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Abstract: Face recognition is a representative biometric that can be easily used; however, spoofing
attacks threaten the security of face biometric systems by generating fake faces. Thus, it is not
advisable to only consider sophisticated spoofing cases, such as three-dimensional masks, because
they require additional equipment, thereby increasing the implementation cost. To prevent easy
face spoofing attacks through print and display, the two-dimensional (2D) image analysis method
using existing face recognition systems is reasonable. Therefore, we proposed a new database called
the “pattern recognition-face spoofing advancement database” that can be used to prevent such
attacks based on 2D image analysis. To the best of our knowledge, this is the first face spoofing
database that considers the changes in both the angle and distance. Therefore, it can be used to train
various positional relationships between a face and camera. We conducted various experiments
to verify the efficiency of this database. The spoofing detection accuracy of our database using
ResNet-18 was found to be 96.75%. The experimental results for various scenarios demonstrated
that the spoof detection performances were better for images with pinch angle, near distance images,
and replay attacks than those for front images, far distance images, and print attacks, respectively.
In the cross-database verification result, the performance when tested with other databases (DBs)
after training with our DB was better than the opposite. The results of cross-device verification in
terms of camera type showed negligible difference; thus, it was concluded that the type of image
sensor does not affect the detection accuracy. Consequently, it was confirmed that the proposed DB
that considers various distances, capture angles, lighting conditions, and backgrounds can be used as
a training DB to detect spoofing attacks in general face recognition systems.

Keywords: face spoofing DB; face recognition; spoofing attack; RGB image sensor; angle and
distance variations

1. Introduction

Nowadays, biometrics provide reliable indicators for individual recognition and authentication
problems [1]. As the biometric identifiers are inherent to individuals, it is difficult to manipulate, share,
or overlook these traits [2]. Therefore, these systems have been used in various fields such as cell
phone encryption and internet banking authentication. Among biometric methods, the technique
used by a face recognition system, which includes face detection and recognition, is one of the most
convenient and useful practices [3–6]. The face recognition system uses a non-invasive method, and
the face images have more complex biometric features compared to others. Various features that are
used to detect fake face data can be extracted from each instance of data via local binary pattern (LBP),
convolutional neural network (CNN), discrete cosine transform (DCT), and Laplacianfaces [7–10].
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These reasons have led to the growth of the market size associated with face recognition, and the
development of relevant robust systems is, therefore, required [11]. However, in the past few years,
potentially vulnerable spoofing attacks have been reported [12]. These attacks occur when people
attempt to pretend to be someone else by using fake data, thereby gaining illegitimate access and
advantage [13]. Therefore, the face anti-spoofing task has attracted massive attention with the aim to
assure reliability of security. In short, the necessity of detecting spoofing attacks in face recognition
has increased. In conventional studies, to prevent spoofing attacks, its various types were divided
into 2D attacks forged by displaying printed photos, replay attacks using recorded videos on mobile
devices, and complex 3D facial mask attacks [14]. As known, there are several public databases where
each has unique or characteristic data that has been collected in terms of various aspects. For example,
the NUAA PI database and Yale Face Database B, which are among well-known face anti-spoofing
databases, use only printed photo attacks [15,16]. Although the face images are obtained through
various elements, such as movement, rotation, bending, and lighting manipulation of the photographs,
practical requirements might not be satisfied for detection of counterfeit data because of the relatively
small number of subjects, i.e., 15 and 10. Further, the Unicamp video-attack dataset (UVAD) prevents
only the replay video attacks using 17,076 video clips by capturing 404 subjects from outdoor as well
as indoor sites [17]. Additionally, databases such as CASIA-FASD, REPLAY-ATTACK, MSU-MFSD,
MSU-USSA, REPLAY-MOBILE, and OULU-NPU include both printed photo and replay video attacks
and can be used to consider more situations [18–23]. In particular, the MSU-USSA uses a unique factor
that is not present in other databases. It has 1140 subjects that not only includes the face data collected
by Wang [21] from web images but also data from REPLAY-ATTACK, CASIA-FASD, and MSU-MFSD
public databases. Here, the images obtained from the web face database will have only one celebrity
whose duplicate image does not exist. Finally, the ROSE-Youtu Face database has data that prevents
masking attacks as well as printed photo and replay video attacks [24]. These public databases have
significantly contributed to the field of face spoofing detection. Research results have currently given
way to the use of commercialized face recognition systems that have anti-spoofing technologies for
detecting fake data. Figure 1 shows the samples of public databases. Table 1 presents a comparison
between previous face spoofing databases (DBs) and the proposed DB (Pattern Recognition-Face
Spoofing Advancement Database (PR-FSAD)); to the best of our knowledge, the PR-FSAD is the only
DB that considers the variations in both the distance and angle.
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Table 1. Comparison of previous face spoofing databases (DBs) and our DB (PR-FSAD).

