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Abstract: Image matting refers to the task of estimating the foreground of images, which is
an important problem in image processing. Recently, trimap generation has attracted considerable
attention because designing a trimap for every image is labor-intensive. In this paper, a two-step
algorithm is proposed to generate trimaps. To use the proposed algorithm, users must only provide
some clicks (foreground clicks and background clicks), which are employed as the input to generate
a binary mask. One-shot learning technique achieves remarkable progress on semantic segmentation,
we extend this technique to perform the binary mask prediction task. The mask is further used to
predict the trimap using image dilation. Extensive experiments were performed to evaluate the
proposed algorithm. Experimental results show that the trimaps generated using the proposed
algorithm are visually similar to the user-annotated ones. Comparing with the interactive matting
algorithms, the proposed algoritm is less labor-intensive than trimap-based matting algorithm and
achieved more accuate results than scribble-based matting algorithm.

Keywords: trimap; image matting; deep learning; one-shot learning; image segmentation

1. Introduction

Matting is a process of extracting a foreground object image F along with its opacity mask α

(typically called alpha matte) from a given digital photograph I, which plays an important role in
video editing and image processing. Specifically, the image matting problem is modelled as a convex
combination of a foreground image F and a background image B as given in Equation (1).

Ii = αiFi + (1− αi) Bi (1)

where i = (x, y) is the image lattice. The value of α is between 0 and 1; if αi = 1 or 0, then the pixel at
location i belongs to the definite foreground or definite background, respectively. Otherwise, the pixel
belongs to the opacity mask. This is the main difference in comparison with image segmentation,
which has no pixels between the foreground and the background. The ill-posed problem in image
matting is under-constrained since F, B and α are all unknown. Note that in Equation (1), if we
consider a full color image (RGB), there are seven unknown parameters (F, B for each channel and
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α). These under-constrained problems can be solved by adding more interactive information into
it. This additional information is provided in the form of a trimap [1] or scribbles [2] (as shown
in Figure 1b,e).

Figure 1. Existing image matting methods require the user to design additional constraints for
specifying the foreground and background color samples. (a) Original image and groundtruth alpha
matte. (b–e) The first row, from left to right shows different constraint information provided by the
user. The second row shows their respective predicted alpha matte.

Some pixels are annotated as belonging to definite foreground or definite background.
Scribbles only provide a small amount of interaction information, but trimaps can provide more
complete interaction information. However, drawing such precise trimaps requires considerable
human effort, which is often undesirable, particularly in the case of opaque objects. For example,
drawing a trimap like the first row in Figure 1e will take about 50 s. Scribbles are easy to obtain,
but they are error prone and inaccurate (Figure 1c) when the foreground scribble pixels are mixed with
background pixels, then the generated alpha matte is inaccurate or even wrong. Relatively, user-clicks
are more robust than scribbles. To fully extract meaningful foreground objects and minimize the
user’s annotation workload, our algorithm takes advantage of a few user-provided clicks and directly
generates trimaps for image matting (Figure 1d) .

The spectral matting algorithm [3] and automatic trimap generation algorithm [4] automatically
extract the matte from the input image without any user intervention. However, the limitation of these
methods is that they assume that there is one single object present in the given scene. When multiple
semantic targets appear in a scene, the generated result is not the user’s interest region. For example,
cats and dogs could appear in the same image. If we want to obtain the alpha matte for cats, the dogs
should be seen as the background. The generated result cannot correctly address the user’s interest in
these cases. Hsieh et al. [5] proposed a method to automatically obtain trimaps, but their algorithm took
the original image and the segmentation results as the input, which is the segmentation result obtained
by the user’s interaction. Therefore, ref. [5] requires similar constraint information for the base scribble
algorithm. Computers cannot replace us when deciding which parts to target. Providing interactive
information is a prerequisite for implementing the algorithm.

In actual image matting applications, we aim to obtain a large number of images’ alpha mattes.
Many of these images belong to the same semantic classes. The same semantic classes have similar
characteristics. Previous methods needed to design trimaps for every image. Collecting these dense
constraints for every image is another problem that is time consuming, tedious, and error-prone.

After the above analysis, we aimed to reduce the amount of user interaction while maintaining
alpha matte accuracy. Our goal was to obtain the trimap for any image in an unknown class under,
the condition of only one image, and the corresponding pixel level click annotation. We were inspired
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by one-shot learning and propose a three-branched model to generate trimaps. Our model consists of
three branches: the guided branch to extract the guidance from the annotated image, the inference
branch obtains the segmentation results of the unlabeled image given guidance, and the generated
branch converts the segmentation results into a trimap (Figure 2) .

