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Abstract: Realistic personalized avatars can play an important role in social interactions in virtual
reality, increasing body ownership, presence, and dominance. A simple way to obtain the texture
of an avatar is to use a single front-view image of a human and to generate the hidden back-view
image. The realism of the generated image is crucial in improving the overall texture quality,
and subjective image quality assessment methods can play an important role in the evaluation.
The subjective methods, however, require dozens of human assessors, a controlled environment,
and time. This paper proposes a deep learning-based image reality assessment method, which is
fully automatic and has a short testing time of nearly a quarter second per image. We train various
discriminators to predict whether an image is real or generated. The trained discriminators are then
used to give a mean opinion score for the reality of an image. Through experiments on human
back-view images, we show that our learning-based mean opinion scores are close to their subjective
counterparts in terms of the root mean square error between them.

Keywords: 3D human modeling; texture generation; deep learning; image reality assessment

1. Introduction

Realistic personalized avatars increase body ownership, presence, and dominance in virtual
environments [1,2], so they can play an important role in social interactions as well as applications
like virtual dressing rooms. To acquire a personalized avatar, photogrammetry scanners consisting of
dozens of DSLR cameras can be used [1]. The scanners guarantee high fidelity but are demanding in
terms of cost and space. Recently, methods based on convolutional neural networks (CNNs) have been
proposed to create a personalized avatar from single front-view images of humans [3,4], reducing the
cost and space as well as simplifying the capturing process. In [3], the texture of an avatar is obtained
by generating the hidden back-view image from an input front-view image. Not only accurate but
also realistic generation of the back-view image is essential because it determines the overall texture
quality of the avatar.

To measure the accuracy of a generated human back-view image, we can use objective
quality measures such as peak signal-to-noise ratio (PSNR) or structural similarity index (SSIM) [5].
The objective measures compare a generated image to its corresponding real image. In the single
image-based scenario [3,4], the real back-view image of a human is not acquired. Thus, evaluation of
the accuracy is limited in out-of-lab use of the back-view image generator.

Because the word ‘reality’ is a subjective term, subjective tests [6] provide the most reliable
measure of the reality of a generated image. The human assessors can be asked to rate the reality
of an image and then the results can be averaged into a mean opinion score (MOS). Subjective tests
require dozens of human assessors, a controlled environment, and time [6]. To reduce the requirements,

Electronics 2020, 9, 656; doi:10.3390/electronics9040656 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-0619-2317
https://orcid.org/0000-0003-3370-3370
https://orcid.org/0000-0003-2957-668X
https://orcid.org/0000-0001-9860-9145
http://dx.doi.org/10.3390/electronics9040656
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/4/656?type=check_update&version=2


Electronics 2020, 9, 656 2 of 11

Ribeiro et al. proposed to have internet workers participate in subjective quality studies [7]. However,
new costs are needed to motivate internet workers to achieve high throughput and high-quality results.

In this paper, we propose a fully automatic, cost-effective method for assessing the reality of a
human back-view image. We train various CNN-based discriminators to predict whether an image
is real or generated. Each trained discriminator gives the probability that an image is real, and we
interpret the probability as a score. Our learning-based MOS, which mimics the subjective MOS,
is computed as the average of the scores produced by different discriminators.

Unlike the subjective methods, the proposed method does not require human assessors and
the controlled environment because the discriminators replace the human assessors. To train the
discriminators, however, a large dataset and several days of training time are required. For evaluating
the reality of human back-view images, we can build a large dataset by rendering publicly available
3D human mesh models [8]. Although the training time can hardly be reduced, our short testing time
can compensate for the training time if the number of test images is large. Consequently, one can
benefit from our proposed method if the training dataset can be easily obtained and the number of test
images is too large to conduct subjective tests.

There exist other measures such as Inception score (IS) [9] and Fréchet Inception distance (FID) [10]
for evaluating different qualities of generated images. To calculate IS, a pre-trained Inception model [11]
is applied to every generated image to get a conditional label distribution. IS is then computed as
the mean of the KL-divergence between each conditional label distribution and the marginal label
distribution. IS quantifies the diversity of generated images, not the reality of individual images.
To calculate FID, the Inception model is applied to all generated images and all real images, and their
outputs from the penultimate layer of the Inception model are stored. The distributions of the outputs
are modeled as multi-dimensional Gaussians, and then the Fréchet distance between the output
distributions of real and generated images is calculated. FID measures the reality of a set of generated
images, but it can not measure the reality of individual images. Shemelkov et al. [12] proposed a
method for evaluating the performance of class-conditional GANs. In their method, by training an
object-classification network using GAN-generated images and testing the classifier using real test
images, ‘GAN-train’ accuracy is computed. Likewise, by training the network using real images and
testing the classifier using the generated images, ’GAN-test’ accuracy is computed. The GAN-train
accuracy measures the diversity and realism of the generated images, while the GAN-test accuracy
measures how realistic the generated images are. Like FID, Shemelkov et al.’s method cannot be used
to assess the reality of individual images.