Year Database # of Subjects # of Samples
(Real/Fake)

Attack Type
(Medium)

Consideration of
Positional Variation between

Camera and Face

2010 NUAA-PI [15] 15 5105/7509 printed photo angle (yaw)
2011 Yale-Recaptured [16] 10 640/1920 displayed photo angle (yaw)

2012 CASIA-FASD [18] 50 150/450 printed photo,
replayed video distance

2012 REPLAY-ATTACK [19] 50 200/1000
displayed photo,
replayed video,
printed photo

distance

2014 MSU-MFSD [20] 35 70/210 printed photo,
replayed video distance

2015 UVAD [17] 404 808/16,268 replayed video -

2016 MSU-USSA [21] 1000 1000/8000 printed photo,
displayed photo -

2016 REPLAY-MOBILE [22] 40 390/640
displayed photo,
replayed video,
printed photo

-

2017 OULU-NPU [23] 55 990/3960 printed photo,
replayed video -

2018 ROSE-Youtu [24] 20 899/2598 replayed video,
printed photo angle (yaw and pitch)

2019 Our DB (PR-FSAD) 30 42,480/84,960 printed photo,
replayed video

angle (yaw and pitch),
distance

Until now, most of the researches used only public face databases for fake detection. In such
cases, as the face data missing from the public database might include new environmental factors, the
performance of fake detection for new data might be lowered. Consequently, we created our own face
database called PR-FSAD using RGB image sensor to prevent sophisticated spoofing attacks based
on printed photo and replay video attacks. In this database, we considered the distance and angle
conditions which were not applied in the previous public databases. Further, PR-FSAD consists of 30
subjects with an age range from 13 to 32 years regardless of gender. Thus, the requirements in terms
of training and evaluation are met in a better manner compared to other databases. Once the entire
data was obtained, the real and fake face data were preprocessed using a face detection algorithm.
Four protocols were designed for performance evaluation, and classification was conducted using
ResNet-18. Additionally, the cross-database scenarios were tested for evaluating detection accuracy
among different DBs. Figure 2 shows the real and fake face data acquisition scheme of PR-FSAD using
capture devices.
Electronics 2020, 9, x FOR PEER REVIEW 4 of 17 

 

 
Figure 2. The capturing scheme of PR-FSAD with the three distances and three angles. 

Our research had the following advantages over previous studies. First, a new face spoofing DB 
was constructed considering the distance and angle variations. Second, the efficiency of the proposed 
DB considering the deviations in distance and angle was verified by evaluating the spoofing detection 
accuracy through an algorithm based on deep neural networks. Third, the performance of the 
proposed DB was compared with those of previous face spoofing DBs by combining the training and 
test data from heterogeneous DBs to confirm the possibility of generalizing the proposed DB. 

The rest of the paper is organized as follows. The detailed design of PR-FSAD and the four 
protocols for evaluation are described in Section 2. Section 3 shows the experimental results for the 
protocols for evaluation of PR-FSAD and cross-database and cross-device scenarios. The analysis of 
these results is shown in Section 4. Finally, Section 5 gives the conclusion, expected benefits, and 
future works. 

2. Materials and Methods 

In this section, we describe the camera devices, environmental conditions (such as posture, 
illumination, and background), and considerations for constructing PR-FSAD. Further, the real and 
fake face databases and protocols designed for evaluation are described in detail. 

2.1. PR-FSAD 

The PR-FSAD has various characteristics, such as unfixed backgrounds and three distance and 
angle cases, for capturing face images. These features can be distinguished from those of other 
conventional public face databases and may affect the process of real and fake face classification. To 
construct PR-FSAD, the real and counterfeit face images were obtained from 30 subjects. For the fake 
database, the printed photo and replay video attacks were used as attack methods to prevent 
spoofing attacks. The camera system, capture environment, consideration in terms of the PR-FSAD 
design, and the detailed information about real and fake face data are described in the following 
sections. Additionally, PR-FSAD is publicly available and can be obtained by submitting a request at 
our website [25]. 

