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Abstract: The multi-robot system (MRS) and relevant control strategy are a potential and effective
approach to assist people with weak motion capability for various forms of assisted living. However,
the rising transfer, a frequent and strenuous behavior, and its human-robot interaction (HRI) process
with MRS, especially mental state, has never been researched, although it directly determines the
user experience and security. In this paper, Functional Near-InfraRed Spectroscopy (fNIRS), a brain
imaging technique to perform a continuous measure of the mental state, is introduced to monitor
the user’s mental fatigue when implementing a behavior transfer in two difficulty levels assisted by
multiple welfare-robots. Twenty-five subjects performed self-rising transfer and multiple welfare
robots-assisted rising transfer. After removing physiological noises, six features of oxygenated
and deoxygenated hemoglobin (HbO and HbR, respectively) features, which included the mean,
slope, variance, peak, skewness, and kurtosis, were calculated. To maximize the distinction of
fNIRS between self-rising transfer and assisted-rising transfer (multiple welfare robots assisted
rising transfer), the optimal statistical feature combination for linear discriminant analysis (LDA)
classification was proposed. In addition, the classification accuracy is regarded as a standard to
quantify the difference of mental states between two contrasting behaviors. By fitting the index, we
established the mental fatigue model that grows exponentially as the workload increases. Finally, the
mental fatigue model is applied to guide the nursing mode of caregivers and the control strategy of
the MRS. Our findings disclose that the combinations containing mean and peak values significantly
yielded higher classification accuracies for both HbO and HbR than the entire other combinations
did, across all the subjects. They effectively quantify mental fatigue to provide an evaluation with a
theoretical foundation for enhancing the user experience and optimizing the control strategy of MRS.

Keywords: multiple welfare robots; human robot interaction; mental fatigue model; self-rising
transfer; assisted-rising transfer

1. Introduction

Due to the growth of the aging population and disabled people with an incomplete motion
capability, there exist great demands for auxiliary robots and a compliant control strategy under the
condition of a relative lack of nursing personnel [1–4]. The multi-robot system (MRS) has been proposed
as an effective and potential approach of ambient assisted living technologies to realize comprehensive
nursing. However, because of the deficiency in the functionality, compliant control strategy, and good

Electronics 2020, 9, 594; doi:10.3390/electronics9040594 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-7836-7425
https://orcid.org/0000-0001-6581-9330
http://www.mdpi.com/2079-9292/9/4/594?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9040594
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 594 2 of 19

human-robot interaction (HRI) experience, the MRS has not yet been applied to nursing houses. To
solve this issue, our laboratory established a smart house based on six heterogeneous welfare-robots,
(including GRR: Gait Rehabilitation Robot, IWR: Intelligent Wheelchair Robot, WSR: Walking Support
Robots, ESR: Excretion Assistant Robot, TR: Transportation Robot, and SB: Smart Bed), which integrates
compliant assistant technologies, as shown in Figure 1 [5]. The transfer is a transition process of users
from one state to another; for example, a rising transfer is a process from lying in bed to sitting in
the chair. Some continuous behaviors include many transfer sub-tasks in a sequence, such as getting
up to drink water, and then going to the toilet (from rising transfer to standing transfer, and then to
excretion transfer). It is a frequent, repeated, continuous, and physically exhausting behavior. It has a
huge impact on the physical strength and psychology of users. Physically and psychologically, it also
causes secondary injuries such as fatigue, falls, and mental stress. To improve the transfer safety of the
user, we propose that all the transfer behaviors be implemented by two robots [5]. Although the smart
house could provide a better quality of life to different user groups, HRI in the transfer process has
never been studied. The investigation of mental states in independent transfer and assisted transfer is
a crucial and effective approach to quantify the workload and fatigue for the user, which has never
been considered. It also contributes to guiding the control strategy of MRS to improve HRI security
and experience, which has a high research value.
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Monitoring people’s mental states is an effective approach to mitigate human error and enhance
the safety of the HRI process [6]. This method of introducing physiological data into the HRI process,
called “Physiological Computing”, could guide the system through taking the operator’s states into
account [7]. Brain monitoring techniques have shown the capability to detect and characterize the
operator’s mental state such as workload, fatigue, or mental stress [8,9]. Hence, building a system
capable of doing continuous monitoring or detecting the operator’s state changes is a prerequisite to
optimizing interaction security and comfort. Such kinds of closed-loop systems are the ultimate goals
for improving the HRI process when operating robots.