Figure 2. Proposed model overview.

To summarize, the main contributions of our work are three-fold: (1) To the best of our knowledge,
this is the first algorithm to connect one-shot learning with trimap generation, achieving relatively
accurate results. (2) We use an algorithm to generate trimaps, which further reduces user workload.
By implementing the proposed algorithm, users do not need to design the trimaps; only a few clicks are
needed. (3) Our algorithm can generate information to guide the segmentation process, which means
we can obtain their trimaps based on the interactive information for one single image provided by
users for any images from unseen semantic classes.

2. Related Work

Various digital matting approaches, like Bayesian matting [1], learning-based matting [6],
and closed-form matting [7], require trimaps to be specified by the user. The GrubCut [8] and
Lazy Snapping [9] algorithms use the graph-cut-based optimization approach to extract foregrounds
from images according to a small amount of user input, such as a few strokes or a bounding box.
Wang et al. [2] combined the segmentation and digital matting and presented a unified optimization
approach based on belief propagation. Wang et al. [10] designed an interactive tool (Soft Scissors) to
obtain high quality image matting. Cho et al. [11] built a deep neural network to learn the matching
relationship between the inputs and predicted alpha mattes (obtained by [7,12]). Xu et al. [13] proposed
a deep-learning-based model to improve the performance of the matting algorithm by tackling the
colors and textures. Since digital matting is an under-constrained problem, all the matting algorithms
require user interaction to solve matting problems. However, designing such a relatively accurate
trimap is time consuming, which is unsuitable for practical applications. The other interactive approach,
the scribble-based approach, lacks robustness. To fill this gap, we propose a method to generate trimaps
from user clicks. The final result, accurate alpha mattes, is calculated by the generated trimap in the
previous step.

A series of trimap generation studies [4,14–18] obtained trimaps through user interaction or
automatically. Rhemann et al. [14] presented a new approach using parametric max-flow to generate
trimaps; the final alpha matte was obtained by the gradient preserving prior. Shahrian et al. [15]
presented a new sampling strategy to construct a comprehensive sampling set of known samples by
sampling all the color distribution in the known region. Cho et al. [16] presented a trimap generation
approach for light-field images. They took advantage of the binary segmentation result to obtain
coarse trimaps. Then, they optimized the trimaps by analyzing the color distribution along the
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boundary of the segmentation result. Gupta et al. [4] employed superpixels to over-segment the
image. Then, they used a saliency map and local feature descriptor to help automatically generate
trimaps. Juan et al. [17] proposed a segmentation algorithm to extract a relatively accurate trimap from
coarse indication. Then, they took advantage of the generated trimap to design an improved matting
method to produce a better alpha matte. Gastal et al. [19] presented a real-time matting algorithm
for natural images and videos. The algorithm was based on the sampling technique, making full use
of the similarity between adjacent pixels. The inherent parallelism of the algorithm was combined.
The fundamental difference between our method and previous trimap generation algorithms is the
guidance ability, which means that for any image of the same semantic class, we can obtain their alpha
matte by providing only one scribbled image. A series of studies [20–22] refined the trimaps as a
preprocessing step by expanding the foreground and background starting from their boundaries with
the unknown region, which was proposed by Shahrian et al. [15]. Shen et al. [18] proposed a deep
automatic matting method, which can generate trimaps for portrait images by deep network, however
their system unable to handle other semantic classes.

Recently, digital image processing technology has developed rapidly, and many image processing
algorithms have emerged. Zhu et al. [23] proposed a novel hashing approach to deal with scalable
image retrieval problems. Fang et al. [24] solved imagery de-noising problems using discriminative
representations. Zong et al. [25] proposed a novel multiple description image coding model to
improve coding efficiency. Jiang et al. [26] proposed a matching-based method for aligning multimodal
images. Zhao et al. [27] built an efficient image feature representation method (ASD) to detect
images. They presented another multi-trend structure descriptor [28], which was built based on
the local and multi-trend structures to further improve detection accuracy. Liu et al. [29] presented
a novel computer-aided design system based on a computational approach to producing 3D images
for stimulating the creativity of designers. Wang et al. [30] presented a novel just noticeable (JND)
model that satisfies the visual perception characteristics of human eyes and matched the spread
spectrum transform jitter modulation (STDM) watermark framework. Deng et al. [31] presented
a graph-cut-based method for automated aorta segmentation.

