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Abstract: Optimization algorithms have been successfully applied to the automatic design of analog
integrated circuits. However, many of the existing solutions rely on expensive circuit simulations
or use fully customized surrogate models for each particular circuit and technology. Therefore,
the development of an easily adaptable low-cost and efficient tool that guarantees resiliency to
variations of the resulting design, remains an open research area. In this work, we propose
a computationally low-cost surrogate model for multi-objective optimization-based automated
analog integrated circuit (IC) design. The surrogate has three main components: a set of Gaussian
process regression models of the technology’s parameters, a physics-based model of the MOSFET
device, and a set of equations of the performance metrics of the circuit under design. The surrogate
model is inserted into two different state-of-the-art optimization algorithms to prove its flexibility.
The efficacy of our surrogate is demonstrated through simulation validation across process corners
in three different CMOS technologies, using three representative circuit building-blocks that are
commonly encountered in mainstream analog/RF ICs. The proposed surrogate is 69X to 470X faster
at evaluation compared with circuit simulations.

Keywords: surrogate model; optimization algorithms; analog integrated circuit design; Gaussian
process regression; process variations; physics-based MOSFET model; inversion level; Pareto front;
active filters; voltage regulators; oscillators

1. Introduction

1.1. Motivation

While highly automated Computer-aided design (CAD) tools are now commonly used for
optimization, synthesis, placement, and routing of digital circuits, despite significant efforts, design
automation has not been yet standardized for analog design [1]. The creation of automatic design
tools that can address all the challenges of analog/RF integrated circuit (IC) design is not a trivial
task. Conflicting design specifications, large non-continuous non-convex search spaces, increasingly
complex device models in modern technologies, stringent power and area requirements, as well as
shorter time-to-market cycles, are some of the main challenges of analog/RF design [2].
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The traditional analog/RF design process starts by selecting the topology and translating the
specifications from the architecture level to the circuit level [2,3]. Subsequently, the sizes of the
devices and the biasing conditions are selected such that the performance of the circuit meets the
specifications. Commonly, the sizing and biasing steps are iterative processes that use simplified
approximations followed by verification with circuit simulations. Therefore, achieving a first-time
design that meets the specifications relies heavily on the experience of the designer and computationally
expensive simulations [4]. Due to the stringent time-to-market demands, this procedure commonly
lacks exploration of the available design space, and it does not guarantee that the solution found is
near-optimal. In fact, circuits are often over-designed to ensure accuracy and robustness, which can
lead to an excessive cost on silicon area or power consumption.

To reduce design effort while achieving high-performance circuits, extensive research has been
done on optimization-based electronic design automation (EDA) tools for automatic analog/RF IC
design [1,3,5,6]. A circuit sizing and biasing task can be formulated as a constrained multi-objective
optimization problem by translating the circuit parameters, performance metrics, and specifications
into design variables, objective functions, and constraints. The main advantage of using an optimization
algorithm for circuit sizing is that it considers all the design variables and design specifications
simultaneously while exploring the available solution space.

In general, optimization techniques for EDA tools can be classified depending on whether the
optimization approach uses equation-based models (low-fidelity, low-cost) or circuit simulations
(high-fidelity, high-cost) [7] for the evaluation of the fitness function [8]. These two approaches display
a trade-off between the accuracy of the model and the complexity of its evaluation. Optimization
algorithms require a large number of evaluations proportional either to the number of iterations,
the number of runs or the size of the population, depending on the type of algorithm. Therefore,
inserting the circuit simulator (high-fidelity model) in the optimization loop could become impractical
for large-scale problems due to the required computational cost. On the contrary, it has been shown
that equation-based surrogate models can provide a sufficient functional level description with less
computational complexity, at the cost of a reduction in accuracy [3]. Another advantage of these
models is that after being created, they can be stored and reused [9].

Several techniques for generating equation-based models are summarized in Reference [6].
The equations can be generated manually by the experienced designer or automatically by symbolic
tools [10]. As an example, Binkley et al. [11] present an all-equation optimization approach that uses
the inversion level concept for the sizing of individual CMOS transistors.

Various approaches have proposed to leverage the low complexity of analytic equation-based
models as with the accuracy of the circuit simulations. For instance, ASTRX/OBLX [12] uses asymptotic
waveform evaluation to speed-up small-signal analysis in the simulator. Also, in Reference [10] the
search space of the simulator-based optimization is reduced by using an optimization watchdog feature.
Another approach combines simulation-based genetic optimization with multivariate regression
techniques for an efficient space boundary exploration [13]. In Reference [9] Gaussian process-based
regression models were used as surrogate models in Bayesian optimization, although effective,
the surrogate is completely-application specific, requiring new models to be generated for each circuit
topology and technology. Moreover, in Reference [14] gm/ID method [15] and circuit equations are
used for a smart reduction of the search space before optimization using the simulator. Still, all these
approaches require a large number of computationally expensive circuit simulations within the
optimization loops. A more complete surrogate model composed of circuit equations, a physics-based
transistor model, and mathematical expressions of the process parameters extracted from curve fitting
was reported in Reference [16]. Although the surrogate proved to be an effective tool for circuit design,
its accuracy was limited by the selection of the fitting method and it does not address process variations.
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1.2. Our Approach and Contributions

In this paper, we propose a low-cost yet high-accuracy surrogate model embedded in an
optimization-based framework for automatic sizing and biasing of analog circuits. The main purpose
of this surrogate implementation is to combine the low complexity of equation-based models of the
performance of the circuits and the MOS transistor parameters with a highly accurate technology
characterization. To achieve this goal, the proposed surrogate has three main components: Gaussian
process regression (GPR) models of technology parameters across corners, a physics-based model of
the MOSFET device, and a set of equations of the performance metrics of the circuit under design.
Our proposed high-accuracy surrogate is modular and flexible to different circuit topologies and
fabrication technologies. Each of the building blocks can be replaced according to the needs of the
design. For example, moving from one technology process to another only requires characterizing
the new technology and creating the GPR models of the device’s parameters. The surrogate uses the
updated GPR models for the evaluation of the advanced compact model (ACM) equations and the
topology-specific metrics.

The surrogate allows evaluating the circuit performance metrics for a set of design variables
(inputs). Therefore, it can be embedded in an optimization algorithm where the optimization variables
correspond to the circuit design variables, and the objectives and constraints represent circuit performance
metrics. Thus, the proposed approach is not limited to a particular optimization algorithm, allowing
our framework to utilize the most well-suited algorithm for the particular circuit being optimized.
To prove the flexibility of our approach, the proposed surrogate is embedded in two state-of-the-art
optimization algorithms: a gradient-based method and a heuristics-based algorithm. Also, the generality
of the surrogate model to different technologies and circuit topologies is demonstrated for several test
cases. As proof of concept, our technique is tested using three CMOS fabrication processes (TSMC
180 nm, IBM 130 nm, TSMC 65 nm), and three circuit examples: a second-order Butterworth active-RC
filter, a capacitor-less low dropout (CL-LDO) voltage regulator, and a current-starved voltage controlled
oscillator (CSVCO).

The main contributions of this paper are:

1. A high-accuracy surrogate model for circuit optimization with low-computational effort
compared with circuit simulations.

2. The use of Gaussian processes regression models for high accuracy prediction of device
parameters across corners based on the technology characterization.

3. A flexible optimization framework easily configurable for different fabrication processes, circuit
topologies, and optimization algorithms.

The organization of this paper is as follows. Section 2 gives a brief overview of multi-objective
optimization algorithms, particularly the two that are used to demonstrated the surrogate model.
In Section 3 the proposed surrogate model is presented, along with each of its components. Then,
the experimental results of the model creation and several test cases are presented in Section 4. Finally,
conclusions and future work are drawn in the last section.