In recent years, functional Near-InfraRed Spectroscopy (fNIRS) has, as a non-invasive brain
functional imaging technology, received much attention. It has many advantages, such as security,
portability, and ease of integration [9–12]. The fNIRS system monitors cerebral blood oxygen in a
real-time and continuous way and has been applied in medical treatment, rehabilitation, exercise
physiology, and other fields [13–15]. In closed-loop fNIRS-BCI systems, the distinct brain-signal patterns
of the user are obtained by performing varying difficulty-level tasks such as motor imagery [16], mental
arithmetic [17], music imagery [18], and others. The detection of the brain blood oxygen signal is
based on the absorption of near-infrared light (650–1000 nm wavelength range) by hemoglobin in the
tissue, to obtain the change in optical density. Combined with the modified Beer-Lambert law, the
concentration changes of oxygenated hemoglobin (∆cHbO(t)) and deoxygenated hemoglobin (∆cHbR(t))
are calculated [19–22]. The brain blood oxygen signal can easily be interfered by movement and
respiration, experimental instruments, and the environmental magnetic field. Therefore, the least mean
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squares (LMS) adaptive algorithm, wavelet transform, and empirical mode decomposition (EMD) are
applied to remove noises such as physiological, experimental, and physiological noises [23]. Finally, the
different advanced signal-processing techniques and improved algorithms have been used in feature
extraction and classification accuracy improvement, thereby enhancing the BCI performance [21–24].
The previous studies on cerebral blood oxygen are based on time-domain parameters, such as the mean,
variance, slope, kurtosis, peak value and skewness, as features for classification [25–30]. However,
these parameters and classification results are only used to distinguish specific behaviors, and cannot
be directly used as a standard to judge the human mental state during transfer. Meanwhile, due to
the different behaviors in previous studies, these different parameter combinations and classification
results only have a reference significance and no decisive significance. Especially in the quantification
of the fatigue degree of transfer, the investigation of the best classification parameters of self-rising
transfer and assisted-rising transfer is required. It also provides the theoretical basis for the research of
the transfer tasks with various difficulty levels.

In this study, we propose a novel approach for the quantitative estimation of differentiated mental
fatigue. First, to maximize the distinction of mental states when employing two tasks with different
difficulty levels, we determine the feature combination and linear discriminant analysis (LDA) classifier
for the classification of fNIRS signals with the best accuracy. In addition, the classification accuracy,
regarded as a standard, is applied to establish the mental fatigue model. It effectively describes the
difference between the mental state of self-rising and assisted rising after the continuous transfer.
Finally, mental fatigue is used as feedback to optimize the transfer method from the aspect of caregivers
and the control strategy of the robot. This study provides a theoretical foundation for enhancing the
user experience and optimizing the control strategy of MRS. We highlight the main contributions of
this paper below:

• We investigate the optimal feature-combination selection for the best classification accuracies of
oxygenated (HbO) and deoxygenated hemoglobin (HbR). This provides a sound theoretical basis
for distinguishing mental fatigue when employing two difficulty-level tasks of MRS.

• We propose the mental fatigue model, regarding classification accuracy as an evaluation index,
which comprehensively quantifies the mental fatigue between the mental states, such as workload,
fatigue, and other mental factors. It could effectively guide the nursing mode of caregivers and
optimize the “follow-up” control strategy of the multiple welfare-robots for the ultimate goal of a
safe and comfortable transfer, which could also be applied in similar scenarios, such as standing
transfer and excretion transfer.

2. Hardware and Overview

2.1. The Smart House Based on Multiple Welfare Robots

The overall system is shown in Figure 1. The smart house integrated with multiple welfare-robots
provides many forms of behavior assistance in daily life, such as rising transfer, standing transfer,
excretion transfer, and so on. In this paper, we focus on the quantitative estimation of the mental
fatigue of rising transfer. Two behaviors are defined as follows:

• Self-rising transfer: First, the subject moves his legs to the ground by himself. Then, he supports
his trunk with his arms to complete the movement from the bed to the wheelchair robot. The
whole process relies on the user’s arms to support his body for completing all the actions.

