.

In Figure 11, terminal A, which passes through the totem coverage area, receives a beacon.
The terminal updates its coordinates data, notifies its identification, and requests the transmission
of the records saved in its memory to the totem, using a specific SF. Upon receiving the acceptance,
it then forwards all the records of its memory and waits for confirmation by the totem via an ACK.
Upon receiving the ACK, the mobile terminal empties its memory. This message contains the number
of records received by the totem. If it is not the same number of records sent by the terminal, all of
these are re-sent. Similar to the custody transfer mechanism of DTNs, the totem is now responsible
for making this information reach the server. Totems send incoming records to servers that estimate
visitor locations. If there is a help request, the message is forwarded to a rescue team, who responds
with a notification by sending aid. The rescue notification has the function of terminating the help
request broadcast from the distressed visitor’s terminal. The mobile terminal will again only transmit
periodic beacons, reducing the battery drain.

5.3. Optimization

The location of totems is relevant to achieving the best possible performance in locating visitors.
There are higher-risk locations that require greater connectivity and therefore better coverage. It is
vitally important to maximize wireless network coverage, especially addressing risk points while
maintaining minimal infrastructure. This reduces the cost of the visitor assistance system and also any
environmental impacts that may be caused to fauna and flora.

The positioning of totems is treated as an optimization problem, which can be solved using
Integer Linear Programming (ILP) [32]. For this, a matrix modeling of cubes that map the track
in three-dimensional form is developed. This modeling considers the signal coverage on the
trails, the attenuation caused by the height difference between the totem antennae and the antenna
characteristics. Monopole antennas were assumed, of which an irradiation diagram shows differences
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in the azimuth plane and elevation plane [33]. To solve the proposed model, real parameters obtained
from practical experiments were used. The cubes that represent sites of the grid where it is feasible to
deploy a totem are delivered to CPLEX to solve the ILP problem.

Our use-case trail is the crossing from Petrópolis to Teresópolis, made through the mountains of
Serra dos Órgãos National Park (PARNASO). This route measures about 30 km and is covered in a
three-day trek. To this trail, considering full track coverage, 200 LoRa technology totems are required.
However, due to the cost-to-implement, maintaining full coverage is unfeasible. An initial survey of
the trail makes it possible to identify danger points, water collection, trail intersection, and shelter.
Thus, it is possible to estimate the use of 23 totems.

6. Simulation

The applicability of the proposal for the Petrópolis to Teresópolis crossing is verified through
simulations performed in NS-3 [34], an event-driven network simulator. In NS-3, the propagation
inside the forest was described by the Log-distance propagation model integrated to Nakagami-m.
Since the propagation model is used only for the calculation of RSSI, the Log-distance distribution was
kept for large-scale attenuation, with no approximation with the Gamma distribution. The average
received power was simulated by the Log-Distance distribution, and the small-scale fading by the
Nakagami-m model. Both contributions were added to allow the composition of the two effects.
The Monte Carlo method was used for generating the received power values [35]. For each reference
distance, 2000 independent samples of possible small-scale fading values were generated. In this case,
based on the arbitrary choice of one of the 2000 samples for the reference distance, the power received
by the totems was calculated.

Table 3 shows the parameters configured in the simulator to represent the scenario of a mobile
node. The physical layer of the LoRa was defined with some adaptations to the LoRaWAN library
developed by Magrin et al. [36]. The simulation parameters reflect the practical experiments carried
out, as described in [37]. We employ the same level of radiated power, spreading factor, bandwidth,
and code rate. The loss exponent of the Log-distance propagation model is empirically defined as
4.07. This value ranges between two and six, where two represents the propagation in free space [38].
The loss exponent is defined in the calibration step of the simulations, which consists of bringing
the simulations closer to the practical experiments using the results of RSSI at 250 m as reference.
Mobile terminals move at two different speeds: that of an average visitor and of a well-trained hiker.
The heights of the antennas also reproduce the heights used in practical experiments.

Table 3. Simulation parameters in NS-3.

Description Value

Track length 29 km
Number of receivers (totems) 23

Receiving antenna height 2.5 m
PHY Protocol LoRa

Spreading Factor SF12
Frequency 915 MHz
Bandwidth 500 kHz
Code Rate 4/5

Mobile speed 50 m/min (3 km/h)
100 m/min (6 km/h)

Transmission antenna height 1.5 m
Transmission power 14 dBm

Packet size 47 bytes
Number of executions 10 rounds

Figure 13 illustrates the trail of PARNASO that we simulate. The points indicated within blue
circles are the locations of the two overnight shelters. The trail stretch between the two shelters is the
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most prone to visitors getting lost. Figure 14 shows a landscape of this stretch. The points indicated by
the orange triangular flags are the points of interest of the trail, and those that correspond to points
suitable for installing totem installation, according to the park administration. Figure 15a,b shows
typical totem installation points: the exit of the Petrópolis–Teresópolis crossing and a waterfall inside
the PARNASO subject to flash flooding risk.

Figure 13. Route of Petrópolis—Teresópolis crossing.