2. Multi-Objective Constrained Optimization for Automatic Circuit Design

In this section, we provide a background on the multi-objective optimization techniques that are
used for the optimization framework demonstration of our proposed surrogate model.

2.1. Multi-Objective Optimization

Multi-objective optimization algorithms perform optimization of multiple specifications
simultaneously [9]. Therefore, instead of a single solution, multi-objective algorithms provide the
trade-off of the multiple objectives represented in the Pareto front [17]. The Pareto front is a set of
solution points that can not be improved in one objective without getting degraded in another [13,18].
The general formulation of a constrained optimization problem is as follows:
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minimize f1(x), f2(x), fn(x)
s.t. xlb ≤ x ≤ xub, e(x,p) = 0, and g(x,p) < 0.

Therefore, the goal is to minimize the objective functions fi where i = 1, 2, ..n, while being subject
to the minimum xlb and maximum xub boundaries of the design variables x, equality constraints e,
and inequality constraints g.

Optimization algorithms can be classified in two main categories according to the operations
performed to find solutions: deterministic or gradient-based [19,20], and stochastic or heuristics-
based [12,18,21–23]. If a problem has an objective function that allows the calculation of gradients and
a search space with a global minimum, using deterministic algorithms is usually the fastest way to find
a solution. However, depending on the complexity of the solution space, gradient-based approaches
can get stuck on local optimal solutions, resulting in poor exploration of the search space. When
gradients are not available or when the solution space is non-convex or non-continuous, heuristic
algorithms may be preferable.

2.1.1. Gradient-Based Optimization Algorithms

There are several deterministic algorithms for nonlinear constrained optimization [24]. Such
algorithms are iterative and are designed to provide, at least, local optimum solutions. These algorithms
use different approaches to include constraints like interior point methods, penalty functions and
augmented Lagrangian methods [24].

Sequential quadratic programming (SQP) is a popular gradient-based optimization method for
nonlinear constrained optimization. SQP closely mimics Newton’s method as it generates search
directions at each iteration by solving quadratic sub-problems [24]. SQP is particularly effective at
handling problems with significant non-linearity in their constraints [24], which makes this algorithm
well suited for our application, as many analog circuit specifications exhibit non-linear relationships
with circuit design parameters. In fact, SQP has been successfully employed previously for circuit
automatic design [16,18]. The minimization function in the gradient-based optimization is built as
the weighted sum of the optimization functions. It also includes the linearization function of the
constraints using Lagrangian multipliers as described in Reference [24].

2.1.2. Evolutionary Optimization Algorithms

Evolutionary algorithms (EAs), also called genetic algorithms (GAs), are population-based
iterative optimization processes [23]. In EAs each possible solution is encoded in a chromosome.
Then, the execution begins with a randomly generated initial population of N Chromosomes. At each
iteration or generation, the operators of crossover and mutation are used to evolve, that is, to generate
a new population from the previous one based on fitness. The crossover operator combines the parent’s
population to generate offspring while the mutation operator introduces random modifications to
certain individuals to increase the design space exploration [5]. Although there are several kinds of
EAs, non-dominated genetic algorithms are popular for procuring diversity on the Pareto front [23].

Non-dominated sorting genetic algorithm II (NSGA-II) is an example of EA, proposed as
an improved version of NSGA [25]. NSGA-II is computationally fast and it uses elitism and
crowding distance calculations to maintain diversity in the non-dominated Pareto front [25]. Also,
this algorithm uses a real coded GA as search engine, simulated binary crossover (SBX) and polynomial
mutation [23,25]. These operators determine how the generated children will be different from their
parents, and therefore, they define the space exploration. NSGA-II has been successfully used in the
past for the optimization of circuits [5,23,26,27].

2.2. Analog Circuit Design as an Optimization Problem

The formulation of the design of analog circuits as an optimization problem starts with the
definition of the netlist of the circuit topology, and the characterization of the fabrication process
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available for this task [28]. Then, the optimization variables are defined from the design or tuning
parameters, and the specifications or figures of merit (FoMs) are assigned to optimization objectives and
constraints. Depending on the topology of the circuit and the target application, some specifications
are better defined as optimization objectives and others as constraints. For example, a particular
application may require an amplifier with a certain gain and bandwidth at the minimum power
consumption possible. Thus, for the scope of this work, the design of an analog circuit is defined
as a constrained optimization problem; where the search space of all viable solutions is large and of
unknown shape, making a brute force approach of trying all possible combinations non-practical.

3. Proposed Surrogate Model for Optimization-Based EDA Tools

A surrogate model or metamodel is a ’model of a model’ used in EDA tools to replace the
computationally expensive circuit simulation models and speed up optimization tasks [28]. The main
characteristics of a surrogate model are accuracy, efficiency, robustness, simplicity, and transparency.
In this work, we propose the creation of a low-cost surrogate model to be embedded in a modular and
flexible optimization framework for the automatic design of analog/RF circuits.

3.1. General Optimization Architecture

The structure of a general and modular optimization framework for automatic IC design is
shown in Figure 1. Optimization is an iterative process that starts by generating the initial values of
the variables at random. At each iteration, the optimization algorithm uses the proposed surrogate
model for the evaluation of the objective function and the constraints. When the stop criteria are met,
the optimization ends providing a set of solutions. Examples of stop criteria are the maximum number
of evaluations, the maximum number of iterations, and the minimum tolerance on the objective
function. Finally, the solutions are verified with circuit simulations under process corners, and only
the ones that meet the specifications are selected to build the Pareto front.

Candidate 
solution 

generation & 
evaluation

Initial values of 
optimization 

variables

Surrogate model

Devices sizes, 
and biasingx

Meet stop 
criteria?

Evaluation of objective 
functions  f(x) (nom) and 

constraints g(x) (nom+corners)

START END

Verification of 
solutions with 

circuit simulations

YES

NO

GPR models of 
process parameters

Physics-based 
MOSFET model

(ACM)

Circuit equations of 
performance 
specifications Q1 Q2

Figure 1. Proposed surrogate model inserted on a modular optimization framework for automatic
IC design.

The proposed surrogate model has three main components described from bottom to top:

1. The Gaussian process regression models of parameters of the process technology trained from
characterization data.

2. The physics-based model of the parameters of the MOS transistor.
3. The circuit equations of the performance metrics of the circuit topology.

3.2. Advanced Compact MOSFET (ACM) Model

ACM is a model based on the device physics of the MOS transistors similar to other charge-based
models like EKV and BSIM5 [20,29,30]. The ACM model provides higher accuracy compared to the
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square-law model traditionally used for circuit design. This model is built with a small set of equations
valid for all the regions of operation of the MOSFET transistor, providing continuous modeling of the
I/V characteristics of the device from deep saturation (strong inversion) to sub-threshold operation
(moderate to weak inversion). A particular subset of the ACM equations are of interest for the
formulation of our surrogate: the source trans-conductance gm (Equation (1)), the inversion level i f
(Equation (2)), and the normalization current IS (Equation (3)).

gm =
2ID

φtn
(

1 +
√

1 + i f

) (1)

i f =
ID
IS

(2)

IS =
W
L

µnC′ox
φt

2

2
, (3)

where ID is the drain current, φt is the thermal voltage, (W/L) is the device aspect ratio, n is the
slope factor, µ is the mobility, and C′ox is the oxide capacitance per unit area. The inversion level of
the transistor is of particular importance as it provides information about the operating point of the
transistor without computing the potential at the gate of the device.