• Assisted-rising transfer: First, the subject sends out the rise instructions, and SB is automatically
lifted to a comfortable angle. Meanwhile, the robot moves autonomously to the bedside based
on path planning. Then, the nursing staff lifts the user gently to the sitting state and then moves
the feet slowly to the ground. Finally, the nursing staff lifts and moves the user’s shoulders to a
standing position. In the standing stage, the IWR installed with a laser can recognize the position
and angle of both legs of the user, and then the PD controller is used for follow-up control. In this
way, it can make the interaction process more flexible and labor-saving.
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2.2. fNIRS Detection

A dynamic near-infrared brain optical imaging system (WOT-100: two wavelengths: 695 and
830 nm) is used to acquire brain signals at a sampling rate of 1.81 Hz, as shown in Figure 2. The
continuous-wave fNIRS detects the ∆cHbO(t) and ∆cHbR(t) in the microvessels of the cortex according
to the modified Beer- Lambert’s law:[

∆cHbO(t)
∆cHbR(t)

]
=

1
l× d

[
αHbO(λ1) αHbR(λ1)

αHbO(λ2) αHbO(λ2)

]−1[
∆A(t,λ1)

∆A(t,λ2)

]
(1)

where ∆A
(
t,λ j

)
( j = 1, 2) is the unit-less absorbance variation of a light emitter of wavelength λ j,

αHbX(λ j) is the extinction coefficient t of HbX (HbO and HbR) in µM−1mm−1, d is the unit-less
differential path length factor, and l is the distance (in millimeters) between the emitter and detector.
To acquire brain signals resulting from mental arithmetic tasks, 16 detectors are positioned over the
prefrontal cortex, in which each channel corresponds to a specific area of the prefrontal lobe. Multiple
notch filters are applied to reduce physiological noises [31,32]. In the measurement process, the signal
acquisition equipment is worn on the head, and the signal is transmitted to the PC through Wi-Fi. In
the preliminary experiment, it is found that there is a significant difference in the topology diagram of
the blood oxygen between self-rising transfer (Figure 2c) and assisted-rising transfer (Figure 2d). The
blood oxygen content of the subject in the assisted-rising transfer (red area in Figure 2d) is larger than
that in the self-rising transfer (red area in Figure 2c).
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3. Experimental Method

3.1. The System Block Diagram

We propose a novel approach to quantitatively estimate the degree of mental fatigue. The flow
chart of the system is shown in Figure 3. The self-rising transfer and assisted-rising transfer are required
to obtain the optimal classification results. Then, the mental fatigue model for the individual subjects
can be constructed and validated. Finally, we optimize the method of assisted-rising transfer based on
the analysis of mental fatigue.
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Figure 3. The block diagram of the whole system.

3.2. Participants

Fifteen subjects (Group A: including 13 healthy subjects with a fixator to simulate a disabled
lower limb, one subject with a plantar fracture, and one subject with weak motion mobility) and 10
subjects (Group B: including 10 patients with weak motion ability) participated in the experiments.
The subjects of Group A were asked to lie relaxed in bed and then perform the self-rising transfer and
assisted-rising transfer. Finally, the LDA (Linear Discriminant Analysis) classifier and fatigue models
were established according to the block diagram in Figure 3. To verify the effectiveness and rationality,
the proposed method was applied to test the subjects of Group B. In this paper, all the participants
agreed to the experimental protocol and gave permission for the publication of their photographs for
scientific purposes.

3.3. Procedure

The self-rising transfer and assisted-rising transfer were individually performed seven times in
one group experiment, as shown in Figures 4 and 5, respectively. There are seven groups of experiments
for each subject. The transfer position of each experiment is the same. In the rising transfer experiment,
first, 1 min was defined as a rest period to set up the baseline condition; this was followed by a 30 s
self-rising transfer task period, and then followed in turn by a 10 s interval period for the next trial.
The time interval was used to return to the original lying state. The experiment of assisted-rising
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transfer was implemented in the same sequence and time interval. To reduce the influence of fatigue
accumulation on the results, enough rest time was reserved between the two experiments. This
kind of continuous behavior transfer without rest will seriously affect the physical workload, fatigue,
and mental fatigue of different user groups. It can be used as a reference for continuous action that
integrates multi sub-tasks, such as rising-standing-walk rehabilitation training-drinking-sitting, etc.
Some behaviors would consume more physical strength than simple behavior due to the complexity
and particularity of their conditions, especially for people with mobility difficulties. Therefore, in this
paper, we investigated experiments between the two tasks with different difficulty levels.
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Figure 4. Experiments conducted: a total of 7 group experiments were performed by subjects with
10 s intervals.
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3.4. Signal Processing and Feature Extraction

