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Abstract: This article presents a system for monitoring the load caused by strong winds and snow
on buildings’ roofs. An estimation of the total load on the structure is obtained by measuring
the strain on the main roof girders. The system is based on a wireless sensor network structure.
The measurement node uses metal strain gauges and strain sensors based on conductive carbon
polymers. The application of such sensors allowed us to achieve a measurement resolution of
5.5 ustrain. The node is managed by an Atmeg8A microcontroller. The use of energy saving modes
allows for a battery life of 6 months.

Keywords: structural health monitoring; strain measurement; wireless sensor networks; strain
sensors; polymer sensors

1. Introduction

Climatic anomalies have always been observed in various latitudes. However, in recent years,
some disturbing weather events have been observed, related to climate change. In addition to the
increase in average air temperature, rapid and heavy snowfall combined with strong blowing winds
have also been observed in regions where it has not previously been recorded on this scale. An example
of this is the snowfall observed in 2015, 2019 and 2020 in Spain and Greece. These situations are
dangerous and make life very difficult for the inhabitants of a given region. However, it should be
remembered that buildings whose construction parameters do not provide for such loads pose a deadly
threat. In regions where high snow loads are obvious (sub-mountainous regions or Scandinavian
countries), the buildings’ structures are designed for significant snow loads. In countries with occasional
snow, other roof structure loads are assumed and, as a consequence, abnormal weather conditions
result in damage to the structure of buildings or even their collapse [1].

Analyzing the places where construction disasters occur, it can be concluded that they depend
mainly on weather conditions—that is, the amount of snowfall and winds in a given region during the
period under consideration. Interestingly, the occurrence of these disasters does not depend on the
wealth of a given country or region. Taking the above into account, it can be concluded that in order to
increase the safety of buildings and their occupants and to minimize the negative effects associated
with the impossibility of the use of buildings, it is necessary to use systems monitoring the load on
the structure.

The installation of structural health monitoring systems is cost-intensive and therefore not all
buildings are equipped with such systems. The monitoring is mainly carried out on facilities for which
the consequences of malfunctioning are considerable. The classification of buildings in this respect is
included in the EN 1990–2002 standard. [2,3] and presented in Table 1.
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Table 1. Classes of consequences for buildings according to EN 1990–2002.

Consequences
Class Description Example of Buildings

CC3
High

Consequences for loss of human life or economic,
social, environmental consequences very great

Public buildings, stadiums,
center halls

CC2
Medium

Consequences for loss of human life or economic,
social, environmental consequences considerable

Residential and office buildings

CC1

Low
Consequences for loss of human life or economic,
social, environmental consequences considerable

small and negligible

Agricultural buildings, storage
buildings, silos,

greenhouses

Buildings with a steel load-bearing frame and flat roof belong to category CC1 or CC2, since these
are mainly storage and agricultural buildings. However, large stores, which also belong to category
CC3, also use this construction. Thus, monitoring of the condition of the buildings is desirable as it
always improves the safety of the occupants and minimizes the cost of building maintenance (snow
clearance), which is important for both large and small businesses.

The article will present a system for monitoring the load of the roof caused by adverse weather
conditions such as heavy precipitation and wind. An overview of the currently used methods for
measuring snow load on roofs will be briefly presented. Then, our system, allowing for the continuous
monitoring of stresses on roof structures, will be presented. The snow load measurement method uses
the relationship between the maximum beam deflection and the force causing it. Strain gauges are
used to measure the relative elongation of the structure, which is transferred to the deflection and this,
in turn, is transferred to the uniform load. The system structure and function blocks will be discussed.
The results of the tests will also be analyzed, with particular emphasis on the parameters of sensors
based on conductive carbon polymers. The benefits of the system implementation and the directions
of further scientific research will be summarized.

2. Methods of Measuring Snow Load and Wind Speed

In Central, Eastern Europe and Scandinavia the problem of snow load on buildings is important.
In Europe, there are construction standards EN-1991-1-3 [4] based on statistical indicators of snow
exposure in the regions concerned. On the basis of these data, roofing structures are designed for
which the snow load can be calculated from Formula (1).