Although the base ACM model does not include short-channel effects or the dependency of
the mobility on the transversal field, the model can be expanded to account for these effects [29,30].
However, many of the additional parameters needed to properly model these higher-order effects
can be challenging to extract from simulation accurately. Instead, in our proposed model, we rely on
non-parametric regression to account for higher-order effects and process variations.

3.3. Gaussian Process-Based Regression Models of the Process Characterization

The scaling trend on CMOS devices has resulted in not only smaller channel lengths and thinner
gate-oxides, but also in the introduction of increasingly complex device structures and doping
profiles [2,29]. To accurately predict the behavior of modern MOSFETs, device models have become
more elaborated, introducing hundreds of device parameters, and making them impractical to use
outside of the simulators available in specialized CAD software tools. To build our surrogate model,
the behavior of the key parameters of the device must be accurately formulated as functions of design
variables that are at the control of the designer. For our surrogate model, the parameters required are
the oxide capacitance per unit of area (C′ox), the normalization current (IS), the threshold voltage (VTH),
the saturation voltage (VDSAT) and the early voltage (VA), the latter of which is used to estimate the
output conductance of the transistor (gds = ID/VA).

Once the parameters have been characterized against design variables, a prediction model must
be created that can accurately approximate the data and can be used in conjunction with the remaining
parts of our surrogate. Since the behavior of the parameters in question is complex and irregular,
particularly with devices that exhibit significant short-channel and narrow-channel effects, using
traditional equation-based curve-fitting techniques can become challenging and impractical. Therefore,
it is attractive to consider non-parametric methods, that when properly configured, can approximate
such complex irregular behaviors with significant ease and low error. In this work, Gaussian process
regression is used to generate prediction models for the parameters in our surrogate.

3.3.1. Characterization of the Parameters of CMOS Transistors

In theory, the normalization current IS (Equation (3)) depends only on the aspect ratio W/L
of the transistor. However, in modern-day technologies, IS also varies with the dimensions of the
device, as they can have a direct impact on the device’s mobility (µ). This makes the inversion
level of a transistor a function of both W and L. Moreover, both the saturation voltage VDSAT and
the early voltage VA exhibit a dependency on the inversion level of the transistor [30–32]. Finally,
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due to a combination of both short-channel and narrow-channel effects in modern CMOS processes,
the threshold voltage (VTH) is also a function of both W and L [29].

The transistor is configured in a particular setup to characterize each parameter of CMOS
transistors. Figure 2a shows the extraction setup for the oxide capacitance, where an AC signal is
injected at a specific frequency while sweeping the DC bias at the gate, the capacitance is then computed
from the impedance seen at the gate when the transistor is in the accumulation region. Figure 2b
shows the schematic for the characterization of VTH , where W and L are varied. Also, the transistor
is configured as shown in Figure 2c to extract the normalization current for each value of W and L.
The voltage at the source terminal controls the forward inversion level while the diode-connection
configuration avoids the effects of the reverse inversion [30]. The normalization current is then
extracted from the gm/ID curve of the transistor based on Equation (1). Finally, the information of
the normalization current is used to bias the transistor in specific forward inversion levels (Figure 2d)
for which the early voltage and the saturation voltage are extracted. Figure 3 shows some samples of
the data extracted from the characterization of the TSMC 180 nm process. The sizes of the transistor
are normalized with respect to the minimum dimensions of the technology, such that L = KL ∗ Lmin
and (W/L) = KWL ∗ (Wmin/Lmin). Moreover, the characterization data is extracted for all process
corners of interest and for each fabrication process to build the surrogate.

VG

ZG

(a)

VG

VDS

(b)

VG VS

ID

(c)

ID

(d)

Figure 2. Schematics for device characterization of (a) Oxide Capacitance (C′ox). (b) Threshold Voltage
(VTH). (c) Normalization current (IS). (d) Saturation voltage (VDSAT). early voltage (VA).
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Figure 3. Sample of characterization data of a given CMOS technology in typical corner (TT) (a) NMOS:
VTH . (b) PMOS: VTH . (c) NMOS: IS. (d) PMOS: IS. (e) NMOS: VDSAT . (f) PMOS: |VDSAT |. (g) NMOS:
VA. (h) PMOS: |VA|.

3.3.2. Gaussian-Processes-Based Regression Models

Large data-sets of the device’s parameters are acquired through the characterization process.
The next step to complete our surrogate is to generate regression models capable of accurately
estimating the required device’s parameters over all the possible design values. One alternative
of doing this is through polynomial regression, as done previously in Reference [16]. However, the
parametric nature of this approach limits the precision achievable in modeling the complex combination
of short-channel and narrow-channel effects on modern CMOS devices. Non-parametric methods,
on the other hand, can achieve higher precision by allowing the number of parameters to increase as
dictated by the sample size.

Gaussian Process Regression (GPR) is a type of non-parametric method used in classification
and regression models for Bayesian optimization or machine learning [9]. GPR models have gained
popularity due to its probabilistic nature, which can model fairly complicated functional forms with
high accuracy [9,23,33]. Instead of specifying a particular function for regression, a Gaussian Process
defines a probability distribution over a function-space defined by the data-set. When a GPR model
is evaluated, an inference takes place, providing a function y = f (x) within the function-space.
The mean function m(x) and covariance function k(x1, x2) are what define a GPR model and determine
the function-space generated from the data-set. While the mean function is commonly assumed
constant and in many cases set to zero, the covariance function establishes the expected similarity
or nearness between data points. By carefully choosing the covariance function one can embed the
model with prior knowledge about the objective function to improve the predicting accuracy of the
model [34]. A regression GP model is built from a training set D(X, y) where X = {x1, x2, ..., xN}
denotes the input vectors with N observations, and y represents the corresponding outputs [34,35].
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The mathematical software MATLAB R© has in-built functions for training GPR models, make
output predictions, calculate the regression loss, and even perform hyper-parameter optimization [36].
The function for the training of GP regression models fitrgp has a large number of parameters with
several configuration options [36]. Therefore, in this work, a script selects the options of the fitrgp
function that minimizes the prediction error. Such parameters are the kernel or the covariance
function, the fitting method, the prediction method, and the active set selection method. For instance,
Table 1 summarizes the best configuration for the training of GP models for the TSMC 180 nm
technology. The GPR models of C′ox, VTH , VA, IS, and VDSAT are created using the optimal parameters.
The prediction function receives the GPR model and a set of design variables’ values and returns the
corresponding value of the parameter. The main advantage of using a regression model is that it can
predict the parameter values not only for the characterization data but also for points in between.

Table 1. Optimal options of the function fitrpg for the training of the Gaussian Process (GP) model from
the characterization of the process parameters in typical corner.

IS
NMOS

IS
PMOS

VT H
NMOS

VT H
PMOS

VDSAT
NMOS

VDSAT
PMOS

VA
NMOS

VA
PMOS

KernelFunc Exp. ArdExp. ArdExp. ArdExp. Exp. Exp. Exp. ArdExp.
BasisFunc Linear None Constant None Constant Constant None None
FitMethod Fic Fic Sr Sr Sd Sd Fic Sr
ActiveSetMethod Sgma Sgma Random Random Entropy Random Sgma Random
PredictMethod Exact Exact Exact Exact Exact Exact Exact Exact
ResubLoss 1.37 × 10−5 3.5 × 10−7 6.26 × 10−8 11.52 × 10−8 5.18 × 10−7 2.35 × 10−7 6.29 × 10−6 2.47 × 10−5

3.4. Circuit Performance Equation-Based Model

So far, the components of the surrogate model represent the fabrication process and the MOSFET
device but are independent of the circuit topology. The third component corresponds to the equations-
based model describing the performance metrics of an analog IC circuit. Such equations are derived
using macromodel device representation and conventional circuit analysis techniques [2]. For the scope
of this work, the equations were extracted manually. However, tools for automatic model generation
using symbolic analysis [37], graph-based analysis [1] or signal path analysis could be used as an
alternative if needed.