2.1.1. Camera System 

For capturing the robust real and fake face data, we used four photographing devices consisting 
of two smartphones and two tablets. The subjects captured the images using the front camera of the 
devices and recorded videos using the basic camera application that is built into each device. In 
addition, the camera was set to automatically adjust the brightness based on the change in 
illumination. The frames per second (fps) were set to be the same. The detailed information for all the 
devices is shown in Table 2. 

Figure 2. The capturing scheme of PR-FSAD with the three distances and three angles.



Electronics 2020, 9, 661 4 of 17

Our research had the following advantages over previous studies. First, a new face spoofing DB
was constructed considering the distance and angle variations. Second, the efficiency of the proposed
DB considering the deviations in distance and angle was verified by evaluating the spoofing detection
accuracy through an algorithm based on deep neural networks. Third, the performance of the proposed
DB was compared with those of previous face spoofing DBs by combining the training and test data
from heterogeneous DBs to confirm the possibility of generalizing the proposed DB.

The rest of the paper is organized as follows. The detailed design of PR-FSAD and the four
protocols for evaluation are described in Section 2. Section 3 shows the experimental results for the
protocols for evaluation of PR-FSAD and cross-database and cross-device scenarios. The analysis of
these results is shown in Section 4. Finally, Section 5 gives the conclusion, expected benefits, and
future works.

2. Materials and Methods

In this section, we describe the camera devices, environmental conditions (such as posture,
illumination, and background), and considerations for constructing PR-FSAD. Further, the real and
fake face databases and protocols designed for evaluation are described in detail.

2.1. PR-FSAD

The PR-FSAD has various characteristics, such as unfixed backgrounds and three distance and
angle cases, for capturing face images. These features can be distinguished from those of other
conventional public face databases and may affect the process of real and fake face classification.
To construct PR-FSAD, the real and counterfeit face images were obtained from 30 subjects. For the
fake database, the printed photo and replay video attacks were used as attack methods to prevent
spoofing attacks. The camera system, capture environment, consideration in terms of the PR-FSAD
design, and the detailed information about real and fake face data are described in the following
sections. Additionally, PR-FSAD is publicly available and can be obtained by submitting a request at
our website [25].

2.1.1. Camera System

For capturing the robust real and fake face data, we used four photographing devices consisting of
two smartphones and two tablets. The subjects captured the images using the front camera of the devices
and recorded videos using the basic camera application that is built into each device. In addition, the
camera was set to automatically adjust the brightness based on the change in illumination. The frames
per second (fps) were set to be the same. The detailed information for all the devices is shown in
Table 2.

Table 2. Information of the devices used in PR-FSAD.

Device Category Display Size Pixel/Inch Spatial Resolution fps

Galaxy Tab 3 Tablet 7.0 Inch 170 ppi 1920 × 1080 30
iPad 6 Tablet 9.7 Inch 264 ppi 1280 × 720 30

iPhone X Smartphone 5.8 Inch 463 ppi 1920 × 1080 30
Nexus 5X Smartphone 5.2 Inch 424 ppi 1920 × 1080 30

2.1.2. Environmental Conditions

This section describes the considerations while capturing such as the pure-pose, expression,
illumination, and background. All the images were captured using the camera system that was
described in Section 2.1.1.

Firstly, each subject was asked to sit comfortably and look at the front, not toward the side,
diagonal, or at the device. The capturing task was performed by keeping the subject’s head at the
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center of the subject’s arm. Most of the subjects took pictures by holding the capturing device, while
some of the subjects who found capturing difficult were assisted by the researcher. As is the case with
most face recognition circumstances, the facial expressions were required to be natural, not that of
laughing or frowning. Further, we explained the diversity of unfixed backgrounds, which is one of
the distinct characteristics of PR-FSAD when compared to other existing public face databases. In a
conventional face recognition system, the face data are completely segmented from the backgrounds
during the preprocessing stage. This is the reason why previous face recognition systems might
not have considered the system of not being affected by the backgrounds. However, the face data
can often be modified by using various functions of the camera device such as automatic brightness
balance or white balance applications. These factors can distort the facial appearance due to the
varying illumination conditions of the background environment and can even affect facial recognition.
Therefore, for similar real-world situations, the photographs were taken at various unfixed places,
including cafes, restaurants, the lobby of a building, and lecture classroom. In other words, the subjects
captured images in natural environments without arbitrarily fixed backgrounds.