S = µi · Cw · Ct · sk (1)

where:

• µi is the roof form factor (0.8 to 2.0);
• sk is the characteristic value of snow load on the ground, depending mainly on the altitude above

sea level (for Poland, it is from 0.7 to 2.0 kN/m2);
• Cw is the wind exposure factor from 0.8 (set to wind) to 1.2 (sheltered from wind);
• Ct is the thermal coefficient, generally assumed to be 1.0, depending on the thermal permeability

of the roof.

However, it should be remembered that even properly designed structures can collapse due to
unfavorable weather conditions. Table 2 shows the data of the Central Office of Building Control
(Poland), showing the causes of construction disasters over 5 years.
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Table 2. Causes of construction disasters in Poland [5].

Year Snow Rain Wind Other

2018 1 9 74 165
2017 3 144 428 52
2016 2 18 189 158
2015 7 88 154 64
2014 8 - 49 152

As the results from the data provided, the most common cause of construction disasters is strong
wind. However, an indirect cause is the static loading of the structure by snow. Additionally, flat roofs,
i.e., roofs in which the roof slope inclination angle changes between 5 and 33 degrees, are the most
frequent cause of disasters. On such roofs, the conditions for depositing layers of snow are favorable,
because the roof slope angle is insufficient for spontaneous snow slide. This results in the rapid
formation of snow embankments and long-lasting on the building. This may cause the roof load to be
exceeded. This leads to the collapse of the roof trusses and destruction of the roof covering and, if the
supporting structure is broken, to the collapse of the entire building.

Snow cover monitoring is a method of measuring the static load on the structure, which allows
us to estimate the permissible dynamic load caused by strong winds. The following can be used for
monitoring snow deposits on roofs.

• Snow gauge: the measurement of snow thickness is carried out by means of a graduated rod,
which is driven each time or mounted on the roof surface (Figure 1a);
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Figure 1. Examples of instruments for measuring depth of snow in situ, (a) snow gauge, (b) ultrasonic
snow depth sensor.

• Ultrasonic snow depth sensor: the measurement is carried out by ultrasonic measurement of the
distance from the ultrasonic head placed at a known height to the snow cover (Figure 1b). In both
methods, we can only measure the thickness of the snow, without the possibility to determine
its mass;

• Snow weight: the measurement of masses of snow is made directly by the placement of an
electronic weight with a known surface, on the roof. This solution does not require taking a
sample and gives an immediate load result scaled in (kg/m2).

Methods based on ultrasonic technology were used to measure depth of snow even on the ground,
in Europe and Alaska [6,7]. However, snow cover monitoring of large areas is mainly based on
Synthetic Aperture Radar SAR-type scanning [8,9], or satellite mapping [10,11]. This makes it possible
to obtain coverage maps and forecasts for regions or even entire countries.

Anemometers with a rotary head are typically used to monitor wind speed, and were presented
in a system for sea level monitoring [12]. Ultrasonic anemometers are also used, where the time of
ultrasonic beam passage in the orthogonal system of four heads is measured. Such sensors can be used
to measure wind speeds from very low speeds below 1 m/s [13] to 90 m/s [14].
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The above methods (except satellite) are used to monitor the condition of buildings in structural
heath monitoring systems. An example of such systems is the monitoring of the condition of the
football stadium in Brag (Portugal) by means of the WSN presented in [15]. A similar solution for
monitoring the roof of a hospital in Rome with 19 nodes and GPS support was presented by Basili et al.
in [16]. There is also a visible trend of integration of different systems supporting building maintenance
into the system in the IoT ideology [17]. Such an approach increases the choice of hardware and
software platforms and gives greater flexibility in facility management by users.

3. Structure of the Roof Load Monitoring System

The presented system is used to measure static and dynamic loads of the building structure. It is
dedicated to monitor loads occurring on flat roofs (inclination of less than 30 degrees). The assessment
of loads is made by measuring the deflection of main girders. Based on the knowledge of structural
parameters such as dimensions and shape of the truss, spans, girders, knowledge of roof material
parameters (Young’s modulus, inertia coefficients), the current strain of roof structure is calculated.
The explanation of the measurement method is provided in Section 4. The system structure is shown
in Figure 2.
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Figure 2. Schematic structure of system for monitoring load of the roof.