In Section 4, we compile three analog circuits with equations of their performance metrics that
will be used to demonstrate the usefulness of the surrogate model. The circuit equations use the GPR
models to compute the small-signal parameters needed for each particular transistor, provided the
device dimensions and current bias are known. C′ox, VTH and IS are evaluated directly from device
dimensions. IS is used to compute the inversion level of the transistor (Equation (2)), which is necessary
to calculate the device’s transconductance (Equation (1)) and evaluate the GPR models for VDSAT
and VA.

3.5. Process Variations-Aware Automatic Design

Although smaller technologies allow high device integration, they tend to suffer from higher
process variations in the fabrication process that are particularly harmful to the performance of analog
integrated circuits. Several techniques for process-aware design rely on either worst-case analysis or
Monte Carlo analysis. The worst-case analysis use corner models to estimate performance variations.
Despite being a simple and fast approach, it might be pessimistic and can lead to over-design. On the
other hand, Monte-Carlo analysis is a statistical method that can approximate variations with low error.
However, it requires hundreds of samples, making it computationally expensive for large designs with
time-consuming simulations.

Since the main goal of this surrogate model is to reduce the computational complexity of
models, we use worst-case analysis to ensure robust solutions. The GPR models created from the
characterization of the technology includes information of the nominal and corner models. This allows
the surrogate to estimate the robustness of the solutions to process variations.
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4. Experimental Results

4.1. Error of the GPR-Based Surrogate Model

In this subsection, we evaluate the accuracy of the GPR model used in this work. As mentioned
in Section 3 the process-dependent parameters of CMOS devices are characterized in terms of design
variables and stored. Figure 4 shows the comparison of the percentage error of the parameter’s
prediction using the curve-fitting-based models from Reference [16], and the GPR models developed
in this work, with respect of circuit simulations (high-fidelity model). The accuracy of the models is
evaluated for a small (Figure 4a) and large (Figure 4b) device size of the NMOS and PMOS devices on
the TSMC 180 nm process. Note that the Y-axis has a logarithmic scale to visualize the error of the
GPR that in all cases is lower than using a curve-fitting approach for prediction. Because the curve
fitting model highly depends on the type of function and the number of coefficients used for the fitting,
its accuracy is limited. As shown in Figure 4, the prediction error of the GPR models is smaller than
4% for all the parameters. Note that the prediction error of the NMOS’ normalization current (IsN) in
Figure 4b is lower than 0.0001%, and therefore, it is not visible on the plot.
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Figure 4. Comparison of the percentage error of prediction of CMOS parameters using models based
on curve-fitting and Gaussian process regression (GPR) for sizes (a) KL = 1, KWL = 4. (b) KL = 10,
KWL = 50. These models were built from the characterization data.

4.2. Experimental Setup

The surrogate model is built for three technology nodes and three different circuit topologies.
For each process, the model includes data of the nominal corner (TT) and the worst-case corners (SS,
FF); all of them are considered simultaneously in the optimization. Then, the model is inserted on
the iterative loop of state-of-the-art optimization algorithms, SQP and NSGA-II, to demonstrate the
compatibility of our approach with different algorithms. The configuration of the main parameters
of the algorithms used for the experiments is summarized in Table 2. The stop criterion is probably
the most relevant parameter. The execution of the SQP algorithm ends when the solver takes a step
that is smaller than the function tolerance, and the constraints are satisfied within the constraint
tolerance [36]. If the execution does not achieve the minimum function tolerance, the algorithm stops
when it reaches the maximum number of iterations or the maximum number of function evaluations.
On the other hand, the NSGA-II algorithm stops when it reaches the maximum number of generations.
Additionally, each optimization algorithm runs 10 times for the same optimization problem, keeping
only the best results. Another difference in the operation of the algorithms is the construction of the
Pareto front. While NSGA-II builds the Pareto using in-built functions for ranking and crowding
distance calculation, that is not the case of the SQP algorithm. The gradient-based optimization with
nonlinear constraints minimizes the weighted sum of all the objective functions. Therefore, each point
of the Pareto front is obtained by modifying the weights of the objectives. Finally, NSGA-II requires
distribution indexes for the operators of crossover and mutation [25].
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The surrogate is self-contained and easily adaptable to other optimization techniques like differential
evolution [10,14,23], simulated annealing [12], particle swarm optimization [4], Bayesian optimization [9],
and even learning-based techniques like neural networks or support vector machines [8]. The optimization
framework is implemented in MATLAB R© using in-built functions combined with optimization
toolboxes [25,36]. Finally, the solutions are evaluated by circuit simulation (high-fidelity model) using the
Cadence R© Spectre R© Simulator, and any solutions not found in compliance with the specifications, on all
the corners, are discarded. All experiments were executed in a Linux workstation with an Intel Xeon CPU
with frequency 2.3 GHz and 131 GB of RAM memory.

Table 2. Parameters of the optimization algorithms used for this experiment sequential quadratic
programming (SQP) and NSGA-II.

Parameter of the Algorithm SQP NSGA-II

Algorithm implementation fmincon: sqp [36] NSGA2 toolbox [25]

Multi-start/Runs 10 10

Stop criteria Function tolerance = 1 × 10−17 Max. generations = 500

Max. Fun. evaluations = 8 × 105 Population size = 30
Other parameters Max. iterations = 2 × 106 Dist. index for crossover = 20

Constraint tolerance = 1 × 10−6 Dist. index for mutation = 20

4.3. Active-RC Second Order Filter

Filters are key building blocks in signal processing, allowing the suppression or selection of
specific frequency bands. The requirements of the filter type, order, bandwidth, and selectivity may
change depending on the application. In this test case, the proposed framework provides designs
of the Tow-Thomas 2nd-order Butterworth active-RC low-pass filter (LPF) as shown in Figure 5a.
This filter topology is widely used because of its ease of tunability and relatively low sensitivity to
component variation. The transfer function of the filter in standard second-order form is shown on
Equation (4), where Q represents the selectivity (5) and ω0 indicates the center frequency (6). These
expressions do not take into account the effect of the frequency response of the amplifiers, which
can lead to Q-enhancement and center-frequency errors [38]. Instead, these effects are taken into
consideration on the bandwidth requirements of the amplifiers.

HLP(s) =
−ω2

0
s2 + s (ω0/Q) + ω2

0
(4)

Q = RQ/R (5)

ω0 = 1/RC. (6)

VIN R

R

R
R

C
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RQ

VOLP

A1
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A3

R

(a)

IB

MB1

MB1 MB2

MI MI

ML ML

MS

VI-
VI+

VO

CC

VDD

(b)
Figure 5. Active-RC second order filter under design (a) circuit topology. (b) Transistor level schematic
of the second order internally compensated amplifier.
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The two-stage internally-compensated topology shown in Figure 5b is used on the implementation
of the amplifiers in the filter (A1, A2, and A3). This amplifier consists of two gain stages: 1st-stage
a PMOS differential pair with NMOS active-load, and 2nd-stage an NMOS common-source amplifier.
The miller-capacitor (CC) performs stability compensation via pole-splitting.