The remainder of this paper is organized as follows. Section 2 describes two different methods for
generating human back-view images. Section 3 presents our learning-based image reality assessment
method. Section 4 shows experimental results on the similarity of the proposed method to the subjective
MOS. Finally, Section 5 concludes the paper.

2. Generation of Human Back-View Images

Given a front-view image of a person as input, Natsume et al. [3] use a U-Net architecture [13]
to predict the corresponding back-view image so that both images will cover most of the person’s
body. Since both images share the same camera coordinate frame, the method does not require any
post-processing steps to align the coordinate frame.

For the experiments in this paper, we implemented Natsume et al.’s method, which is based
on the image-to-image translation framework [14]. As the generator, we adopted the U-Net-like
architecture [15] used in [4]. The input to the generator network is a three-channel color image and
its corresponding single-channel mask image, as shown in Figure 1. In practice, such mask images
can be obtained by using a human silhouette detector [3] or a depth camera [4]. The input and output
images are 256× 256 pixels in size. A difference of our generator from that of [4] is that the output is
multiplied by the mask image, suppressing unwanted background haloes.
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Figure 1. Generation of a human back-view image from a front-view image.

To train the generator, we need a large number of aligned human front- and back-view image
pairs. In practice, however, it is difficult or impossible to obtain such aligned image pairs without
reconstructing watertight 3D mesh models of the subjects. Natsume et al. used commercial datasets
consisting of 3D human mesh models, which were captured by 3D scanners and then handcrafted [3].
The datasets are, however, highly expensive. In this paper, we use the publicly available Pose-Varying
Human Model (PVHM) dataset [8], consisting of 10,200 mesh models of 22 different hand-crafted
appearances. The model with each appearance is deformed from 200 to 1200 different poses.
The models are separated into training, validation, and test sets, among which only the training
set is used for training of the network parameters. The validation set is used for regularization of the
network parameters, and the test set is used for the reality evaluation in Section 4. The appearances in
‘9200–9999’ and ‘10,000–10,199’ are used for validation and testing, respectively.

By rendering the models following the protocol in [4], we obtained a dataset of aligned human
front- and back-view image pairs. The rendered back-view images are used as training targets for
the generated back-view images, as depicted in Figure 1. To avoid overfitting, each mesh model was
rendered four times, randomly changing the pitch angle and distance of the virtual camera, lighting
conditions, the height of the model, and the color of the model’s hair, clothes, and shoes. The pitch
angle, distance, and height were varied from −20◦ to 20◦, from 2 m to 3 m, and from 150 cm to 180 cm,
respectively. The mean position of the light source was 5 m above the ground and its mean color was
gray. We added random values to the mean position and color. Figure 2 shows sample image pairs
under different rendering parameters.

Figure 2. Image pairs obtained by rendering mesh models in the Pose-Varying Human Model (PVHM)
dataset [8]. Top: front-view images, bottom: back-view images. The left and right two columns show
rendered images of single models, respectively.
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We use two different loss functions to train the generator. The first is the L1 loss LL1 between a
generated back-view image BG and its corresponding target back-view image BT , defined as:

LL1 = ‖BG − BT‖1. (1)

Since LL1 is the sum of absolute differences in pixel values, we can expect that the trained
generator will produce good objective-quality back-view images. We note that LL1 does not include
an adversarial loss unlike the original Natsume et al.’s method.

The second is what was used in Natsume et al.’s method [3]. The loss function LSiCloPe is a
combination of three different losses. The first loss is a feature matching loss LFM, adopted from [16],
which minimizes the discrepancy of intermediate layer activation of the discriminator between BG
and BT . The second one is a perceptual loss LVGG, which minimizes the discrepancy of intermediate
layer activation of a VGGNet-19 model pretrained for an image classification task [17] between BG and
BT . The last one is an adversarial loss Ladv, adopted from [14], which guides the generator to produce
more realistic images. The total loss function LSiCloPe is defined as

LSiCloPe = λFMLFM + λVGGLVGG + Ladv, (2)

where the relative weights λFM and λVGG were set to the same values as in [3]. In the remainder of this
paper, the generator obtained by minimizing LL1 and the generator obtained by minimizing LSiCloPe
are referred to as ‘L1’ and ‘SiCloPe’, respectively.