The measuring element is a wireless sensor node mounted at the measuring point. The data
is wirelessly transmitted to the access point, which is supposed to receive data from all measuring
nodes and send it to the main system controller. The TCP/UDP protocol is used for this purpose.
The central controller is a server and database. The main task of the server is to receive information
from the concentrators, archive the results, process them and present them to the user in the form of
dynamic websites. The system user has a current view of the stress distribution on a selected node
in the observation window. He can also view the history of measurements and select the number of
nodes from which he wants to observe the measurements. The functional blocks of the sensor node are
presented in Figure 3.
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Figure 3. Sensor node structure.

The basic system for measuring strain gauges is the Wheatstone bridge. After a case study [18],
a half-bridge differential was determined. In the node, the Wheatstone bridge works as an unbalanced
bridge and is treated as a transducer of resistance to voltage changes. Thanks to the half-bridge circuit,
we have achieved twice as much sensitivity and, more importantly, a self-reducing temperature error.

Two types of strain gauges were checked. First, foil strain gauges made of constants with a strain
gauge constant equal to K = 2.15, base resistance 120 Ohm and base length of 10 mm (Figure 4a) were
checked. The second type of strain gauges were sensors made with carbon polymer Bare Conductive
Electric Paint/UK (Figure 4b). The dimensions of this sensor are 2 × 20 mm.
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Figure 4. Strain gauge placed on a 5 × 5 mm graduated base, (a) metallic on the foil, (b) polymer on
the paper.

The signal from the bridge circuit is applied to the 22-bit MCP355 analog-to-digital converter
(ADC), which allows voltage sampling at a frequency of 12 samples per second. Actual measurements
are made at a frequency of one every 10 s. The resolution is limited to 20 bits. The digital signalgoes
to the Atmega 8A AU1731 microcontroller via the Serial Peripheral Interface (SPI) interface. In the
controller, the measurement value is checked with an alarm threshold, and if the threshold value is
not exceeded, the next measurement is made. Then, the data package is transmitted once per minute.
If the alarm threshold is exceeded, the data is sent to the network hub immediately. The controller’s
task is also the appropriate formatting of the measurement data to be sent (assigning identifiers and
time stamps) and the manage of the transmission.

The measurement data is sent to the network hub using RFM12B. It is an integrated transceiver
working in the ISM band, on a 433MHz frequency [19]. This circuit allows for data transmission with
a throughput of 115 kbps. In a system with an integrated antenna, communication is possible over
distances up to 200 m in free space and 50 m inside buildings. This enables the monitoring of buildings
with an area up to 2500 m2. This distance can be achieved at 19.2 kbps and 1 dBm transmission power,
and such values have been implemented in the system. Photos of the real sensor node are presented
in Figure 5a.
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Figure 5. Elements of the system, (a) wireless sensor node (dimension 75 × 44 mm), (b) access point
(dimension 100 × 80 mm).

The task of the access point is to collect data from all measurement nodes and deliver them to
the server using TCP/UDP protocol. The access point is powered from the power network and has
access to the local LAN network; for communication between them, the ENC28J60SO module was
used. The real access point is shown in Figure 5b.

The database server works on Linux, using the Ubuntu Server distribution. The user interface
is supported by the web server. Apache is installed on a given operating system. An example of a
user interface view, showing the structure of the monitored building, the arrangement of sensor nodes,
and a tabular visualization of stresses, is shown in Figure 6.
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4. Method and Assumptions

The interpretation of the obtained results requires a step-by-step explanation of the method for
calculating the elongation and load of the roof. A computational experiment will also be carried out to
estimate the required resolution of the measuring strain.

Consider a roof structure in which the main girder is supported at the ends (Figure 7). The snow
load causes deflection (f max). Such a situation can be modeled by loading the straight beam [20,21].
Considering the elementary section of the beam (Figure 8).
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Figure 8. Elementary section of the beam.

As a result of the deformation of the beam, its adjacent sections rotate about an axis perpendicular
to the drawing plane. This allows us to write Equation (2).

(1 + e)dx
−r + y

=
dx
−r

(2)

where:
dx is the original length of the element;
r is the radius of curvature due to load;
y is the distance to point from neutral axis;
e is the strain relative elongation of the beam or element.
The key is to determine the strain, because this parameter is measured by the designed system.