Learning-based algorithms have achieved great success in the field of image processing.
Li et al. [32] applied kernel learning to achieve face recognition. Some learning-based segmentation
algorithms, such as U-NET [33], FCN [34], MASK R-CNN [35], and DeepLab [36], can accurately
separate the foreground object from the background. However, these algorithms are trained with full
annotations and require investments in expensive labeling tasks. To reduce the annotation workload,
a promising alternative method is to apply weak annotations for learning, e.g., bounding boxes [37]
and points [38]. The main disadvantage of weakly supervised methods is that they lack the ability to
generalize unseen classes. For example, if a network is trained to segment cats using many images
containing various breeds of cats, it will not be able to segment vehicles without fine-tuning the network
using many images containing vehicles. Therefore, researchers extensively focused on generalizing
new class objects so they can minimize labeling costs and improve the use efficiency of labeled samples.

Humans have relatively good cognitive abilities. Humans can recognize objects with little
guidance. For example, a child can easily identify a dog species from an image of a dog, even though
they had never seen a dog before. Inspired by this, one-shot learning focuses on imitating this
ability. The goal of one-shot segmentation is to obtain the object regions of a query image with only
one support image. Both support-image and query-image are sampled from the same unseen class.
Sampling from an unknown class is the main difference between one-shot segmentation and traditional
semantic segmentation. If we want to segment an unseen class object using a traditional learning-based
algorithm, we need at least hundreds of labeled data and multiple iterations to achieve a good
segmentation result for of objects. However, one-shot-based algorithms only takes one label–image
pair as guidance, and optimization during the process of segmentation is not required. There are two
major advantages for one-shot segmentation: (1) minimized annotation effort and (2) there is no need
to fine-tune model, since the parameters are fixed after training, reducing time and computation costs.
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One-shot semantic segmentation recognizes object regions from invisible categories with only
one annotated sample serving as the supervision. Shaban et al. [39] proposed a pioneering applied
one-shot learning to the semantic segmentation. They segmented new semantic classes requiring
only an image and the corresponding densely annotated label. They constructed the two-branched
model OSLSM, which is based on Siamese Network. The network is divided into conditioning and
segmentation branches, where the conditioning branch supports image–label pairs and produces
dynamic parameters for a segmentation branch. They used the conditioning branch to perform dense
pixel-level prediction on a test image for the new semantic class. This process adds a convolutional
layer after the FCN [34], and the parameters in this convolutional layer are provided by generated
dynamic parameters. However, OSLSM still needs users to provide pixel-level annotation information
for support images. It is also unstable during optimization; different support image–label pairs produce
the same task parameters. Rakelly et al. [40] proposed the REVOLVER model, which requires an image
and its pixel-level annotated label, minimizing user interaction workload. REVOLVER only need
users to provide a few clicks for the support image (these clicks are located in the absolute foreground
and the absolute background). Differing from the OSLSM, which generates dynamic parameters,
REVOLVER adopts the distance metric method. It calculates the distance between query features with
the foreground representation and background. REVOLVER achieved similar result as OSLSM with
only a few pixel-level annotations. Xu et al. [41] introduced the state-of-the-art deep interactive object
segmentation (DIOS). They transformed users’ positive and negative clicks to Euclidean distance
maps and train a full convolutional neural network to recognize “object” and “background” based
on training samples. However, it was not designed to generate trimaps. In particular, DIOS cannot
propagate annotations across different images (Figure 3). This is a bottleneck on annotation efficiency,
since it requires at least two annotations for every input, whereas our method can segment new inputs
independently.

Figure 3. The main differences between interactive methods and our method. Interactive-based
methods cannot propagate annotations across different images, However, the proposed method can
pass the annotations’ information between images of the same semantic class.