2.1.3. Consideration of PR-FSAD

The two differentiated features of PR-FSAD were distance and angle. These two factors between
the subject and camera may be applied differently depending on the environment where the face
recognition system is being used. Furthermore, these differences may affect face recognition due to the
factors such as changes in lighting or image texture. Therefore, we considered the abovementioned two
factors. Firstly, for distances, as each subject has a different body, we used the relative ratio of the face
occupying the display of the devices. Further, to apply the ratio accurately to all the subjects, the display
was divided into 3 × 3 grids when the camera was used for capturing. One of the three distances, called
near distance, fills the subject’s face to approximately 90% of the screen. The halfway distance fills
approximately two-thirds of the entire screen. In other words, the face occupies approximately 50% of
the eight rectangles except the rectangle at the center of the screen and is located at the center of the
display. Finally, the face of distant distance is photographed while keeping only the center of the 3 × 3
grids screen filled. Further, for angles, the top and bottom were positioned differently approximately
30◦ from the center angle. When capturing a face from various angles, to match a real-world situation,
the subject’s gaze will be in the same direction as the middle angle and not looking at the device. While
acquiring the face data of PR-FSAD, each subject had to capture three preset distances and angles.
In addition, as a face is rarely yawed or rolled in actual use-cases of face recognition, we captured the
face images with different pitches. Once captured, the face data for distance and angle were stored
using the tags “near”, “halfway”, and “distant” and “bottom”, “middle”, and “top”. Figure 2 shows
the capture method with the considerations.

2.1.4. Real Face Database

The PR-FSAD consists of 30 subjects (male: 19, female: 11). All the subjects except one captured
face images in two sessions with the time interval set to at least six hours. As time difference is
an important factor that decreases the classification performance, subjects took pictures during the
first session at daytime and the other at night [26]. During each session, different backgrounds were
applied to each subject. Other capture conditions were performed by the ones written in Section 2.1.3.
In addition, the accuracy of face detection while constructing the PR-FSAD was checked using the
multitask cascaded convolutional network (MTCNN) face detection algorithm [27]. This is because
spoofing detection must be performed based on the accuracy of the detected face data to obtain a
significant result. If face detection is not accurate, data are recaptured to construct precise real face
data for the PR-FSAD. Figures 3 and 4 show the real face data of the PR-FSAD and the results of the
MTCNN method at three angles.
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2.1.5. Fake Face Database

When creating a fake face for PR-FSAD for spoofing attacks, we used two categories of attacks,
namely, printed photo and replay video attacks. The capturing angles and distances used were the
same as in the case of the real face data.

Firstly, we used the photographed real face images of all the subjects with four devices for the
printed photo attack. For the counterfeit face data to be as similar as possible to the real face, the
frame with the most natural look was chosen among the images taken at the halfway distance from the
middle angle. The selected frame was printed using a high-quality color printer (Samsung SL-C483W,
Fuji Xerox CP115W) to deceive the face recognition system with a high probability of spoofing attacks.
While keeping the subject’s gaze in the printed image at the front, the counterfeit face images were
captured as the real face data. While capturing, the other conditions were performed by the ones
written in Section 2.1.3. However, unlike the case for real people, detection of a face in printed photos
might be difficult due to the reflection of unexpected light from behind the paper. Therefore, a printed
photo has to be maintained as if it were the real face of a person holding the image. Once the fake data
were captured, the procedure for normal face detection was also applied quite similar to as it is in the
case of real face database. Figure 5 shows the printed photo attack of PR-FSAD and Figure 6 shows the
results of the MTCNN method.
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Further, we used photographed real face videos of all the subjects for the replay video attack.
However, a drawback with smartphones was the relatively small face scale on the screen. Therefore,
when the spoofing attacks were attempted at close distances, the focus often did not match with the
device for face recognition. To prevent this problem, two tablet devices were used for the replay video
attack. Further, as only the face of the subjects in the tablet’s display had to be detected, the tablet
was used by keeping it at approximately 0.1 m below the shoulder of the person holding the device.
In contrast, the smartphone was kept next to the shoulder of the person holding the device. Other
capture conditions and procedures were similar to that of the printed photo attack. Figure 7 shows the
replay video attack of PR-FSAD, and Figure 8 shows the results for the MTCNN method.
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2.2. Evaluation Protocols