After transforming, the strain can be described by the formula:

e = −
y
r

(3)

The radius of curvature can be represented by Equation (4). When f � l, the equation can
be reduced.

r =
f 2 +

(
l
2

)2
2 f

≈
l2

8 f
(4)

where:
f is the deflection of the beam;
l is the length of the beam;
When f � l, the equation can be reduced;
When substituted for Equation (2), it allows us to determine the strain (the minus is due to the

bending moment direction).

e = −
y8 f
l2

(5)
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For a beam supported at two points, the maximum deflection f can be presented by Formula (6).

f =
5

384
ql4

EI
(6)

where:
q is the uniform load per length unit of beam;
E is the Young’s modulus—material modulus of elasticity;
I is the area moment of inertia.
The moment of inertia depends on the position of the figure’s center of gravity in relation to a

given axis. In monitored structures, the main girders usually have rectangular or I-beam cross-sections
(Figure 9).
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The maximum deflection of the main girder was provided by European Standard EN 1993-1-1
and the American Concrete Institute Standard. These values vary slightly, but it can be assumed that
the dead load of the beam can cause a deflection:

fmax <
l

250
(7)

For further calculations we assume the following girder parameters: length L = 10 m, a rectangular
cross-section with base b = 60 mm and height h = 1 20 mm. The material of the beam is structural steel,
for which the Young’s modulus E = 200 GPa. By substituting for expressions 2–7, we obtain:

The distance to point from neutral axis y = 0.06 m;
The maximum deflection fmax = 10 m/250 = 0.04 m;
The radius of curvature for maximum deflection r = 312.5 m;
The strain e = 0.00192 m/m = 192 ustrain;
The area moment of inertia I = 8.64 × 10−6.
The maximum uniform load for the above parameters will be q = 2.65 kN/m. When an I-beam

is used (h = 12 mm b = 6 mm c = 2 mm w = 8 mm), the moment of inertia I = 6.506 × 10−6 and the
maximum load will be q = 2.00 kN/m. However, the mass of construction will be much lower.

5. Tests and Results

To minimize the interference induced in the cables between the sensors and the ADC, the node
must be installed on the element on which the deformation is measured. In this case, it will be the
main roof girder. The resolution of the measurement node is related to the resolution of the ADC
and the sensitivity of the used strain gauges. In the case of the standard foil strain gauges made of
constants, the gauge factor was about K = 2.15, and the base resistance R = 120 Ω. The sensors work in
differential half-bridge circuits. The output signal from the bridge circuit was sampled by 20bits of
ADC. On the described node, the reference voltage for ADC was the same as the power bridge UFSO =
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UHB = 3.3 V. For such parameters, the resolution in resistance measurement is ∆Rmin (8). This value
allows to determine the theoretical resolution of elongation measurement emin (9). This allowed for a
theoretical measurement resolution of 0.88 µstrain for the half-bridge circuit (and 0.44 µstrain for the
full-bridge circuit).

∆Rmin =

(UFSO
220

)
2R

UHB
(8)

emin =
∆Rmin
2RK

(9)

The polymeric sensors had a base resistance of 290 Ohms. The determined gauge factor was 3.9,
which is almost twice as much as for the strain gauges made of constants. The theoretical resolution of
measurement is 0.48 µstrain for the half-bridge circuit (and 0.24 µstrain for the full-bridge circuit). In a
real system, the sensor will work on the half-bridge circuit because the obtained resolution is enough
and the installation process is much easier.

From previous calculations, we know that the real elongations will be in the range from 0 to
192 µstrain. Theoretically, both types of sensors can work in the system. If metal sensors are used,
the measurement error resulting from the resolution is 0.46%. The same error for carbon sensors is
0.25%. However, during laboratory tests using a mechanical stand allowing for accurate deformations
in the range from 0 to 157 µstrain and a reference Nation Instruments NI-9237 strain bridge, it was
noted that the polymer sensors work outside the range. The laboratory setup is presented in Figure 10.
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Figure 10. Laboratory setup to create and measure strain (a), and tested polymer sensor on the beam (b).

For the experiment, we prepared two pairs of polymeric strain gauges and two pairs of metal
strain gauges. The strain gauges were glued to a standard steel beam with cyanoacrylate adhesive.
All pairs of strain gauges allow for the construction of a differential half-bridge circuit. For each of the
strain gauges, the factor was determined. During this experiment, we changed the reference beam
tension to obtain strain from 0 to 157 µstrain.