∆cHbR(t) and ∆cHbO(t) signals were obtained by Equation (1). Based on the notch filter with
band-reject ranges in Figure 3, 0.1–0.3 Hz signals were acquired and analyzed [31,32]. The signal
mean, signal slope, signal variance, signal peak, signal kurtosis, and signal skewness were extracted
as classification features. The signal mean of ∆HbO and ∆HbR is calculated as given in the equation
below:

µ =
1
N

N∑
i=1

xi (2)

where µ is the mean value, N is the number of observations, and xi represents the HbO and HbR data.
The slope is calculated as follows:

slope(x) =
xi+1 − xi

ti+1 − ti
(3)



Electronics 2020, 9, 594 7 of 19

where slope is the signal slope, and ti is the sample time. The variance is calculated as follows:

var(x) =
∑
(x− µ)2

N
(4)

where var is the variance, and µ is the mean value of X. The skewness is computed as follows:

skew(x) = E

(X − µ
σ

)3 (5)

where skew is the skewness, E is the expected value of X, and σ is the standard deviation of X. The
kurtosis is computed as follows:

Kurt(x) = E

(X − µ
σ

)4 (6)

The signal peak is obtained by the Matlab max function. All the feature values are scaled based
on the Min-max normalization between 0 and 1, as shown in Equation (7):

y(n) =
x(n) − xmin

xmax − xmin
(7)

where x ∈ Rn denotes the original feature values, y(n) denotes the rescaled feature values between 0
and 1, xmax is the maximum value, and xmin is the minimum value.

3.5. Classification

The method utilized in the present study to classify all 2- and 3-feature possible combinations of
features extracted from the ∆cHbO(t) and ∆cHbR(t) signals is classified using LDA. The LDA algorithm
is used to find an allocated vector in the specified feature dimensions such that the desired target
classes can be divided into distinct groups that maintain an effective variance. LDA solves an optimal
discrimination projection matrix Wopt by Equation (8):

Wopt = argmax
W

∣∣∣WTSbW
∣∣∣∣∣∣WTSwW
∣∣∣ (8)

where Sb, Sw, and St are the scatter matrixes:

Sb =

J∑
i=1

ni(µi − µ)(µi − µ)
T (9)

Sw =
∑
i=1

(xi − µki)(xi − µki)
T (10)

where Sb is between-class scatter matrixes; Sw is the within-class scatter; and St = Sb + Sw is the total
scatter matrix. µi is the mean feature vector of class i, and ni is the number of samples in class i. J is
the total number of the samples in the whole set. xi is the feature vector of a sample, and µki is the
vector of the class that xi belongs to. Data is processed to obtain six dimensions in a feature vector.
Each subject performed 7 group experiments (14 transfers of each of two conditions, 588 samples). The
classifier was trained with samples generated from 5 group experiments (35 transfers of each of the
conditions, 420 samples) and tested with samples from the last 2 groups (14 transfer of each condition,
168 samples). Each classification performance was evaluated by a 10-fold cross-validation throughout
the 10 runs. Finally, the LDA classifier was applied to test 10 patients of Group B.
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3.6. Mental Fatigue Model

The mental fatigue model is defined as the difference between the mental state of self-rising and
assisted rising after the continuous transfer. By fitting the classification result, the mental fatigue model
and parameters are obtained based on the least square method, as shown in Equation (11). It represents
the relationship between the number of the transfer behavior (t) and mental fatigue (R), as shown in
Figure 6.

R(t) = µind ∗ eωt (11)

where µind and ω are the individual parameters based on the physiological condition of the subject.
The optimal classification result R(t) of the statistical feature combination is applied to evaluate the
fatigue degree. Assuming that at an initial time t0, the mental fatigue for two contrasting behaviors is
R(t0), then, after the continuous behavior time ∆t, the amount of the increased difference ∆R is:

∆R = R(t0) −R(t1) (12)

where ∆t = t1 − t0. By integrating ∆t, the discrimination degree R(t1), after the number of the transfer
behavior (∆t) from its initial condition R(t0), can be estimated by Equation (13):

R(t1) = R(t0) ∗ eω∆t (13)
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Figure 6. The mental fatigue model.