From the transfer function of the filter, it can be straightforward to obtain a set of capacitor
and resistor values to meet certain specifications of ωo and Q. However, on an integrated solution,
the selection of these values can have a significant impact on the power and area cost of the circuit.
Depending on the technology, the density of the available passives will change, and the sizing of
the resistors and capacitors to implement a specific time-constant will have direct consequences on
the loading and stability requirements of the amplifiers as well as the noise performance of the filter.
To successfully design a power and area efficient filter, one must optimize the resistor and capacitors in
conjunction with the sizing of transistors in the amplifiers to guarantee a certain desired performance.
Within this context, the optimization problem is defined as follows:

Minimize (αa·Area(x,p) + αp· Power(x,p))
x = [KIB, KL, KWLB1, KWLI , KWLL, KWLS, KWLB2, KCC, KC]

subject to xlb ≤ x ≤ xub, and g(x,p)≤ 0
g(x, p) = [A0, UGF, PM, OS, ICMR, SR, VN],

where x is the set of normalized optimization variables, which includes: biasing conditions (IB = KIB×
1µA), transistor’s length (L = KL× Lmin), aspect ratios (W/Li = KWLi) and capacitor values (CC =

KCC × 100 f F, C = KC× 1pF), with Lmin as the minimum channel length of the technology. The set of
constant parameters is p = [Q, FC], which is meant to represent system-level requirements outside of
the control of the design, where FC = 2πω0 for Q = 0.707 (Butterworth filter). The resistor values of the
filter are not considered design variables, as they are automatically derived by specifying the capacitor
(C) value and the filter specifications. In addition, the non-equality constraints g considered are the
amplifier’s DC gain (A0), unity-gain frequency (UGF), phase margin (PM), input common-mode range
(ICMR), output swing (OS), slew rate (SR) and input-referred spot noise (VIN). Although linearity is
not explicitly considered as a constraint in the surrogate, it can be adjusted as needed by changing
the gain specification of the amplifiers, taking advantage of the linearization properties of negative
feedback [39]. For other topologies that can not rely on negative feedback to improve linearity, a specific
linearity specification could be included in the surrogate.

4.3.1. Surrogate of the Filter’s Performance Metrics

To complete the surrogate model for the circuit, a system of equations was formulated using
known approximations of the performance metrics of the amplifier. The amplifier’s DC gain is
A0 = gmI gmS R1R2, where R1 = 1/(gdsL + gdsI) and R2 = 1/(gdsS + gdsB2 + 1/RL) are the output
impedances associated with each stage of the amplifier, with RL as the load seen by the amplifier
due to the resistors in the filter. The unity gain frequency is shown on Equation (7), where ωp1 and
ωp2 are the poles at the output of each gain stage in the amplifier, given by Equations (8) and (9)
respectively. The phase margin is given by PM ≈ 180◦ − tan−1 (UGF/ωp1

)
− tan−1 (UGF/ωp2

)
−

tan−1 (UGF/ωz), with ωz = gms/CC as the feed-forward zero created by the miller capacitor.
The input common-mode range is computed as: ICMR = VDD−|VDSATB |− |VDSATI |−VTHL −VDSATL ,
and the output swing as: OS = VDD − |VDSATB2 | − VDSATS2 , where VDD represents the nominal
supply-voltage for the given technology. The slew-rate is approximated to be the minimum of either
SR1 = IB/CC or SR2 = IB2/(CC + C), where IB2 = (KWLB2/KWLB1)× IB is the current bias of the
amplifier’s second stage. Noise equations to compute input-referred spot noise from both white and
flicker noise sources are also included [40].

UGF ≈
(

1
8π

)√√
4A2

0ω2
p1ω2

p2 − 2ω2
p1ω2

p2 + ω4
p1 + ω4

p2 −ω2
p1 −ω2

p2 (7)
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ωp1 =
1

R1CC + R2(CC + CL) + gmsR1R2CC
(8)

ωp2 =
R1CC + R2(CC + CL) + gmsR1R2CC

R1R2CCCL
(9)

Finally, for the objective functions: power consumption is given by PWR = 3× (2IB + IB2)(VDD)

and the area cost (A) of the design is calculated as shown by Equation (10). Where CPA is the
capacitance per unit of area, RS is the sheet resistance and WR is the resistor width, all of which are
process-dependent parameters.

A = 3× (L)2 ((2KWLB1 + KWLB2/KWLB1)KWLB1 + 2KWLI + 2KWLL + KWLS) +

2× ((CC + C)/CPA) + (5 + Q) (R/RS) (WR)
2.

(10)

The surrogate also includes equations to make sure that all transistors are properly biased outside
the triode region (VDSAT < VDS) based on the common-mode signal level at the input (VCM) and
above weak inversion (i f > 1) [29,32].

4.3.2. Results of Filter’s Automatic Design

As described in Section 3, once the optimizer generates a set of solutions, they are verified through
circuit simulation in the high-fidelity model to obtain the final performance metrics. Figure 6 shows
the design trade-off between minimization objectives (power, area) for the three technology processes
(TSMC 180 nm, IBM 130 nm, TSMC 65 nm) and both optimization algorithms (SQP, NSGA-II) with
a specification of FC = 100 KHz. From the Pareto we can take notice that the solutions generated in
the 180 nm process can provide lower area costs than in the 130 nm, this is due to the fact that the
sheet resistance (RS) of the selected resistor in the 130 nm process was smaller, resulting in a larger
area consumption in comparison with the solutions in the 180 nm process. Similarly, the higher
density of passives on the 65 nm process allows for much lower area metrics compared to the other
technologies. However, the power consumption is also higher, likely due to the reduced intrinsic gain
of the smaller process. Also, worth mentioning is that even though the NSGA-II optimizer generated
a larger set of solutions, only a small subset of them were competitive enough to be included in the
Pareto comparison with SQP.

Figure 7 shows a set of box plots comparing the design variables (x) in the Pareto’s solutions,
allowing us to gain insight in which design variables are more tightly restricted for an optimal design,
an overlay box with each variable allowed range is included for reference. For example, in all cases the
biasing current (IB) is kept low, even going so far as to reach the lower boundary set for the variable in
some cases, which relates to the direct impact its value has on the power consumption objective.
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Figure 6. Pareto front of the optimization of filter (FC = 100 KHz) using SQP and NSGA-II optimization
algorithms in (a) TSMC 180 nm CMOS process. (b) IBM 130 nm CMOS process. (c) TSMC 65 nm
CMOS process.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Values of the optimization variables from solutions in the Pareto front for the filter
optimization (FC = 100 KHz) obtained with: (a) SQP-180 nm, (b) SQP-130 nm, (c) SQP-65 nm,
(d) NSGA-II-180 nm, (e) NSGA-II-130 nm, and (f) NSGA-II-65 nm.

Table 3 shows a summary of constraints for one set of Pareto solutions (SQP optimization, 180 nm
technology) evaluated through process variations for different desired filter cut-off frequencies (FC),
where the UGF specification was set to be at least 10 times larger than the FC parameter to minimize
the effect of Q-enhancement and center-frequency errors. The comparison on the table reveals how
different constraints become active or inactive as the bandwidth requirements change, where an active
constrain is one that is satisfied by a narrower margin, indicating it might be a bottleneck for the
design. For example, as the frequency requirements increase, the A0 specification is more narrowly
satisfied while the SR constrain is relaxed, which is a direct consequence of the increased biasing
required to reach a higher UGF specification. The UGF requirement is also more tightly met at higher
FC specifications, which is to be expected since it directly conflicts with the minimization of power
consumption in the optimizer. All solutions are viable and comply with the desired specifications
across corners. In all cases, the cut-off frequency specification is satisfied within a worst-case 8% error,
which is consistent with the UGF requirement set for the optimizer. Thus, for the case of the 2nd-order
Butterworth LPF, the proposed surrogate model design framework was demonstrated to generate
viable solutions across process variation, technologies, frequency requirements, and optimization
algorithms, all while providing insightful trade-offs in the constraints and objectives of the design.