3. Problem Setup

Suppose we have two datasets: a query set, Lq =
{(

Ii
q, Yi

q

)}Nq

i=1
(l) and a support set: Ls ={(

Ii
s, Yi

s
)}Ns

i=1 (l) where Ii represents the original image; Yi represents the corresponding groundtruth
mask; N represents the number of images in each set, the indexes s and q represents the support-set and
query-set; respectively; and l represents the semantic class. Our goal was to learn a model fθ(Ls, Lq)

that can precisely predict binary masks Y′q according to the reference of the support set Ls, where θ

represents the network parameters.
We cannot apply this model to generate trimaps directly because previous algorithms focused

on semantic segmentation, which classifies each pixel. However, trimap generation focuses on
classifying pixels to foreground, background, and opacity regions. For generating trimaps, we require
a groundtruth trimap to optimize the network. Existing dataset labels only include the foreground
and background (PASCALVOC [42]). We still trained the model using a binary mask to generate
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binary segmentation results. We used the Dilation method to produce an initial estimate of the trimap,
inspired by [5]. We used dynamic width and voting steps to optimize the trimap. The implementation
details are provided in Section 4.

During the training process, the support image is fed into the network with its sparse pixel-level
annotations, which are obtained from their corresponding groundtruth mask. We simulated manual
labeling and randomly selected some points from the foreground and background to guide network
training. The query image is fed into the network with its dense mask, which is used for loss calculation
and parameter optimization. In the test process, there is no label to exploit, there are only the sparse
annotations collected from user interaction. Notably, Lqry and Lsup share the same types of objects,
but no categories are the same between the training set and the test set {ltrain} ∩ {ltest} = ∅. This is the
main difference between one-shot segmentation and traditional image segmentation. The traditional
training process splits the dataset into a training set and a test set; the training set images never
appear in the test set. However, the training set and the test set have overlaps in terms of categories.
So, when training data are processed, we turn the target into the background if its categories appear in
the test set.

State-of-the-art algorithms for image segmentation [36] use networks pre-trained on ILSVRC.

4. Proposed Method

The network in this paper consists of three branches: the first branch generates task representation
and guides the second segmentation branch to generate the segmentation results. Finally, the generated
branch converts the segmentation result into a trimap. Our model is able to make predictions on its
own, and, with expert guidance, can direct the task or correct errors. The process of self-prediction
can be regarded as interaction segmentation when the support image and query image are the same.
Note that interactive is a special case of one-shot segmentation. In particular, we used the guidance
branch to extract guidance z from support set: z = g(is, Ys). Afterward, the segmentation branch was
combined with guidance z and query image features to jointly predict the output results y = f (iq, z).
We discuss how to design z = g(is, Ys), and y = f (iq, z) in the following sections.

4.1. Guidance Branch

Guidance branch fused user interaction involves clicks with the support image, and guidance
information zs is generated. The guidance process can be expressed as :

zs = µ(λ(Is), m(Y+), m(Y−)) (2)

where zs includes target features and background features. We assume that the user can provide
a positive click (+) and a negative click (−). We match pixel-level clicks to the same coordinate
scale as the support image Is ∈ R3∗w∗h, where w, h represent the length and width of support image
respectively; the pixels under the strokes are set to values of 1, and 0 otherwise. Then, we can obtain
two annotation maps (Y+) and (Y−), Y ∈ {0, 1}w∗h. We used fully convolutional networks as the
feature extractor to extract visual features from the support image Is using λ. The feature extractor λ of
our model is VGG-16 [43], pre-trained on ILSVRC [44] and converted into fully convolutional form [34].
The λ(Is)inRc∗w′∗h′ and c, w′, h′ represent the channels, length, and width of feature maps, respectively.
To ensure that they have the same scale, the positive map and negative map are down-sampled to
the same scale using bilinear kernel m(Y+), m(Y−) . Then, we fuse the support features with the
positive map and negative map using the element-wise product µ. The spatial relationship between the
support image and annotations can be well defined by fusing features from the visual and annotation
branches. Using m to interpolate and µ to fuse, the visual representations of the support and query can
be obtained using a unified feature extractor λ. The guidance process is shown in Figure 4c.
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Figure 4. The main differences in guidance branch: (a) Shaban et al. [39] used multiple support
images and directly dense labelled, and the background was omitted. (b) Xu et al. [41] concatenated
on the support image and annotation maps, which breaks the input structure of the net. (c) Our
proposed fusion method: the guidance branch combines annotation and support image in feature level,
which maintains the identical net structure and complete background information.