4. Results

4.1. Classification and Accuracy

The classification accuracies obtained for all possible combinations of both features extracted
using ∆cHbO(t) and ∆cHbR(t) are shown in Figure 7. Here, we list the classification accuracies of 10
subjects using the mean and peak values, as shown in Tables 1–3. The feature is numbered in Table 4. It
is found that the classification result of 1-feature is lower than that of the parameter combination. The
classification accuracy of combining the mean and the peak is higher than other feature combinations.
The classification accuracies acquired using the 2-feature combination of the peak and mean values are
91.78% and 90.86% using ∆cHbO(t) and ∆cHbR(t) signals, respectively.

Table 1. The classification accuracies of the mean-peak combinations obtained from HbR signals and
HbO signals.

Mean and Peak S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

HbO 87.5 94.56 91.87 90.85 95.12 89.96 92.61 87.98 90.38 89.42
HbR 89.54 95.25 90.39 93.65 87.98 91.17 88.06 88.82 91.16 90.34
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Figure 7. The comparison among classification accuracies. (a) All 1-feature averaged across all subjects
using ∆cHbO(t) and ∆cHbR(t) signals; (b) all 2-feature possible combinations averaged across all subjects
using ∆cHbO(t) and ∆cHbR(t) signals; and (c) all 3-feature possible combinations averaged across all
subjects using ∆cHbO(t) and ∆cHbR(t) signals.
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Table 2. The classification accuracies of the mean-peak feature combinations obtained from HbR signals.

Feature
Combination S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Mean, Peak,
Slope 89.47 90.95 86.11 90.84 85.32 84.08 85.34 82.19 83.83 89.45

Mean, Peak,
Kurtosis 90.33 92.85 88.22 91.34 86.07 85.34 86.18 84.48 85.32 90.57

Mean, Peak,
Skewness 91.92 93.86 89.58 92.25 89.44 85.59 86.45 83.43 82.93 88.28

Mean, Peak,
Variance 88.72 90.35 88.02 90.21 86.88 84.71 89.46 82.94 82.37 87.85

Table 3. The classification accuracies of the mean-peak feature combinations obtained from HbO
signals for subjects.

Feature
Combination S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Mean, Peak,
Slope 93.63 94.73 89.54 89.38 89.46 91.23 92.24 87.58 93.48 90.16

Mean, Peak,
Kurtosis 94.39 96.25 91.84 92.79 91.84 92.11 93.97 89.49 95.28 92.48

Mean, Peak,
Skewness 92.68 95.49 89.46 91.05 90.23 91.36 93.47 88.34 93.84 90.94

Mean, Peak,
Variance 93.32 94.86 90.05 90.25 89.48 89.72 92.61 88.02 92.94 91.89

Table 4. Feature number.

Feature Peak Mean Variance Skewness Slope Kurtosis

Number 1 2 3 4 5 6

The classification accuracies obtained using the 3-feature combinations are correspondingly higher
in the combinations including the mean and peak values. There are the same characteristics in 4-feature
combinations and 5-feature combinations, as shown in Tables 5 and 6. These accuracies are higher
compared with all other possible combinations across all subjects for both ∆cHbO(t) and ∆cHbR(t) signals.
There is little difference in the classification accuracy of multiple feature combinations. To verify that
the higher classification accuracies acquired using the peak and mean values are statistically significant,
we apply the permutation test. The p-values obtained using the mean and peak values versus all
other combinations are less than 0.05 for both ∆cHbO(t) and ∆cHbR(t) signals, which established that
the performance of the mean and peak values combination is statistically significant. To prove the
validity and generalization of the proposed method, 10 patients of Group B were tested. The best
classification result was obtained when combining the mean and peak features, as shown in Table 7.
The classification results are sensitive to these feature parameters (mean and peak). This proves that the
self-rising transfer leads to a severe mental burden, which directly causes a great difference in mental
states between self-rising transfer and assisted-rising transfer. The difference is not only reflected in
the distributed feature parameters, but also more in “holistic” feature parameters.

Table 5. The highest classification accuracy of the 4-feature combination.

Signal 4 Feature Combinations Highest Average Accuracy

HbO Peak, Mean, Variance, Skewness 93.78
HbR Peak, Mean, Variance, Skewness 90.67
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Table 6. The highest classification accuracy of the 5-feature combination.

Signal 5 Feature Combinations Highest Average Accuracy

HbO Peak, Mean, Variance, Skewness, Slope 94.42
HbR Peak, Mean, Variance, Skewness, Kurtosis 91.36

Table 7. The classification accuracies of the mean-peak combinations by Group B.