Table 3. Performance metrics of the Pareto front solutions obtained through SQP optimization of the
2nd-order active-RC low-pass filter optimization in a TSMC 180 nm process (Noise (VN) reported at
10 kHz).

Parameter Spec
FC = 100KHz FC = 1MHz FC = 10MHz

Min Mean Max Min Mean Max Min Mean Max

A0 [dB] >40 55.54 57.59 61.35 52.21 55.69 58.58 42.47 45.65 49.24

UGF/FC >10 19.28 20.98 31.87 13.59 15.03 16.26 11.71 12.27 13.34

PM [◦] >40 42.17 45.49 48.16 42.31 45.75 49.21 44.62 46.91 48.68

ICMR [V] >0.6 1.14 1.18 1.23 1.11 1.20 1.30 0.76 0.85 0.95
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Table 3. Cont.

Parameter Spec
FC = 100KHz FC = 1MHz FC = 10MHz

Min Mean Max Min Mean Max Min Mean Max

OS [V] >1 1.29 1.36 1.65 1.25 1.32 1.37 1.39 1.43 1.47

SR [V/µs] >0.4
2.13 2.38 3.63 10.40 12.24 15.06 85.84 91.49 103.63

0.56 0.66 1.15 4.73 5.53 6.41 56.02 57.15 60.07

VN [µV/
√

Hz] <2 0.89 1.04 1.22 1.22 1.34 1.41 1.05 1.11 1.18

4.4. Capacitor-Less Low-Dropout (CL-LDO) Voltage Regulator

In the second case example, we present the optimization of a capacitor-less low-dropout (CL-LDO)
voltage regulator with a PMOS pass transistor and a single-stage error amplifier as shown in
Figure 8 [41]. This circuit provides a clean and stable output voltage VO set by the reference voltage
VREF and the voltage divider implemented by RF1 and RF2. The dropout voltage VDO = VIN −VO is
the minimum difference between input and output voltage to maintain regulation. The pass transistor
M4 is sized such that its output impedance rds = 1/gds complies with the load current and the voltage
across VDO. This topology uses a type-A error amplifier due to its inherent good power supply
rejection (PSR) [41]. Most importantly, this LDO topology does not require an external large capacitor
at the output for stability purposes. Instead, the circuit is internally compensated by an integrated
compensation capacitor CC that adds to the already large parasitic capacitors of the pass transistor.
The CL-LDO is a particularly good fit for optimization-aided design, as the circuit requirements
must be satisfied across the load range, particularly balancing the trade-off between good PSR and
sufficient stability.

RF1

RF2

M1 M1

M2 M2 M4

VREF

M3

CC

VIN

IB

M3

VFB

VFB

VO

Load

Figure 8. Circuit schematic of the capacitor-less low dropout (LDO) with type-A single stage error
amplifier internal frequency compensation provided by CC.

For the purpose of this example, the LDO shown will be designed to meet a set of specifications of
power supply rejection (PSR) at different frequencies, phase margin, input common-mode range and
output swing of the error amplifier. With the objective of minimizing the quiescent power Pquiescent[W]

and the power supply rejection at DC (PSR@DC[V/V]). The total active area is not considered for
optimization because it is dominated by the area of the pass transistor, which is defined by the range
of the load current. The optimization problem is defined as follows:

minimize Pquiescent(x, p), PSR@DC(x, p)
subject to xlb ≤ x ≤ xub, and g(x,p)≤ 0

x = [KIB, KLA, KWL3, KWL1, KWL2, KWL4, VREF, KRB, KCC, KL4],

where the set of normalized design variables x, includes the biasing conditions of the amplifier
(IB = KIB × 1 µA), transistors lengths (Li = KLi × Lmin) and aspect ratios (W/L = KWLi), reference
voltage (VREF), the output sampling resistor (KRB) and compensation capacitor (CC = KCC × 1 pF).
Note that KRB× 1 kΩ = RF1 + RF2.
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4.4.1. Surrogate of the LDO’s Performance Metrics

Small signal analysis techniques are used to build the component of the surrogate related to the
performance metrics of the circuit under design.

Figure 9 shows the small-signal macromodel for calculating the PSR of the LDO. The transfer
function of the macromodel (VO(s)/VIN(s)) was obtained by using circuit analysis techniques like
modified nodal analysis (MNA). Similarly, the macromodel for obtaining the expression of the loop
gain and the phase margin is shown in Figure 10.

CL
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Figure 9. Small-signal macromodel of the LDO for the calculation of the power supply rejection (PSR).
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Figure 10. Small-signal macromodel of the LDO for the calculation of the phase margin.

In order to simplify the analysis let us define the auxiliary variables: R1 = 1/(rds1||rds2), R2 =

rds4||Vo/IL, C1 = Cgs4 + Cgb4 + CEA, C2 = Cgd4 + CC and CIN = Cgs1. The symbolic expressions of
three poles (11)–(13) and the zero fz = gmP

/
(2πC2) were extracted from the loop transfer function.

The phase margin is evaluated as PM = 180◦ − tan−1(UGF
/

fp1) − tan−1(UFG
/

fp2) −
tan−1(UGF

/
fp3)− tan−1(UGF

/
fz), where UGF is the unity gain frequency. While these expressions

are impractical for hand calculations, they are compatible with the proposed surrogate model enabling
high accuracy. Finally, biasing conditions are included in the constraints to ensure that the transistors
do not operate in the linear region VDSAT < VDS. Also, the minimum inversion level is controlled
such that the transistors will operate in moderate to strong inversion levels i f > 1. Thus, the equation
VDSAT4 < (VIN −VO) is included in the set of constraints. Biasing equations of the error amplifier are
also included: (VTH1 + VDSAT1 + VDSAT3) < VREF and (VREF < (VIN + VTH1 − |VTH2 | − |VDSAT2 |).

fp1 ≈
R2+R f 1+R f 2

(2∗π)(CLR2R f 1+CIN R2R f 2+CLR2R f 2+CIN R f 1R f 2+C2R2(R f 1+R f 2)+C1R1(R2+R f 1+R f 2)+C2R1(R2+R f 1+R f 2+gmPR2(R f 1+R f 2)))
(11)

fp2 ≈
CLR2R f 1+CIN R2R f 2+CLR2R f 2+CIN R f 1R f 2+C2R2(R f 1+R f 2)+C1R1(R2+R f 1+R f 2)+C2R1(R2+R f 1+R f 2+gmPR2(R f 1+R f 2))

(2∗π)(CINCLR2R f 1R f 2+C2CIN(R2R f 1+R1(R2+R f 1+gmPR2R f 1))R f 2+C2CLR1R2(R f 1+R f 2)+C1R1(CIN(R2+R f 1)R f 2+C2R2(R f 1+R f 2)+CLR2(R f 1+R f 2)))
(12)

fp3 ≈
CINCLR2R f 1R f 2+C2CIN(R2R f 1+R1(R2+R f 1+gmPR2R f 1))R f 2+C2CLR1R2(R f 1+R f 2)+C1R1(CIN(R2+R f 1)R f 2+C2R2(R f 1+R f 2)+CLR2(R f 1+R f 2))

(2∗π)CIN(C2CL+C1(C2+CL))R1R2R f 1R f 2
. (13)
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4.4.2. Results of the LDO’s Automatic Design

As with the previous test case, the CL-LDO circuit was designed using three different fabrication
processes (TSMC 180 nm, IBM 130 nm, and TSMC 65 nm), and two optimization algorithms: SQP
and NSGA-II, for a total of 6 experiments. The circuit parameters and the specification constraints are
summarized on Table 4.