In contrast to Shaban et al. [39], in which an element-wise multiplication was directly applied
to the support image and the dense label annotation (foreground value 1, background value 0),
the background is omitted as a result (Figure 4a). Our method saves the background information for
the support image. In addition, by integrating annotations with feature-level information through
the factorization method, the spatial dependency between them is more clearly defined. Xu et al. [41]
proposed an early fusion method that concatenates the positive map and negative map with the
support image to five channels, as shown in Figure 4b. However, the disadvantage of this method
is that concatenating the support image with their maps breaks the input structure of the network,
which also prevents the implementation of a unified network. The features of the support image and
query image need to be extracted through different network structures. The model proposed in this
paper (Figure 4c) maintains the identical input structure of the network, which enables us to process
both the support and query images within a unified network.

When multiple foreground objects appear in the image (Figure 5a), we need to obtain the
segmentation mask for all objects (Figure 5d) in the image instead of obtaining one object (Figure 5c).
In addition, when the support and query images are completely different, no spatial information
is available. The only mapping between the support and query should be achieved through
characterization. We chose global pooling gz to merge the local task representations and discarding
the spatial dimensions, which can be represented as zs ∈ Rc∗w′∗h′ → vs ∈ Rc∗1∗1. However, when the
support and query images are the same (e.g., interactive segmentation), location information can be
used and global pooling gz procedures can be omitted.

Figure 5. Global pooling the task representation in the guidance branch. In this case, we annotate
a single sofa (b) on the original image (a), but global guidance causes all the sofas to be segmented (d)
instead of obtaining one sofa (c).
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4.2. Segmentation Branch

We obtain the foreground target of the image by segmentation branch and generated rough
segmentation results, the segmentation model define as:

y = f θ

(
λ
(

I q )⊕req (v s )) (3)

The same as for the guidance branch, we extract visual features from the query image Iq using
a deep convolution network λ(), as with the support image, where Iq ∈ Rc∗w′∗h′ and w′, h′ represent
the length and width of support image respectively. vs is the globalized task representation obtained
by the guidance branch. ⊕ represents the channel number stack. We repeat guidance vector vs until
its spatial dimension is equal to query features maps λ(Iq) to ensure the parameters have the same
dimension. fθ is a small convolutional network that fuses the query-support feature and decodes to
a binary predicted segmentation result. fθ can be interpreted as a learned distance metric for retrieval
from support to query. The distance metric part consists of two components. The first component
fuses query-support features through one combination of the convolution layer (1× 1 kernel size),
rectified linear units (ReLU), and drop-out, and the parameters in the convolution layer are used to
compute the distance between pixels from support to query. The outputs of this component are coarse
distance metric maps. The second part only includes one layer of convolution (1× 1 kernel size) with
a channel dimension of 2 to predict scores for foreground and background classes at each of the coarse
distance metric maps. The second part is followed by bilinear upsampling for end-to-end learning by
back-propagation from the pixel-wise loss. The segmentation process is shown in Figure 6.

Figure 6. The model structure of the segmentation branch, where the convolution component fθ

consists of the convolution layer, activation layer and Dropout, which is used to compute the distance
between pixels from support to query. Where the zs represents the guidance, gz represents global
pooling and vs represents the pooled guidance vector.

Inspired by REVOLVER’s [40] training episode, we first sampled a task. Then, we sampled
a subset of images containing the task, which we divided into support and query. Given inputs and
targets, we trained the network by cross-entropy loss:

L =
1
N ∑

i
− [y i ∗log (y i )+ (1− y i )∗log (1− y i )] (4)

where the y represents the predicted segmentation results, the y represents the corresponding dense
labels. Notably, the optimization process of the model during training is different from the one-shot
learning process, where the parameters are not optimized during the one-shot learning process,
and one-shot learning is achieved via guidance and guided inference.

4.3. Generate Branch

After the training, the model parameters were fixed. The model predicts segmentation results
using several clicks. However, the predicted segmentation results have relatively rough edges,
which do not satisfy the digital matting requirements. Therefore, we used three main steps to further
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process the segmentation results. Firstly, we optimized the segmentation results by conditional random
field (CRF) to increase the precision of the target edge region. Secondly, inspired by [5], we obtained
the initial trimap by dilating and eroding the binary segmentation result. We set the foreground region
of the ablation image as the foreground region in the trimap, the background region of the expansion
image as the background region in the trimap, and the rest of the image as the unknown region.
Finally, we used the deep matting model to obtain the final alpha matte, and the model was trained by
the Adobe image matting database [41].