Subject (Group B) Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10

HbO 91.23 93.45 89.42 95.62 95.61 93.46 90.75 91.83 88.92 91.84
HbR 88.53 95.21 86.19 91.89 94.83 95.47 86.37 87.15 86.38 90.65

4.2. The Validation of Mental Fatigue Model

By fitting the data, we obtained the mental fatigue model (95% confidence) with the increase
in the number of continuous transfers based on the least square method (5 subjects: a, b, c, d, and
e, calibrated according to Table 8; SSE: the sum of squares due to error; R-square: Coefficient of
determination; RMSE: Root mean squared error). Figure 8 illustrates the “exponential increase” trend
of the classification accuracy of 5 subjects’ classification accuracy with the increase of the number of the
continuous transfer (subjects a, b, and c with fixator, subject d with a plantar injury, and subject e with
weak motion mobility). This represents that the self-rising transfer and assisted-rising transfer have an
increasing influence on the user’s psychological state, and that there is a growing difference between
the two behaviors. The autonomous behavior causes mental fatigue on the user. On the contrary,
this MRS and its control strategy almost do not produce a large physical and psychological burden,
which contributes in amplifying the differential features of various difficulty-level tasks. Therefore,
we define difference degrees as mental fatigue. The healthy subjects a, b, and c imitate people with
a weak motion capability; however, they have the physical strength and confidence to complete the
transfer independently. Thus, there is a smaller difference than for subjects d and e between the two
types of difficulty-level behaviors at the beginning stage [33–36]. Especially for subject e, the weak
physical condition makes it extremely difficult for him to complete the autonomous behavior transfer.
Meanwhile, continuous transfer further increases the workload of the subject e. In contrast, the whole
process of assisted-rising transfer completely depends on the cooperation with the medical staff and
robots. The repeated behavior transfer will produce an extremely obvious workload and mental
load for all the subjects, thus amplifying the difference between two mental states. In this paper, an
exponential-based model was established based on the least square method to evaluate the fatigue
degree. The reasons are as follows:

1. The exponential model is an application-specific model to measure the fatigue degree of
human-computer interaction, which has been successfully applied to evaluate human fatigue in
rehabilitation training [36–39]. The ultimate purpose of the fatigue index is to evaluate the state
of users during the transfer process, which is used in the adaptive planning of MRS according to
the actual situation.

2. The parameters of the model are very sensitive to the function of the relationship between task
quantity and fatigue. By matching the two parameters of the model, the fatigue degree increases
exponentially with the increase of the workload.

3. The fitting function is verified by comprehensive experiments and error analysis. The estimated
error of the model (mean and standard deviation) for all subjects is shown in Figure 9. The results
show no significant difference (p > 0.05). The accuracy is high for less transfer time (2 and 4 times)
tasks, where the error is lower than 5%. The performance of the proposed differentiated model
slightly declined as the transfer time increased (6 and 8 times).
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Overall, the error of the model is within the acceptable effective range. This implies that the
proposed method is reliable to estimate the discrimination degree, provided that the assumption that
the adaptive auxiliary strategy for rising transfer for different users is maintained.
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Figure 8. The comparison of different degrees of mental states. (a) Subject 1; (b) subject 2; (c) subject 3;
(d) subject 4; and (e) subject 5.

Table 8. The model parameter and goodness of fitness for 5 subjects.

Subjects µind ω SSE R-square RMSE

a 45.14 0.0732 2.907 0.993 0.853
b 76.65 0.0319 6.917 0.966 1.315
c 75.93 0.0297 4.089 0.968 1.011
d 76.59 0.0288 9.154 0.919 1.747
e 81.65 0.0266 7.207 0.947 1.117



Electronics 2020, 9, 594 13 of 19

Electronics 2020, 9, x FOR PEER REVIEW 13 of 19 

 

Table 8. The model parameter and goodness of fitness for 5 subjects. 

Subjects ind    SSE R-square RMSE 

a 45.14 0.0732 2.907 0.993 0.853 

b 76.65 0.0319 6.917 0.966 1.315 

c 75.93 0.0297 4.089 0.968 1.011 

d 76.59 0.0288 9.154 0.919 1.747 

e 81.65 0.0266 7.207 0.947 1.117 

 

Figure 9. The mean and standard deviation of the error calculated. 