All the loss functions were minimized by the Adam optimizer with a learning rate of 2× 104

and a mini-batch size of 4. We used early stopping for regularization of the network parameters
throughout this paper, which can be approximately interpreted as L2 parameter regularization [18].
We kept monitoring the validation loss to explore the network weights minimizing the validation loss
in 500 epochs. Using a computer with a single NVIDIA RTX 2080 graphics card, approximately one
week was required to train each network. Figure 3 shows sample back-view images generated by L1
and SiCloPe.

Figure 3. Samples of generated images. From left to right: input front-view images, L1-generated
images, SiCloPe-generated images, and target back-view images. Top: PVHM dataset, bottom:
Actual dataset.

3. Deep Learning-Based Image Reality Assessment

In subjective tests [6], human evaluators are asked to assess the quality of images. The rankings
generally range from ‘bad’ to ‘excellent’ corresponding to scores from 1 to 5. The scores can be
normalized to a range from 0 to 100 or from 0 to 1. If the quality is limited to reality, it might be possible
to replace the human evaluators with machines by providing a number of real and generated images
as a training set. The key idea of generative adversarial learning [19] is to train such a discriminator
along with a generator so that the generator will produce more realistic images. Our main idea is to
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train multiple discriminators so that each of them will give a binary output for the reality of an image.
Unlike generative adversarial learning, we do not train the discriminators along with a generator.

We can employ any discriminator as an evaluator as long as it returns reasonable outputs that
are not uniform. For example, if the discriminator consistently returns either 1 or 0 irrespective
of the input image, then it is highly biased and the scores should be removed before computing
the mean score. In this paper, we use four different networks: the VGGNet, ResNet, InceptionNet,
and DenseNet [11,17,20,21]. Each network was ranked first or second in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC). Our detailed architectures are VGGNet-11, ResNet-152,
InceptionNet-v3, and DenseNet-161. For the networks with an input size of 224× 224 pixels, the
back-view images were resized to fit the scale. The networks have been trained on the ImageNet dataset
consisting of a number of different objects. To prevent the discriminators from becoming experts in
distinguishing domain-specific generated images from real ones, we only train the fully-connected
layers that have been modified to provide binary class labels. This is intended to reflect the requirement
of subjective testing [6] that the specialist can not be an evaluator. We used the PyTorch package [22]
for the implementation, which provides pre-trained weights of the network architectures.

Each discriminator provides a binary class label along with a softmax output, which is the
predicted probability of image reality. We interpret the probability as a score and calulate the mean to
get a learning-based MOS. Figure 4 illustrates how the learning-based MOS is calculated.

To train each discriminator, we used the rendered target back-view images as real samples (class 1)
and the L1- and SiCloPe-generated back-view images as generated samples (class 0). The generated
samples are twice as many as the real samples, so we duplicated the real samples to make balanced
datasets. The cross-entropy between the predicted labels and the target labels was minimized to find
the parameters of each discriminator. The cross-entropy LCE is defined for each image as

LCE = −t log(p)− (1− t) log(1− p), (3)

where t is the target label, which is either 1 or 0, and p is the softmax output corresponding to class 1.
At each training iteration, the loss was averaged over a minibatch and then minimized by the Adam
optimizer with a learning rate of 2× 106. We kept monitoring the validation accuracy to explore
the network weights maximizing the validation accuracy in 100 epochs. The validation accuracy
ranged from 71.25% to 92.84%. Using a computer with a single NVIDIA RTX 2080 graphics card,
approximately one day was required to train each network. The testing time per image ranged from
39 ms to 85 ms.

Figure 4. Computation of the proposed learning-based MOS. For a human back-view image, different
discriminators compute scores to produce a mean opinion score.
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Our method can be generalized to N generators and Algorithm 1 summarizes the generalized
method for training a discriminator for image reality assessment.

Algorithm 1: Algorithm for training a discriminator for image reality assessment
Result: The parameters of the fully connected layer of discriminator D.
Initialization 1: Build training and validation datasets.
1. Collect the rendered back-view images of the training and validation mesh models as real

samples.
2. Apply N generators to the rendered front-view images of the training and validation mesh
models to obtain generated samples.