We considered various backgrounds, distances, and angles as the features of PR-FSAD. Protocols
consisting of eight scenarios were designed to evaluate and verify the performance of face spoofing
attack detection using PR-FSAD. For classification evaluation, the distances and angles were divided
into three and two cases, respectively. The variables T, M, and B were used to represent top, middle,
and bottom of the angle factor, and N, H, and D were used to represent near, halfway, and distant
of the distance factor. The background, however, was not considered in the protocol, because it is
configured differently and, hence, difficult to divide. In the test, 1, 2, and 3 indicate the real, printed
photo, and replay video attacks. The detailed description of the protocols is as follows:

1. Angle test: At each of the three different angles, real and fake data for all the three distances
are used:

a. Top-angle protocol: use {TN1-3, TH1-3, TD1-3};
b. Middle-angle protocol: use {MN1-3, MH1-3, MD1-3};
c. Bottom-angle protocol: use {BN1-3, BH1-3, BD1-3}.

2. Distance test: To clarify the difference in the distances, the three angles of real and fake data are
used for two of the distances, where the halfway distance is excluded:

a. Near distance protocol: use {TN1-3, MN1-3, BN1-3};
b. Distant distance protocol: use {TD1-3, MD1-3, BD1-3}.

3. Counterfeit face test: For all the angles and distances, two types of counterfeit face tests are used:

a. Printed photo attack protocol: this uses real and printed photo attack data at all the angles
and distances (or uses 1 and 2 at all the angles and distances);

b. Replay video attack protocol: this uses real and replay video attack data at all the angles
and distances (or uses 1 and 3 at all the angles and distances).

4. Overall test: The evaluation test is conducted using all the angles and distances of PR-FSAD:

a. Entire data protocol: all the real and fake face data are used.

To perform the designed protocols, PR-FSAD was divided into training, validation, and test sets,
which included 7, 10, and 13 subjects, respectively. The composition of the data used for the experiment
and the processing time required for training and testing are presented in Table 3. The processing time
was measured using Intel (R) Core (TM) i7-6700HQ quad-core CPU, 2.60 GHz with 16 GB RAM and
NVIDIA GeForce GTX 1070 GPU with 16 GB RAM. In the training process, the early stopping strategy
was adopted before 20 epochs to ensure that the training was completed relatively quickly.
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Table 3. Data composition and processing time for the experiment.

Protocols 1–4
Number of Images Total Processing Time (s)

Training
(32.2%)

Validation
(23.7%) Test (44.1%) Training Test

1
Top 13,680 10,080 18,720 1898 374 (20.0 ms/image)

Middle 13,680 10,080 18,720 1920 376 (20.1 ms/image)
Bottom 13,680 10,080 18,720 1886 374 (20.0 ms/image)

2
Near 13,680 10,080 18,720 1869 372 (19.9 ms/image)

Distant 13,680 10,080 18,720 1906 375 (20.0 ms/image)

3
Print 27,360 20,160 37,440 3895 751 (20.1 ms/image)

Replay 27,360 20,160 37,440 3912 755 (20.2 ms/image)
4 Total 41,040 30,240 56,160 5985 1132 (20.2 ms/image)

2.3. Face Spoofing Detection Method

The PR-FSAD face data constructed for evaluating spoofing detection performances had similarities
to adjacent frames. Therefore, to eliminate this unnecessary similarity and use varying data, sampling
was performed. In particular, only 20 images were sampled by extracting images at intervals of 2 to
3 frames per video. Next, the extracted images were preprocessed to crop the face area except the
background. In this study, we resized the images to 224 × 224 pixels. The preprocessed images are
shown in Figure 9.
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One of the deep neural network models, ResNet-18, was used for the final real and fake face
classification based on the processed face data [28,29]. Compared with conventional neural network
models, ResNet-18 did not cause problems in terms of gradient vanishing or exploding as the layer
deepens. This effect was due to the shortcut connection that passes the input of a specific layer directly
to the output, making it easier to find out and train fine-grained changes during a model’s training
process. The preprocessed image was normalized to 224 × 224 pixels and input into the ResNet-18
model. Because it is a three-channel color image, the input feature was defined in 150,528 dimensions
(224 × 224 × 3). The feature vector output obtained by average pooling the ResNet-18 model had
512 dimensions. Finally, an output value that determines whether the input face image was real or
fake was calculated using the sigmoid function. The procedure of counterfeit face detection using the
proposed method is shown in Figure 10.
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3. Results