5. Dataset and Experiments

5.1. Dataset

We chose the PASCALVOC2012 [42] dataset Dtrain to train the model. The PASCALVOC2012
dataset includes 21 classes (aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table,
dog, horse, motorbike, person potted plant, sheep, sofa, train, tv/monitor, and background). In the
first experiment, the performance of the proposed matting method was evaluated on the standard
benchmark [45]. The dataset consists of 27 images with corresponding groundtruth alpha and trimaps.
The trimaps were generated by an experienced user given a paint tool with different size brushes.
The generated trimaps included two types that are represented as trimap-1 and trimap-2. In the second
experiment, to verify the generalization of unseen classes, we selected 20 images from the Adobe image
matting dataset [13] with their corresponding groundtruth alpha matte, as shown in Figure 7. Each row
of pictures represents the same category. The criteria of our experiment include Mean Absolute Error
(MAE), the formula is expressed as:

MAE =
1
n

n

∑
i=1
|x i −y i| (5)

n represents the number of pixels, xi and yi represent predicted alpha matte and groundtruth alpha
matte, respectively, and the Intersection-over-Union (IoU) of unknown areas in the trimap, the formula
is expressed as:

IoU =
U pred ∩U gt

U pred ∪U gt
(6)

Upred and Ugt represent the unknow-region area of predict and user-input trimap, respectively.
We split the training dataset into four parts as shown in Table 1. We used the Dtrain(l) training

network separately, where l represents the semantic categories. We used lsplit to represent the partition
of the dataset, e.g., l0 means we use li=1,2,3 for training and li=0 for testing. For comparison with the
standard benchmark and obtain more accurate results, in the first experiment, we selected all categories
for training the model Dtrain(loracle). To verify the guidance ability of the model, in the second and
third experiments, we selected part of the categories for training the models Dtrain(lsplit).

Table 1. Classes for each fold of PASCAL-5i. To ensure the class disjoint {ltrain} ∩ {ltest} = ∅, we split
the dataset into four parts. We used three of them for training and the remainder for testing.

l = 0 l = 1 l = 2 l = 3

aeroplance, bicycle diningtable, car, cat bus, dog, horse plant, sheep, sofa
bird, person chair, cow motorbike, bottle train, tv/monitor
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Figure 7. We select twenty images from [13]. Each row has the same category corresponding to
Table 1, from top to bottom represents persons 0–4, cats 5–9, plants 10–14 and dogs 15–19, respectively.
Subscripts represent image numbers.

5.2. Experiments

Experiment 1: We compare trimap precision directly in this section. We selected all images
from the alpha matting dataset [45] to test our model. To obtain more accurate results, we set the
support image and query image as the same. The trimap generation process can be understood as
one-shot interactive segmentation. We used all classes Dtrain(loracle) to train our model. A partial
visualization of the experimental results is provided in Figure 8. We estimated the performance
of the trimap generation method using two criteria. Firstly, we performed the deep matting [13]
for the different trimaps (proposed method, user input trimap, and scribble) and compared their
matting results. From Figure 8, the generated trimaps are visually similar with the user-input trimaps.
However, there is still a performance gap between the generated trimap and the user-input trimap.
Since the user-input trimaps select from benchmark matting dataset, which drawed by professional
users, the generated trimap is difficult to achieve this accuracy. The advantages of our algorithm lie in
processing time and interactive workload. Besides, the proposed algorithm is much more accurate than
the user scribble (Table 2). We think that MAE comparison between the proposed and scribble-based
map is fair, because our method takes images and user clicks as inputs; the labeling time consumption
between clicks and scribbles are basically the same. Secondly, we compared the unknown region
intersection over union (IOU) between the generated trimap and the user input trimap. As shown in
Table 3, the mean unknown region IOU was close to 50% for both trimap-1 and trimap-2. The above
experiments proved the feasibility and robustness of our algorithm.
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Figure 8. Partial trimap comparison results of experiment 1. The first column represents the original
image (selected from [45]). The last column represents the user input trimaps (selected from [45]).
The second column represents the trimaps generated by the proposed method. The third column
represents the optimized trimaps (by trimap trimming [15]).

Table 2. Mean absolute error (MAE) statistics of alpha matte computation on [45] (using [13]).
The proposed method obtains a approximate MAE to the trimap-based image matting, and is much
more accurate than scribble-based image matting.

Image Proposed Trimap Scribble

GT01 28.715 8.271 156.781
GT02 25.474 7.792 118.215
GT03 24.662 35.854 139.766
GT04 67.918 51.443 334.628
GT05 22.414 5.555 127.115
GT06 29.505 10.736 171.267
GT07 26.378 12.405 136.459
GT08 43.088 34.998 220.026
GT09 33.668 19.962 181.406
GT10 26.914 10.842 150.306
GT11 30.473 14.962 158.58
GT12 20.902 9.351 99.622
GT13 54.067 25.136 311.447
GT14 33.329 10.390 159.199
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Table 2. Cont.