4.3. Optimization of the Assisted-Rising Transfer Based on the Analysis of Mental Fatigue 

In the transfer process, the causes of mental fatigue include the following aspects: 

1. The weight of the body is fully supported by the user’s hands and feet during the transfer process, 

as shown in Figure 10a. This would cause huge physical consumption to the user. Meanwhile, 

due to the lack of motion balance and the weak physical condition, the user needs to concentrate 

to complete the transfer to prevent the fall and an unstable center of gravity (Figure 10b). This 

directly causes mental fatigue and stress to the user; 

2. The continuous transfer directly increases the workload of the user. With the increase of transfer 

time, great physical consumption and mental stress cause the mental fatigue of a user with a 

weak motion capability; 

3. The instant impact force on the waist and buttocks during the seating process is too large, as 

shown in Figure 10c. It reduces the user’s safety and comfort in the transfer process, which affects 

the user’s mental pressure; 

4. Because the transfer way and real-time state of the user are different, the user would 

psychologically know that transfer behavior would consume physical strength and entail the risk 

of falling, which would cause psychological panic, boredom, and mental fatigue to the user. 

 

Figure 10. The pressure distribution of each part during the self-rising transfer. (a) Support pressure 

of rising; (b) plantar pressure and trajectory of center gravity; and (c) trunk pressure. 

E
st

im
at

ed
 e

rr
o

r 
(%

) 

The number of transfer behavior 

(a) 

(b) (c) 

Trajectory of  

center of gravity 

Support force of two hand 

Hip pressure 

Figure 9. The mean and standard deviation of the error calculated.

4.3. Optimization of the Assisted-Rising Transfer Based on the Analysis of Mental Fatigue

In the transfer process, the causes of mental fatigue include the following aspects:

1. The weight of the body is fully supported by the user’s hands and feet during the transfer process,
as shown in Figure 10a. This would cause huge physical consumption to the user. Meanwhile,
due to the lack of motion balance and the weak physical condition, the user needs to concentrate
to complete the transfer to prevent the fall and an unstable center of gravity (Figure 10b). This
directly causes mental fatigue and stress to the user;

2. The continuous transfer directly increases the workload of the user. With the increase of transfer
time, great physical consumption and mental stress cause the mental fatigue of a user with a
weak motion capability;

3. The instant impact force on the waist and buttocks during the seating process is too large, as
shown in Figure 10c. It reduces the user’s safety and comfort in the transfer process, which affects
the user’s mental pressure;

4. Because the transfer way and real-time state of the user are different, the user would psychologically
know that transfer behavior would consume physical strength and entail the risk of falling, which
would cause psychological panic, boredom, and mental fatigue to the user.
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Figure 10. The pressure distribution of each part during the self-rising transfer. (a) Support pressure of
rising; (b) plantar pressure and trajectory of center gravity; and (c) trunk pressure.

We optimized the HRI process to reduce the user’s fatigue, as shown in Figure 11. Taking the
rising-seating-excretion transfer as an example, the nursing staff carried most of the bodyweight of the
user and reduced the pressure on the hands, feet, hips, and back. This also improved the stability of the
transfer process. Meanwhile, the robot recognized the standing positing and angle of the user based on
two lasers, and implemented a “follow-up” control. The user did not worry about the seating way and
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occurrence of dangerous behavior. The process of the user’s driving force was changed from an active
one to a passive one, with the collaboration of the nursing staff. The mental fatigue is a parameter with
a fuzzy boundary. Therefore, it could not be used as a precise real-time signal as feedback to establish
a precise closed-loop system. Therefore, this paper only optimized the MRS and transfer mode by the
parameter to reduce the mental fatigue of the HRI process.

Aiming at measuring the robot-induced stress on humans during coexistence, a subjective
evaluation (acceptance level) and task performance (decline rate of mental fatigue/transfer
time/instantaneous pressure) were implemented. During the comprehensive experiment, the acceptance
level was evaluated by a questionnaire result from 10 subjects with weak action ability, which verified
the effectiveness and comfort of the proposed method. In the 1-to-6 scale, a lower score meant a better
acceptance level. Table 9 shows the score change of the acceptance level from the questionnaire survey.
The “#” represents an improvement in the acceptance level, and the “×” represents no significant
change or a less acceptance level than the previous methods. From this survey, we can find that most
subjects felt more comfortable and acceptable after an adjustment than before. Meanwhile, the mental
fatigue, transfer time, and the instantaneous pressure show a significant downward trend, as shown in
Tables 10–12. The optimization of the transfer method not only reduces the mental fatigue of the users
but also improves the safety of transfer. The comprehensive experiments prove that the proposed
method is effective in optimizing the HRI process in a subjective and in an objective aspect.