Figure 14. Second day trail landscape.

When the visitor travels at 3 km/h (50 m/min), the terminals send and receive more packets
than at 6 km/h (100 m/min) as the contact time is longer. As a consequence, the measurements better
show the variation in the sampled values. Figures 16 and 17 show the variation of the power in
the link, indicated by the RSSI, for the two travel speeds. The RSSI values for each packet received
in the simulation and practical experiments are shown. As expected, experimental and simulation
results do not perfectly match; nevertheless, there are important similarities between the two curves,
especially for the lowest speed. The slower experiment—with more samples—shown in Figure 16
presents a better approximation between simulated data and measured data than the fastest experiment
(Figure 17), with approximate correspondence between the contact intervals and the maximum and
minimum values of measured power for practical and simulated experiments.
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(a) Trail exit. (b) Waterfall.

Figure 15. Locations for installing totems.
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Figure 16. Received Signal Strength Indicator (RSSI) vs. distance—50 m/min—simulated vs. practical.
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Figure 17. RSSI vs. distance—100 m/min - simulated vs. practical.

Figures 18 and 19 show the variation of the Packet Delivery Ratio (PDR) between a mobile terminal
and a totem. The increase in packet delivery reflects the increase of received signal strength. The values
presented are the average of all of the 23 totems present in the simulated network. In the simulation,
the occurrences of errors in the transmission or decoding of the packets are not modeled, explaining the
PDR higher in the simulated experiments than in the practical experiments. In practical transmission,
packets are subject to errors. Probably the main cause of errors is the multi-path phenomenon, in which
the various reflected components can produce, in addition to variations in the signal envelope, noise
and/or inter-symbolic interference, due to the temporal spreading of the bits. In the case of multiple
transmitters on the same frequency, these can also be considered sources of noise.
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Figure 18. Packet Delivery Ratio (PDR) vs. distance—50 m/min—simulated vs. practical.
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In Figure 20, we evaluate the capacity of transferring data of the simulated network. The maximum
daily load produced per visitor expected is of the order of 182 kB in the worst case. This worst-case
is defined using the maximum capacity of the mountain shelters, which are 100 visitors. If there is
no formation of groups and these 100 visitors walk alone along the trail, their contacts must generate
4950 records per day, combining them 2 to 2. Considering the size of each record of 13 B, from the
mobile terminal beacon of 10.5 B and the two acceptance messages added to 13.25 B, we have 36.75 B of
transmitted data. Thus, the daily load of approximately 182 kB (≈ 4950 × 36.75 B) per visitor is reached
in the worst-case, with no formation of groups.

However, this requirement is not met using the spreading factor SF12, especially in the stretch of
the route with the least totems. This is because the load of data generated per visitor depends on the
number of visitors on the trail and the records of encounters between them. The transfer capacity of the
network depends on the number of totems in the network. Nevertheless, the amount and positioning
of the totems are a function of the risks that each location offers to the visitor or its potential to assist
in locating lost visitors. Moreover, the number of packets flowing over the network varies with the
contact time, the size of the packets and the spreading factor used.

In Figure 20, we plot the load growth day by day, for the three travel speeds. The red curve
represents this growth for a slower visitor, who moves at 3 km/h (50 m/min). As the contact time for
this visitor is longer, more packets are sent favoring the greater data transfer. Data produced for each
day of the trail have the following sizes:

• 1st day: approximately 150 kB, below the worst-case load of 182 kB;
• 2nd day: approximately 500 kB − 150 kB = 350 kB. Above 182 kB;
• 3rd day: approximately 600 kB − 500 kB = 100 kB. Below 182 kB.

The blue curve represents this growth for a faster visitor, who travels at 6 km/h (100 m/min).
As the contact time for this visitor is shorter, fewer packets are sent. We can see the evolution values
over the days:

• 1st day: approximately 80 kB, below the worst-case load of 182 kB;
• 2nd day: approximately 250 kB − 80 kB = 170 kB. Below 182 kB;
• 3rd day: approximately 300 kB − 250 kB = 50 kB. Below 182 kB.
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Figure 20. Accumulated load offered to the network as a function of distance and speed of the visitor
(mobile node) in the trail.

The use of other spreading factors for the transfer of records and the grouping of visitors are ways
provided in the proposed architecture to deal with this demand, improving the performance of the
network, as described in Section 5.2. In this way, the capacity of the network is increased, and the daily
data load per visitor transmitted over the network can be reduced, making the monitoring system
feasible, even given the hard propagation conditions inside a rainforest.
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7. Conclusions

This work dealt with the development of a project to offer an application of assistance to the
visitor of forest systems, improving their security. The project consists of the development of a
communication infrastructure capable of allowing communication, even in situations of intermittent
connectivity. Communication within the forest is used to support an application for monitoring
visitors’ location, in which totems and wearable mobile terminals exchange messages. The protocol for
exchanging messages and also for controlling access to the medium is presented.

This proposal brings a new application to the concepts of IoT and DTN. This new application with
its peculiar characteristics and environment also presents challenges about the networks employed,
requiring future performance and safety studies.
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