In this study, the ResNet-18 model with 0.01 learning rate was used for face spoofing attack
detection. Additionally, the half total error rate (HTER) was calculated to verify the performance of
the test results. The HTER is the average error rate of the false acceptance rate (FAR) and the false
rejection rate (FRR) of the validation set. In the HTER, a smaller value means that the classification
performance is better. The HTER indicator was obtained using the confusion matrix which is one of
the most intuitive and simple methods for measuring the performance of binary classification models.
The four values returned by the confusion matrix are true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). Here, assuming real face as positive and fake face as negative,
TP and TN indicate correct classification, whereas FP and FN indicate incorrect classification. Table 4
lists the HTER for protocols 1–4. Among them, the result of the confusion matrix for protocol 4 using
the total PR-FSAD is shown in Figure 11. In this case, the HTER is calculated by using Equation (1)
which is approximately 3.25%.

HTER = (FP/(TN + FP) + FN/(FN + TP)) × 0.5 (1)

Table 4. The half total error rate HTER of the ResNet-18 model using PR-FSAD.

Protocol 1–4 HTER (%)

1
Top 2.34

Middle 4.96
Bottom 2.84

2
Near 1.41

Distant 4.24

3
Print 5.36

Replay 3.60
4 Total 3.25

It is evident from Table 4 that the replay attack of the protocol 3 experiment demonstrated better
spoofing attack detection performance than print attack. In the experiment, we used a single frame
image for face spoofing attack detection. Information related to the changes in the time series of the
face video in the replay attack was not used. Therefore, the texture information might have been
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used as the most important feature in both replay and print attacks. The screen of the smart device
used in the replay attack was made of a glass material that could cause specular reflection from the
ambient light source. Such specular reflection can be observed in Figures 7 and 8. This characteristic
was markedly different from the actual skin surface. In contrast, paper materials did not produce
specular reflection. This difference can be analyzed as a performance variation.
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In addition, when examining the performance of protocol 1, it was evident that the performance
for the front face (middle) was significantly lower than those for the top and bottom wherein the pitch
angle difference existed. This could be analyzed because the top and bottom images were distorted by
the vertical perspective of the face, whereas other features along with the three-dimensional features of
the face were reflected in the training process. In other words, in the middle case, only the texture
feature was reflected without considering the perspective property.

However, as the above results used only intra-database scenarios of PR-FSAD, it may not
be sufficient to demonstrate the effectiveness of PR-FSAD which includes differentiated features
compared to previous public databases. Therefore, we used public databases called MSU-MFSD and
REPLAY-ATTACK for cross-database scenarios. In all the scenarios, the face spoofing attack detection
was performed using the ResNet-18 model, and the HTER obtained by using the confusion matrix was
used as an indicator of performance evaluation.

Table 5 lists the results of cross-database scenarios. To confirm that the PR-FSAD is also efficient
with other spoofing detection algorithms, along with ResNet-18, we considered DenseNet [30] and
LBP [31] for the cross-database scenario experiments. Experimental results revealed that the spoofing
attack detection performance by training with the PR-FSAD was the best for ResNet-18, DenseNet,
and LBP. This shows that although the PR-FSAD contains an angle variation element, it is feasible
as training data that can be generalized and used in other face recognition systems. In addition, the
relatively good performance for the LBP feature that only uses the texture property can be considered
to explain the textural features of spoofing attack media independent of the image sensor.

Although the previous DBs (MSU-MFSD, REPLAY-ATTACK) used in the comparison included
distance variations, our DB had both distance and angle variations. In the cross-database scenarios
presented in Table 5, our DB used both distance and angle variations for training and testing. Therefore,
we performed cross-database experiments for a fair comparison using images with only distance
variation in the front (such as distant, halfway, and near in the middle position, as shown in Figure 2).
The results are presented in Table 6.
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Table 5. Results of cross-database scenarios using ResNet-18, DenseNet, and LBP (1st column: Trained
DB, 2nd Column: Test DB).

Cross-Database Scenarios
HTER (%)

ResNet-18 DenseNet LBP

PR-FSAD
MSU-MFSD 19.96 18.52 23.10

REPLAY-ATTACK 20.80 19.67 25.12

MSU-MFSD
PR-FSAD 23.48 25.21 28.36

REPLAY-ATTACK 17.58 18.36 21.53

REPLAY-ATTACK
PR-FSAD 34.41 32.23 35.36

MSU-MFSD 28.44 30.81 33.29

Table 6. Results of cross-database scenarios using ResNet-18, DenseNet, and LBP when using only
frontal face images from the PR-FSAD (1st column: Trained DB, 2nd Column: Test DB).