3. Replicate the real samples N − 1 times to make balanced datasets.
4. Assign label 1 to real samples and label 0 to generated samples.
Initialization 2: Modify the fully connected layer of D to output a binary label.
Accbest := 0;
for k = 1 : 100 do

Randomly shuffle training samples.
while 1 do

if no new minibatch is remaining then
break;

end
Draw a new minibatch.
Apply D to each sample image in the minibatch to optain p in Equation (3).
Compute the average cross-entropy over the minibatch.
Minimize the average loss by using the Adam optimizer to update the parameters.

end
Apply D to the validation images to compute the validation accuracy Acc.
if Acc > Accbest then

Save the parameters.
Accbest := Acc;

end
end

4. Experimental Results

To quantify the similarity of the proposed method to the subjective MOS test, we performed
a subjective test on selected back-view images. First, we randomly selected 10 triples of rendered,
L1-generated and SiCloPe-generated back-view images from the PVHM test set. Second, we randomly
selected such 30 images from an ‘Actual’ dataset. To build the Actual dataset, we rendered 3D mesh
models of real people, obtained by using the scanning method in [23]. The second row of Figure 3
shows samples of the back-view images generated from the Actual dataset. We use the Actual dataset
to provide approximate results of applying the proposed method to back-view images generated from
real photos. The Actual dataset enables comparisons of the generated images to their aligned realistic
rendered back-view images, which can not be provided by a dataset with only real front-view images.
The total number of back-view image triples of the PVHM test set and the Actual dataset is much
larger, but we could not increase the number of test images due to the recommended limit of the
overall duration of a subjective test session [6].

Following the ITU recommendations [6], we conducted the subjective image reality assessment
test with 16 non-expert volunteers. Each image was displayed for nine seconds and a gray blank
image was displayed for nine seconds between images. Prior to the main sessions, training sessions
and dummy sessions of several images were used to allow the evaluators to adapt to the context.
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The human assessors were asked to evaluate the reality of each image in the 1-to-5 range. Finally,
we calculated the MOS for each image and normalized it to a 0-to-1 range to compare it with other
measures.

We also measured our learning-based MOS of the test images. Figure 5 shows the scores produced
by the four different discriminators and Figure 6 shows their mean scores co-plotted with the subjective
MOS’s. The leftmost 10 scores are those of the L1-generated images, the middle 10 scores of the
SiCloPe-generated images, and the remainder of the rendered target images. Figure 7 shows sample
test images along with their learning-based MOS’s. In the top row of Figure 6, the two different MOS’s
are not identical but they tend to prefer SiCloPe-generated images over L1-generated images. The real
images are the highest ranking in both MOS’s. The results for the Actual dataset (bottom row of
Figure 6) show the same trend; however, the difference between the two MOS’s is slightly larger.

On the other hand, by comparing Figure 6 to Figure 5, we can see that a single discriminator’s
score can hardly approximate the subjective MOS. In Figure 5, individual scores are different from each
other for the same image even though the discriminators have been fine-tuned on the same dataset.
This phenomenon is desirable because using different discriminators was intended to mimic different
opinions from different human assessors.

We calculated the root mean square error (RMSE) between the normalized subjective MOS and
our learning-based MOS to quantify their difference. Table 1 shows the result. For comparison, we
implemented an expert version of the proposed method ‘Proposed (experts)’ by training all layers of the
discriminators. In Table 1, ‘Masked SSIM’ and ‘Masked MS-SSIM’ are the structural similarity index [5]
and its multi-scale version [24] of the masked regions of the images, excluding the background. It can be
seen that the non-expert version of the proposed method gives the closest result to the subjective MOS.

Figure 5. Scores produced by the four discriminators. Top: PVHM test set, Bottom: Actual dataset.
x-axis: image index, y-axis: score.
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Figure 6. Comparison of the proposed learning-based MOS with the normalized subjective MOS.
Top: PVHM test set, Bottom: Actual dataset. x-axis: image index, y-axis: score.