Image Proposed Trimap Scribble

GT15 27.823 11.347 155.263
GT16 37.342 22.030 204.322
GT17 24.297 11.356 125.960
GT18 32.171 10.183 162.286
GT19 22.662 4.938 121.062
GT20 25.018 13.519 132.551
GT21 30.688 16.915 170.912
GT22 26.687 12.586 124.645
GT23 25.184 12.544 114.109
GT24 28.701 12.341 136.212
GT25 33.181 11.302 191.416
GT26 49.373 25.675 230.560
GT27 77.891 56.878 450.836

Table 3. Intersection over union (IOU) statistics of the unknown region between the generated
trimap and the user input trimap. trimap-1 and trimap-2 represent the trimaps painted with different
size brushes.

Image Trimap-1 Trimap-2

GT01 0.368 0.345
GT02 0.25 0.271
GT03 0.466 0.408
GT04 0.418 0.411
GT05 0.363 0.467
GT06 0.386 0.458
GT07 0.396 0.476
GT08 0.557 0.519
GT09 0.56 0.569
GT10 0.441 0.508
GT11 0.402 0.49
GT12 0.51 0.574
GT13 0.325 0.343
GT14 0.359 0.437
GT15 0.373 0.448
GT16 0.569 0.577
GT17 0.501 0.518
GT18 0.385 0.504
GT19 0.326 0.449
GT20 0.476 0.527
GT21 0.259 0.27
GT22 0.504 0.581
GT23 0.516 0.577
GT24 0.307 0.35
GT25 0.229 0.288
GT26 0.461 0.49
GT27 0.407 0.454

Experiment 2: We verify the guidance ability of our proposed method in this section. We used part
of the classes Dtrain(lsplit) to train our model. So, we obtained four models with different parameters.
Following the principle of category disjunction ({ltrain} ∩ {ltest} = ∅), we used different rows in
Figure 7 to verify the different models, e.g., we used the first row (person semantic class) to verify the
model trained by Dtrain(l0) (without person semantic class). To obtain more accurate results, we still set
the support image and query image to the same. As with experiment 1, we compared the MAE and IOU
for the 20 test images. The experimental results are partially depicted in Figure 9. Even though most
details in the margin are captured by the proposed algorithm (third column in Figure 9), the generated
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trimap is visually similar to user input trimap (fourth column in Figure 9). The statistical results
are shown in Tables 4 and 5. The experimental results showed that although the test class does not
appear in the training class, our model can still identify foreground targets by pixel-level annotations
and generate relatively accurate trimaps. The results showed that our model has guidance ability
and has the potential to generalize unknown semantic classes. However, the main problem with the
proposed approach is that one-shot segmentation calculates the distance metric for every pixel in the
query image to the foreground and background using support image as guidance. So, the model
will misjudge when the foreground and background have similar representations. The fourth row in
Figure 9b,c shows that the white hair of the dog is similar to the color of the beach, causing the model
to judge part of the white hair belonging to the foreground as the background.

Figure 9. Partial trimap comparison results of experiment 2. Although the test class does not appear
in the training class, the generated trimaps are still accurate enough (see column 3), the experimental
results showed that our model has strong guidance ability.

Table 4. Experiment 2: MAE statistics of the 20 test images; the matte obtained by [13].

Image Proposed Trimap Scribble

image0 44.199 8.271 156.781
image1 47.724 7.792 118.215
image2 51.2 35.854 139.766
image3 46.745 51.443 334.628
image4 33.635 5.555 127.115

image5 39.439 10.736 171.267
image6 40.58 12.405 136.459
image7 40.58 34.998 220.026
image8 41.584 19.962 181.406
image9 27.275 10.842 150.306
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Table 4. Cont.

Image Proposed Trimap Scribble

image10 68.825 14.962 158.58
image11 49.825 9.351 99.622
image12 60.375 25.136 311.447
image13 74.821 10.390 159.199
image14 117.501 11.347 155.263

image15 22.508 22.030 204.322
image16 51.626 11.356 125.960
image17 34.524 10.183 162.286
image18 23.09 4.938 121.062
image19 54.023 13.519 132.551

Table 5. Experiment 2: IOU statistics of the 20 test images. The trimap-1 and trimap-2 obtained by
dilating the groundtruth matte with different expansion sizes.