Cross-Database Scenarios
HTER (%)

ResNet-18 DenseNet LBP

PR-FSAD
MSU-MFSD 13.45% 14.28% 21.15%

REPLAY-ATTACK 14.93 16.50% 23.96%

MSU-MFSD
PR-FSAD 16.36% 17.13% 23.83%

REPLAY-ATTACK 17.58% 18.36% 21.53%

REPLAY-ATTACK
PR-FSAD 18.76% 18.37% 30.21%

MSU-MFSD 28.44% 30.81% 33.29%

In comparison to the experiments wherein the variations in both the angle and distance were
included (Table 5), improved results were obtained as demonstrated in Table 6. These results indicate
that our DB reflects the perspective and resolution characteristics via angle and distance variations,
respectively, to generalize the data to other capturing environments. However, because Table 6 presents
the results for training and testing performed only with frontal face images from the PR-FSAD, an
absolute comparison in terms of the training dataset with the results of Table 5 and Figure 12 is
not possible.

Next, we performed experiments to measure the effect of the PR-FSAD, which consists of nine
times more data than only the frontal face images by considering the distance and angle variations, on
the processing time and classification accuracy. When the training image is used for the front face only
and when the nine times more images are used, the time required for training can be considered to
be a computational cost. However, because training is performed only once, comparing the training
time would be inconsequential. Instead, we measured the time required for spoofing detection with
one face image. The processing time was measured using Intel (R) Core (TM) i7-6700HQ quad-core
CPU 2.60 GHz with 16 GB RAM and NVIDIA GeForce GTX 1070 GPU with 16 GB RAM. The results of
the measurement time, which represents the average time required for 500 images, are presented in
Table 7. The measurements are expressed in terms of when only CPU was used and when it was used
along with GPU. In addition, Table 7 includes the test accuracy results when we used the nine times
extended DB considering the angle and distance and when only the front face was used for training.

Table 7. Spoofing detection processing times and classification accuracies for a single image based on
distance and angle variations (using only CPU/using GPU together).

Training with only Front Face Image Training with Total Image

Processing time (ms) 320/20 321/20
Accuracy (HTER (%)) 5.12 3.25
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The results show that the time difference in the actual face spoofing detection process is insignificant,
but the accuracy is significantly improved. In other words, the benefit of using the image with nine
times more data considering the distance and angle variations was confirmed.

Finally, we assessed the performance of face spoofing attacks for cross-device scenarios on images
captured with the four types of capturing devices specified in Table 2. The experimental results are
presented in Table 8. In the experiment, the images acquired for each device were divided into training
and test sets. This test was performed using ResNet-18.

Table 8. HTER results for cross-device scenarios of PR-FSAD using ResNet-18 (unit: %).

Training
Test

Galaxy Tab 3 iPad 6 iPhone X Nexus 5X

Galaxy Tab 3 3.32 3.30 3.29 3.25
iPad 6 3.18 3.17 3.20 3.21

iPhone X 3.18 3.25 3.23 3.19
Nexus 5X 3.32 3.28 3.26 3.28

As evident from Table 8, the intra-device and inter-device facial spoofing detection performances
were not significantly different. In some cases, the HTER of the intra-device was larger than that of the
inter-device. Thus, it can be concluded that the characteristics of the media (paper or display) used for
the spoofing attack and the geometric positional relationships were reflected accurately in the training
process of ResNet-18 as the main feature of spoofing detection, instead of the differences in the image
sensor for each device.

4. Discussion

Results of forgery detection methods using only the face data from PR-FSAD showed excellent
performance with an HTER value of less than 5% for all the protocols except one that had an HTER
value of 5.36%. As shown by the result of the confusion matrix for protocol 4, which uses the entire
PR-FSAD, the ratios of misclassification for real and fake face data were almost identical. Although
the number of misclassified data was different, the ratio was the same because PR-FSAD had a 1:2
ratio between the real and fake data. Moreover, this means that the ResNet-18 model training was
performed accurately without any biases. Next, significant results were obtained for cross-database
scenarios using three public databases.