PVHM 5, 0.379 PVHM 8, 0.444 Actual 1, 0.264 Actual 6, 0.261 Actual 7, 0.350

PVHM 15, 0.374 PVHM 18, 0.603 Actual 11, 0.565 Actual 16, 0.469 Actual 17, 0.651

PVHM 25, 0.512 PVHM 28, 0.679 Actual 21, 0.678 Actual 26, 0.597 Actual 27, 0.622

Figure 7. Sample images used for the subjective test. From top to bottom: input front-view,
L1-generated, SiCloPe-generated, and target back-view images. The background of the back-view
images has been filled with gray for the subjective test. Below each back-view image are the image index
corresponding to that in Figures 5 and 6 and our learning-based MOS. An image can be considered as
unrealistic if its score is less than 0.5, and otherwise realistic.

For further comparison, average image quality scores of the MOS test images were calculated.
In Table 2, we newly calculated the average masked PSNR and FID, which could not be compared in
Table 1 because PSNR is unlimited in scope and the reality of individual images cannot be measured
by FID. Table 2 shows that the expert version of the proposed method gives a lower score to the
L1-generated images and a higher score to the rendered images than the original non-expert version.



Electronics 2020, 9, 656 9 of 11

Because the expert version is better at discriminating real images from generated images, the scores of
the L1-generated images are much lower. This is the main reason why the RMSE of the expert version
is greater in Table 1.

It can be also observed that the human evaluators prefer the rendered images from the Actual
dataset over those from the PVHM test set. Our post-test survey showed that the rendered images
of real people contain details such as wrinkles of clothes. Although the proposed method shows the
same trend, the difference is significant. Since our PVHM dataset does not contain such fine details,
the discriminators did not have a chance to learn them.

According to Table 2, the objective scores, the masked PSNR, SSIM, and MS-SSIM, are consistently
higher for the L1-generated images than for the SiCloPe-generated images. This result is in line with
our expectation based on the characteristics of the L1 loss function. Although the objective scores are
lower, the human evaluators prefer the SiCloPe-generated images. This result is consistent with the
results in [25], showing the effect of generative adversarial learning.

Finally, the proposed method becomes more efficient than the subjective test as the number of
test images increases. The proposed method requires several days for training; however, its test time
is nearly a quarter second using a single graphics card. In contrast, the training session takes much
less time than the main test session in the subjective test. However, a human evaluator takes tens of
seconds to assess the quality of a single image.

Table 1. Root mean square error from the normalized subjective mean opinion score (MOS).

Method Proposed Proposed (Experts) Masked SSIM Masked MS-SSIM

PVHM 0.0928 0.178 0.377 0.467
Actual 0.138 0.170 0.214 0.348

Table 2. Average image quality scores of the selected MOS test images.

Dataset Method
Normalized
Subjective

MOS
Proposed Proposed

(Experts)
Masked
PSNR

Masked
SSIM

Masked
MS-SSIM FID

PVHM
L1 0.349 0.354 0.184 17.6 dB 0.746 0.884 154

SiCloPe 0.467 0.501 0.499 17.3 dB 0.707 0.872 114
Rendered 0.569 0.593 0.737 ∞ 1 1 0

Actual
L1 0.384 0.315 0.136 19.3 dB 0.584 0.789 187

SiCloPe 0.420 0.534 0.385 18.6 dB 0.514 0.752 181
Rendered 0.736 0.620 0.689 ∞ 1 1 0

5. Conclusions

In this paper, we have proposed learning-based MOS, which can be used to assess image reality.
In our method, various discriminators are trained to produce a binary output for the reality of an
image. Their softmax outputs are interpreted as scores, and their mean is calculated to deliver the MOS.
We described how to train non-expert discriminators that mimic non-expert evaluators for subjective
testing. Through experiments on human texture images, we showed that the proposed learning-based
MOS shows the same trend as the subjective MOS. The RMSE between the learning-based and
subjective MOS’s shows that the proposed method is a promising approach.

The proposed method can be more advantageous than subjective testing if the number of
generators to be compared is large and the dataset of their inputs and desired outputs can be easily
obtained. To obtain meaningful statistics on the performance of the generators, a large set of test
images needs to be evaluated. The requirement of many human assessors, a controlled environment,
and time hinders subjective testing from being a feasible solution to a large test set. Because of the
relative efficiency and simplicity of testing of the proposed method, its inevitable training time can be
mitigated by a large test set.
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Like different discriminators giving different opinions on a single generated image, different
generators produce different output images from a single input. Extending the proposed method,
we will be able to build an image generating system employing multiple generators and discriminators.
By training the generators along with the discriminators, the system will be able to generate different
images from a single input. The generated images can be evaluated by the discriminators so that the
most realistic image will be chosen as the ultimate output. As a future work, we are investigating the
building of such a system.
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