Table 4. Circuit parameters and specification constraints for the optimization of the LDO in two
different CMOS processes.

Process VIN VO CL IL,min IL,max PSR@1 kHz PSR@10 kHz PSR@100 kHz PM

TSMC 180 nm 1.8 V 1.6 V 100 pF 533.3 µA 5.3 mA <−50 dB <−45 dB <−25 dB >45◦

IBM 130 nm 1.2 V 1 V 100 pF 333.3 µA 3.3 mA <−40 dB <−40 dB <−25 dB >45◦

TSMC 65 nm 1.2 V 1 V 100 pF 333.3 µA 3.3 mA <−40 dB <−40 dB <−25 dB >45◦

The resulting set of solutions build the Pareto fronts in Figure 11. The trade-off between power
consumption and PSR is evident in the Pareto fronts. The PSR of this LDO topology is related to the
gain of the error amplifier. Since higher gain requires higher power consumption, the two objectives
can not be improved simultaneously. Comparing the Pareto fronts obtained using both optimization
algorithms we do not observe a clear dominance of one algorithm on finding the best solutions for all
designs. Regardless, the surrogate model fits well both optimization algorithms and enables them to
find different sets of valid solutions. The large set of solutions found by the algorithms and verified
with circuit simulations prove the high-accuracy of the surrogate model including process variations.
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Figure 11. Pareto front of the optimization of the LDO circuit using SQP and NSGA-II optimization
algorithms and (a) TSMC 180 nm. (b) IBM 130 nm. (c) TSMC 65 nm CMOS process.

The variable with the smallest distribution is VREF that consistently tends to the same value
across all solutions. We also observe a clear tendency for the algorithms to maximize KLA (since its
maximum value is 10) to increase the gain of the error amplifier and therefore increase the |PSR|.
The aspect ratio of the pass transistor KWL4 in most of the cases tends to the maximum allowed value.
The other variables have a larger distribution of values over their ranges and their tendency is similar
for both algorithms. Moreover, the range of the values obtained using NSGA-II is narrower than the
one obtained with SQP.

Box plots of the values of each optimization variable were created to determine the diversity of
the solutions in the Pareto front as shown in Figure 12. For comparison purposes, Figure 12 also shows
the whole range of each design variable.
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(a) (b) (c)

(d) (e) (f)

Figure 12. Values of the optimization variables of the solutions in the Pareto front obtained with:
(a) SQP-180 nm, (b) SQP-130 nm, (c) SQP-65 nm, (d) NSGA-II-180 nm, (e) NSGA-II-130 nm and
(f) NSGA-II-65 nm.

To verify the constraints, we extracted the min, mean and max values of the specifications
estimated through circuit simulations. The results of the optimization case SQP/130 nm are reported in
Table 5, while the ones of the case NSGA-II/130 nm are presented in Table 6. Within these constraints
evaluated for the nominal corner only, the PSR@10kHZ and the PSR@100kHZ appears to be active
constraints, while other constraints like phase margin seem more relaxed (non-active). The fact that
the designs display over-design of the phase margin specification has several possible explanations.
First, that despite it is not an active constraint in the nominal corner TT, it becomes one once it is
evaluated for the case of the worst-corners. Second, that there is some discrepancy in the surrogate
model, particularly on the estimation of the capacitances and resistances associated with the dominant
and output nodes. Third, that given the range or search space of each variable, there is no such solution
that could reduce the phase margin while still satisfying the PSR constraints.

Table 5. Performance metrics of the Pareto front solutions obtained through SQP optimization of the
CL-LDO in a 130 nm process measured with simulations.

Metric Spec.
Low Load High Load

Min Mean Max Min Mean Max

|PSR@1kHz| [dB] >40 40.26 48.81 54.40 48.62 54.08 63.18

|PSR@10kHz| [dB] >40 40.04 45.58 50.71 44.77 48.67 54.41

|PSR@100kHz |[dB] >25 27.87 30.99 34.51 27.02 30.74 35.29

Phase Margin [◦] >45 49.33 59.91 68.62 73.40 81.07 85.64
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Table 6. Performance metrics of the Pareto front solutions obtained through NSGA-II optimization of
the CL-LDO in the IBM 130 nm process measured with simulations.

Metric Spec.
Low Load High Load

Min Mean Max Min Mean Max

|PSR@1kHz| [dB] >40 40.37 48.97 59.72 45.78 56.67 74.05

|PSR@10kHz| [dB] >40 40.19 47.12 54.45 45.31 50.60 56.27

|PSR@100kHz |[dB] >25 31.54 33.75 36.49 31.71 33.93 37.06

Phase margin [◦] >45 50.39 53.32 55.99 70.85 73.78 77.42

4.5. Current-Starved Voltage Controlled Oscillator (CSVCO)

Oscillators are a fundamental block in transceivers and Phase-Locked-Loops (PLLs) [42]. One of
the most conventional implementations of an oscillator is the ring oscillator, which consists of an
odd number of inverter cells arranged in a feedback loop. Current limiting transistors are added to
control the frequency of oscillation, to the top and bottom of the inverter cell, commonly known as
current starving.

In this test case we optimize the performance of the five-stage CSVCO shown in Figure 13 [21].
As shown in the schematic, the control voltage is generated by a current source IB and a
diode-connected transistor.

VDD

VOUT

VCTR

(WP/LC)

(WPI/LI)

(WN/LC)

(WNI/LI)

IB

Figure 13. Circuit schematic of a 5-stage current starved voltage controlled oscillator (VCO). The
control voltage is generated with a biasing current and a diode connected transistor.

The optimization problem is defined as follows:

minimize {P(x),L (∆ f , x)}
subject to xlb ≤ x ≤ xub, e(x,p) = 0, and g(x,p)≤ 0

x = [KIB, KLI , KWLN , KWLNI , KWLP, KWLPI , KLC],

where the set of normalized design variables x, includes the biasing conditions for the current limiting
transistors (IB = KIB × 1µA), transistors lengths (Li = KLi × Lmin) and aspect ratios (W/L = KWLi)
for the transistor in the inverter and the biasing circuit.

4.5.1. Surrogate of the CSVCO’s Performance Metrics

Equations (14) and (15) describe some of the most important performance metrics of the CSVCO
such as oscillation frequency ( fosc), total power (P), and phase noise (L) [21,43,44].

fosc =
ID

N ·VDD · Ctot
Ctot ≈

5
2
(Cox ∗WNI ∗ L + Cox ∗WPI ∗ L) (14)
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P = Pshort−circuit + Paverage L(∆ f ) =
8kTVDD f 2

osc
3ηPVchar∆ f 2 , (15)

where, ID is the inverter’s current, VDD is the supply voltage, Ctot is the total capacitance at the
output of each inverter stage. WNI/L and WPI/L represent the aspect ratios of the NMOS and PMOS
transistors, respectively.

Therefore, the optimization will provide the circuit sizing such that it meets the constraint of
oscillation frequency while minimizing power and phase noise. Note that ∆ f is the offset frequency
from the carrier where the phase noise is sampled, and it is set to ∆ f = 1 MHz for this experiment.
Similar to the previous test cases, several constraints are also included to ensure that the transistors
operate within moderate to strong inversion. However, this model does not account for errors in the
current copy done by the current mirrors.