Firstly, the best spoofing detection result was obtained for MSU-MFSD using the ResNet-18 model
trained with PR-FSAD. For the test using REPLAY-ATTACK, the classification result using a model
trained with MSU-MFSD, which had a similar data distribution, was the best, and the performance
using the model trained with PR-FSAD was the second best. Although a difference of only 3% was
observed, because the PR-FSAD demonstrated its training effect in heterogeneous DBs, it can be
considered advantageous as a generalized DB that can overcome the variations in face image capturing
conditions. Further, for the other two public databases, although the classification results for each
other were good, the results for PR-FSAD were relatively poor. In contrast, our database is considered
to have a better generalization performance because the HTER values for the public databases were
approximately 20%. In other words, it can be noted that more face features were applied to PR-FSAD.

The main contribution of this study was the introduction of a new face spoofing DB that reflects
distance and angle differences. We divided the distance and angle into three phases to construct facial
spoofing images for nine combinations. In addition, the data were configured in various environments
without controlling the lighting or background to reflect the actual environment. In our experiments
with the proposed database, a face spoofing detection accuracy of 96.75% was observed. Using the
proposed database, the resolution variations in the facial region can be consistently reflected as learned
features in the deep neural network learning process by capturing the data at different distances and
including perspective variations by including different angles in the images.
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The limitation of our DB, however, is that data are obtained by dividing the positional relationship
between the face and camera into nine types according to the angle and distance. This limitation
was intended to provide a clear guide to the subject in the process of acquiring images. In the future,
we plan to incorporate additional data by changing the positional relationship between the camera
and face.

Consequently, PR-FSAD, which has a relatively good classification performance for different data
alongside itself, is a meaningful face database to prevent spoofing attacks. For result visualization, we
used the receiver operating characteristic (ROC) curve, which is useful for visualizing performances [32].
The wider the area under the curve (AUC), which indicates the bottom area of the ROC curve, the
better the performance of the classification model. Figure 12 shows the ROC curve results using
cross-database scenarios. The rate of sensitivity or recall, called the true positive rate, and the rate
of specificity, called the false positive rate, are plotted on the y-axis and x-axis, respectively. Further,
PR-FSAD showed the best classification performance among the four databases as can be seen in
Figure 12.
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5. Conclusions

In this study, we reported a new face DB called the PR-FSAD and verified its effectiveness in
terms of face spoofing detection accuracy. The real and fake face data were obtained using four
capture devices, and the spoofing attacks primarily consisted of printed photo attack and replay video
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attack. In particular, compared to public face databases, PR-FSAD is composed of two new factors
which are distance and angle. To the best of our knowledge, a DB that considers both the distance
and angle has not been proposed in the existing literature which is the main contribution of this
study. A combination of three distances and angles were used to construct the real and fake face
database, followed by sampling of the images from the captured videos. Finally, the face region was
cropped, and the processed face data were applied to ResNet-18 neural network model for classification.
To verify the effectiveness of PR-FSAD, 10, 7, and 13 subjects out of the total 30 subjects were used
in the proposed method for training, validation, and test, respectively. Specifically, 41,040 (32.2%),
30,240 (23.7%), and 56,160 (44.1%) were applied to training, validation, and test. In addition, the
classification was performed using RGB images without any additional equipment or sensors to detect
the spoofing attacks. As a result, the HTER, which was used to measure the performance evaluation of
the classification, was 3.25%. This result demonstrated a good classification performance in comparison
to the existing DBs. For further effectiveness verification of PR-FSAD, we designed the cross-database
scenarios using three face databases, including two public databases. The test performances of the
three algorithms, namely, ResNet-18, DenseNet, and LBP, which were trained using the proposed DB,
were the best. It is still lacking in terms of various algorithm comparisons, but it can be concluded that
our DB was more applicable to face recognition systems in other environments.

In future studies, more accurate spoofing detection methods using PR-FSAD may be considered
for other applications such as low-quality face data. Further, we will implement additional procedures,
such as registering face data, with new feature elements. Furthermore, PR-FSAD can be used in released
applications with face recognition systems for preventing counterfeit attacks. By acquiring more
face images by further subdividing the environment of distance and angle variations, the proposed
PR-FSAD will be improved to a more generalized face spoofing DB. Additionally, we plan to add the
face spoofing DB generated from the frontal face images along with face spoofing images obtained
through attack media that already include the reflected angle and distance variations. This may be an
attack case that is more difficult to filter than face spoofing with angle variations in the frontal face
image. Moreover, by comparing various deep neural network models, we will analyze the effects of
texture and perspective on face spoofing detection. With respect to facial spoofing systems, we plan to
conduct research on the prevention of disturbances related to deep learning or new attack models,
such as Deepfake and adversarial perturbations, which are recently becoming issues.
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