While we were testing the polymer strain gauges, we noticed that, after exceeding 30–40 µstrain,
the change in resistance is no longer linear. We repeated the experiments two times, and we obtained
different results each time. Thus, it can be concluded that the material (carbon paints) used to make
the sensors do not have a stable elastic module. The sensors worked behind the region of elastic
deformation, which caused their permanent deformation according to Hooke’s law [22]. This situation
eliminates the polymer sensor from used in the designed system. However, printed sensors based on
other conductive substances, e.g., silver inks, successfully perform the role of strain gauges, which was
proven by Ando [23,24].
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The same test procedure was repeated for metal strain gauges. The factor for each strain gauge
is K1 = 2.13, K2 = 2.19, K3 = 2.06 K4 = 2.16. This is consistent with strain gauges made of constants.
The characteristics of both strain gauges are shown in Figure 11.Electronics 2018, 7, x FOR PEER REVIEW  10 of 13 
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Figure 11. Determination of the strain gauge factor for constant and polymeric sensor.

We also determined the sensitivity of the half-bridge systems, which is presented in Figure 12.
Both here and in further studies, we took into account only the strain gauges made of constants.
Polymer strain gauges, due to the very narrow measuring range, were rejected.
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To estimate the precision of the measurement, we conducted an experiment in which the same stress
of the reference beam was measured by the designed node and the reference bridge. The comparison
of measurements made with the reference strain gauge bridge and the system sensor node is shown in
Figure 13. We made two measurement series (s1, s2). To estimate the measurement error, we calculated
the standard deviation, with regard to the ideal linear characteristics, and we received, respectively:

SDNode_s1= 5.65 µstrain;
SDNode_s1= 4.68 µstrain.
The relative error of the measurement was calculated from the standard deviation. For an expected

measurement range of 192 µstrain, it will cause a relative error of 2.5%. As we can see, the actual
measurement error is much greater than that resulting from the measurement resolution. However,
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this value allows the use of the constant strain gauge for stress measurement in the building condition
assessment system.Electronics 2018, 7, x FOR PEER REVIEW  11 of 13 
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The communication between the node and the network hub has been verified. This communication
structure has already been successfully used by us in a system for water quality monitoring [25].
The maximum communication span was 65 m in free space and 45 m inside the building. It is possible to
increase the range at the expense of increasing the power of the transmitter, which is not advantageous,
because it would shorten the node’s operation on battery power supply. The energy efficiency of the
node is one of the most important parameters of WSN [26]. It determines the necessity of system
maintenance and the impact on its maintenance costs. In the system under consideration, the node was
battery powered. The battery had an efficiency of 1200 mAh (3.6 V). The energy needed to perform one
measurement is 9.2 mJ. This is related to the average current consumption of 5.6 mA (U = 3.3 V) and
the length of time necessary for the measurement procedure of 0.5 s. Based on this, it can be assumed
that the node will be able to take up to 1.55 M measurements. If the measurements are sent 6 times
per minute, it allows for battery operation for 6 months. However, it should be noted that these are
the results of calculations and the continuous operation of the node over a long period of time was
not checked.

6. Conclusions

The wireless monitoring system for stress measurement presented in the article is predisposed
to work as system for monitoring snow and wind load on steel roofs. The selection of components
shows that the system is able to measure strain with 5.5 µstrain error, and a time resolution of seconds.
Such parameters allow the system to monitor dynamic stresses caused by, e.g., violent winds or
strong precipitation. Such conditions, combined with snow, are the cause of many building disasters.
Hazards caused by the above conditions cannot be detected by methods based on measuring the density
of snow. The proposed system improves monitoring of the condition of buildings and, consequently,
improves the safety of the occupants.

Currently, the system has been tested in laboratory conditions. We checked the resolution and
measurement error (5.5 µstrain), which gives a relative error of 2.5% for the expected elongation range.
We also checked the communication range between the node and the access point (45 m). This allows
the monitoring of buildings up to 2000 m2 of roof area. We have also estimated that the WSN nodes
will run for 6 months on battery power. After the completion of the laboratory work, we plan to
implement the system on a real object—a steel warehouse.
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Systems, Faculty of Electrical Engineering, Warsaw University of Technology.
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