4.5.2. Results of the CSVCO’s Automatic Design

Figure 14 shows the trade-off between phase noise and power consumption when sizing the
CSVCO for a frequency of oscillation fosc = 1 GHz for the TSMC 180 nm and IBM 130 nm processes,
or fosc = 10 GHz for the TSMC 65 nm process. From the Pareto fronts, we observe that the range of
solutions found by the NSGA-II algorithm is narrower to the one found by the SQP.
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Figure 14. Pareto front of the optimization of the CSVCO circuit using SQP and NSGA-II optimization
algorithms and (a) TSMC 180 nm process. (b) IBM 130 nm process. (c) TSMC 65 nm CMOS process.

That is also reflected in Figure 15, where we observe a larger distribution of the variables of the
solutions found using the SQP algorithm than the NSGA-II. Still, in both cases, the surrogate is accurate
enough to allow both algorithms to find valid solutions across coroners verified through simulation.

The constraints were also verified with circuit simulation to ensure that all solutions included
in the Pareto provide a sustained oscillation at fosc = 1 GHz (TSMC 180, IBM 130) or fosc = 1 GHz
(TSMC 65), and that under corners, the error of this frequency is no larger than 1%.

(a) (b) (c)

Figure 15. Cont.
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(d) (e) (f)

Figure 15. Values of the optimization variables of the solutions in the Pareto front obtained with:
(a) SQP-180 nm, (b) SQP-130 nm, (c) SQP-65 nm, (d) NSGA-II-180 nm, (e) NSGA-II-130 nm and
(f) NSGA-II-65 nm.

4.6. Summary

The main contribution of this work is a surrogate model that is computationally inexpensive,
allowing fast evaluation of the objective functions and constraints for the optimization-aided automatic
circuit design.

An example of the evolution of the objective function through the optimization processes of both
algorithms is illustrated in Figure 16. As expected, the objective function, considered here as a linear
combination of the minimization objectives, reduces with the iterations (generations) until reaching the
stop criteria. The SQP algorithm stops when the calculated step is smaller than the function tolerance,
while the NSGA-II stops after reaching the maximum number of generations.
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Figure 16. History of the objective function through the iterative optimization process using (a) SQP
algorithm. (b) NSGA-II algorithm.

The test cases presented in this work are summarized in Table 7. The time required for the
evaluation of objectives and constraints is compared when using the proposed surrogate and when
using circuit simulations (using Ocean Cadence). Using the circuit simulator embedded in the
optimization algorithm requires to write the parameters in the ocean file, source the software, run
the simulation, and read the results. For example, in the case of the LDO, these operations take 0.6 s,
24.82 s, 1.18 s, and 5.5 ms, respectively. On the other hand, using the GP models require to load the
models (41.58 s) and evaluate the model (17.84 ms). However, launching the simulation software
and loading the GPR models happens only once in every execution of the optimization algorithm
although these times seem large, they are negligible compared with the whole optimization run.
Instead, the real target is to minimize the time required to evaluate a single solution since that will be
repeated thousands of times in an execution. The number of evaluations in a single run depends on
the number of iterations or generations, the size of the population, the stop criteria of the algorithm,
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and the number of multi-runs. Table 7 shows the comparison of the evaluation of a single candidate
solution for all corners when using our surrogate vs the circuit simulator.

Table 7. Summary of the test cases under optimization using the proposed surrogate model.

Circuit No. of Design No. of Evaluation Time Evaluation Time Evaluation Time
Variables Constraints Surrogate [s] Simulation [s] Improvement

Filter 9 21 0.123 57.708 470X
LDO 10 24 0.051 3.54 69X
VCO 7 15 0.063 18 285X

Note that the simulation time is heavily dependent on the type of analysis require to quantify
certain metrics. For instance, measuring the slew rate requires a lengthy transient simulation in
comparison to the phase margin that can be estimated with a faster AC simulation.

All results presented in the three test cases have been validated through simulation to verify all
constraints are satisfied across process corners. Although the surrogate model uses highly accurate
equations, avoiding simplification as much as possible, a margin of error in prediction is expected
with respect to the high-fidelity model. One method to quantify the effectiveness of the surrogate for
optimization-aided design is the success rate, which refers to the percentage of solutions generated
through optimization using the surrogate that successfully comply with all specifications after being
validated by circuit simulation. Table 8 summarizes the success rate of all the test cases across the three
technology processes considered. Evaluating the solutions that fail to satisfy circuit simulations can
help identify opportunities to enhance the surrogate’s precision. For example, in the case of the filter
design in the TSMC 65 nm process, the specification of the Op-Amp’s DC gain is the most significant
active-constraint. Due to the lower intrinsic gain of the smaller process, the constraint is usually
narrowly met. Then, even small errors in precision on the surrogate can cause the solution to fall under
the constraint limit. Most of the solutions deemed invalid in the SQP-optimized case fall under a 1 dB
error in the DC gain specification, and if accounted for, result in an overall success rate improvement
from 57.14% to 83.33%. In the LDO optimization, some of the solutions fail to meet all specifications
for both low-load and high-load conditions. This error is mainly caused by the error in the estimation
of the pass transistor parameter’s, the largest device; this error reduces by increasing the resolution
in the characterization of the early voltage. The error in the VCO optimization is mostly caused by
the mismatch on the current copy of the current mirrors, even a small error in the current copy causes
a deviation in the oscillation frequency larger than 1% when verified across corners.

Table 8. Summary of success rate from surrogate evaluation to simulation verification across corners.

Circuit
TSMC180 IBM130 TSMC65

SQP NSGA-II SQP NSGA-II SQP NSGA-II

Filter 90.48% 68.57% 100.00% 100.00% 57.14% 100.00%
LDO 76.67% 70.00% 70.00% 83.33% 56.67% 75.45%
VCO 60.00% 66.67% 70.00% 93.33% 86.67% 60.00%

Introducing additional details to the circuit model, such as current-mirror mismatch modeling
could help improve the surrogate model in this regard. However, the additional effort required to
increase the complexity of the model may not be justified if the valid solutions generated by the
surrogate prove to be sufficient for the target application.

5. Conclusions

In this paper, we presented a low-computational cost and accurate surrogate model for automatic
IC sizing. This surrogate has three main elements that make it modular and reusable for the design of
analog circuits across topologies and CMOS processes. In particular, Gaussian process regression is
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used to generate high accuracy prediction models of key device parameters based on characterization
data of devices through process variations, expanding the capabilities of the transistor model to account
for short-channel and narrow-channel effects. The process-aware nature of our surrogate reduces the
iterative circuit verification to reach a viable circuit solution, despite the required initial effort to create
it. Moreover, the created model can be easily re-used, such that a circuit can be re-designed for new
applications by only updating the objectives and constraints. The low-cost surrogate allows for faster
evaluation, which can enable the optimization of larger problems, demonstrating an improvement in
evaluation time from 69X to 470X compared to the high-fidelity model.

The topology-dependent component of the surrogate requires the analog designer to obtain
the expressions of the performance metrics. Therefore, to add a new topology, some initial effort is
required. However, once the model is created, the designer can store it in a database, and reuse it for
optimization across technologies and various performance metrics. Having a database of the models
of different topologies could also allow a comparison of their performances to aid the designer in the
topology selection.

The proposed surrogate is integrated into a multi-objective constrained optimization framework
with interchangeable state-of-the-art optimization algorithms. Then, the usage of our surrogate for
automatic analog circuit design was tested on three different circuit topologies using three fabrication
processes. The ability of our proposed surrogate to evaluate the circuit performance from the design
variables was demonstrated by the generation of viable solutions across process corners independent of
the optimization algorithm. Additionally, the use of our surrogate in conjunction with multi-objective
optimization allows the designer to improve the exploration of the space of solutions and to gain
insight into design trade-offs through the Pareto front.

Future work should focus on the characterization and modeling of the post-layout parasitic
components and include them in the surrogate to enable efficient parasitic-aware automatic
analog design.
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