Image Trimap-1 Trimap-2

image0 0.3 0.22
image1 0.629 0.67
image2 0.32 0.296
image3 0.42 0.318
image4 0.362 0.269

image5 0.227 0.272
image6 0.529 0.527
image7 0.531 0.521
image8 0.368 0.635
image9 0.441 0.538

image10 0.653 0.662
image11 0.594 0.406
image12 0.626 0.533
image13 0.355 0.352
image14 0.435 0.556

image15 0.393 0.414
image16 0.676 0.442
image17 0.45 0.322
image18 0.43 0.28
image19 0.42 0.396

Experiment 3: To verify the time values of our algorithm, we compared the proposed method
with classical matting algorithms, Bayesian matting [1], closed-form matting [7], and Soft Scissors [10].
The experimental results are shown in Figure 10a. Our method is the fastest. The main reason for
the speed lies in the following two points. Firstly, our system generates trimaps using a few clicks.
Compared with previous algorithms used to design a complete trimap, the click time is negligible.
Second, we use deep convolutional neural networks to obtain the final matte results. Compared with
sample-based algorithms or propagation-based algorithms that need many iterations, our algorithm
requires one forward propagation of the model.

Experiment 4: At first glance, the proposed method is similar to interactive matting algorithms
like graph-cut. So, in this experiment, we proved the differences and further verified the model’s
ability to transmit guidance in the same semantic class. We selected more complex foreground
images from [42] and set the support image and query image are the completely different (semantic
category consistency), as shown in Figure 11a. The first row to the last row represent different spatial
positions, different foreground objects, and multiple foreground objects, respectively. The query
image is overlaid with our predicted mask in green (Figure 11b). The experimental results showed
that when the difference is huge in the morphological and spatial position of the foreground target
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between the query image and the support image, the task representation still can guide the query
branch to obtain a relatively accurate result. However, graph-based methods cannot transmit task
representation between different images like our proposed method. To verify the advantages of our
method from the previous methods, we compare our system with interactive trimap segmentation
methods (e.g., [14,17]), a partial visualization of the experimental results is provided in Figure 12,
the trimaps are covered by RGB color. Our results (second row in Figure 12) is visually similar to
the interactive segmentation methods (first row in Figure 12), since our deep learning based model
better combines the depth features, and the CRF further optimizes the segmentation results. Besides,
the results further prove guidance ability of our model, which delivers the semantic representation
between different query and support images.

Figure 10. (a) The processing time of different methods. (b) The amount of interactive annotations in
the image.

Figure 11. Test guidance ability of the model. (a) The support set on the left with annotations and
the query set on the right; (b) one-shot semantic segmentation result, the query image is overlaid
with our predicted result in green; (c) generated trimaps, and (d) our predicted alpha matte using
(c) by [13]. First row, different spatial position. Second row, different foreground objects. Last row,
multiple foreground objects.

One question arose: how many pixel-level clicks are needed? The experiment proved that our
method is insensitive to the amount of annotations, as shown in Figure 11b. The IOU accuracy does
not increase after 3 pixels. This is an ill-posed problem for unseen class generalization from one
shot. One-shot learning cannot cover the complete visual information in an unseen class, for example,
matting a black, long-haired dog, as in Figure 7(16) cannot be achieved given a brown, short-haired
dog like in Figure 7(18) as guidance. The guidance struggles to make judgments when the color,
texture, and pose are very different. The solution is method improving using shot, one-shot to few-shot.
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Figure 12. This figure shows trimap segmentation results. We compare our method with Interactive
Trimap segmentation methods [14,17], the experimental results showed that our model deliver semantic
representation between query and support images, and the generated trimaps are accurate enough.

6. Conclusions

In this paper, to reduce the user interaction workload, we adopt the one-shot learning-based
segmentation algorithm to generate trimaps for image matting. Our model only needs a few clicks
from the user to generate a high-precision trimap. Compared with scribble-based image matting,
our method has better robustness. Compared with trimap-based algorithms, our method reduces the
required user interaction time. Simultaneously, our model turns user-provided clicks into guidance,
which implements interactive information sharing between the same semantic classes and minimizes
user interaction workload. However, the proposed method still has limitations when the foreground
and background have similar features in the query image.
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