Table 9. Changes of the acceptance level from the questionnaire.

Subject Before After Change Assessment

Sub1 6 3 0.50 #
Sub2 5 1 0.20 #
Sub3 5 4 0.80 #
Sub4 6 2 0.33 ×

Sub5 3 3 1.00 #
Sub6 4 3 0.75 #
Sub7 5 2 0.40 #
Sub8 4 1 0.25 #
Sub9 6 2 0.33 #

Sub10 6 3 0.50 #

Table 10. Decline rate of mental fatigue.

Subject Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10

Decline Rate 44.7% 39.5% 22.3% 52.3% 8.2% 10.7% 23.8% 32.7% 39.7% 28.6%

Table 11. Changes of the average transfer time.

Subject Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10

Before (time/s) 10.1 6.5 6.9 9.2 5.1 5.6 7.5 7.4 8.2 9.8
After (time/s) 8.9 5.9 6.1 8.8 4.7 5.4 6.3 7.1 6.8 7.5

Table 12. Changes of the instantaneous pressure.

Subject Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10

Before (kPa) 11.3 13.4 10.9 9.2 14.9 15.6 7.8 11.3 15.4 13.4
After (kPa) 7.7 8.9 6.1 7.8 10.7 9.4 6.3 9.3 9.8 10.2
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5. Discussion

To improve the accuracy discrimination of self-rising transfer versus assisted-rising transfer,
various feature combinations were used to determine the best combination for an fNIRS-based HRI
system. Then, ∆cHbO(t) and ∆cHbR(t) signals of two tasks were classified using LDA. Different from
previous studies, the signal mean and signal slope were used as the best classification combination
for distinguishing the right- and left-wrist motor [40]. This paper demonstrates that the feature
combination of the peak and mean is the best among all possible combinations for both ∆cHbO(t) and
∆cHbR(t) signals. Similarly, the classification approach based on the combination of the signal mean and
signal peak in statistical features is also an optimal result for distinguishing a mental arithmetic task and
right-hand motor-imagery task [41,42]. This is due to the different objects of action generating signals
with different characteristics. It directly leads to the difference in the best classification parameters.
Furthermore, the peak and mean feature combination was the only one for which all subjects showed
classification accuracies over 87%. When self-rising transfer and assisted-rising transfer were carried
out with the increased times, the difference in the mental state between different behaviors increased,
due to the excessive physical load, behavior constraints, and inadequate physical conditions. This
phenomenon directly reflects the huge fluctuation of the HbO and HbR. The classification accuracy was
significantly improved when real mobility-impaired patients employed behavior transfer [30,33]. To the
best of our knowledge, this is the first study to investigate the highest classification performance based
on statistical feature combinations applied to the feedback of a fatigue analysis in MRS. Compared
with the traditional fNIRS experiment that analyzes the relationships between the feature value and
corresponding behaviors separately, our proposed approach combined two significant features by
comparative experiments for a comprehensive evaluation. Compared with the previous studies, the
optimal parameter combination of different behaviors may be the same [40–42]. However, due to the
different target behavior, this parameter combination only has a reference significance and no decisive
significance for other behaviors. Thus, the combination of the optimal parameter cannot be directly
applied to other behaviors. Meanwhile, the ultimate goal of the classification result is to quantify the
differentiated mental state during transfer process. Then, the results are required to be calculated
and fed back to the robot system. Therefore, the classification accuracy is a parameter of the process
variable, not the final output of the system. Thus, the continuous transfer applied in this paper can
effectively simulate the behavior of multi behavior integration in daily life. This evaluation approach
can be transplanted to various difficulty level tasks for providing reference and guidance. Therefore,
this paper regards the highest classification accuracy of the combination of the peak and mean for
distinguishing two opposite behaviors, which provides a sound theoretical basis for follow-up research.
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In view of the shortcoming in the research of HRI between MRS and different user groups,
we propose a novel approach to quantify the impact of different levels of assistant strategy. The
classification accuracy regarded as an evaluation standard can effectively quantify the mental fatigue
between self-rising transfer and assisted-rising transfer. Especially with the increase in the workload,
the model increases exponentially. This directly implies that the auxiliary cooperation based on
multiple welfare-robots and control strategies can reduce the user’s workload, physical load, mental
pressure, fatigue, etc. The quantification of mental fatigue is beneficial in the auxiliary mode by MRS.
Generally, all users are given the same rest period in between the transfer tasks at a fixed interval.
However, the responses and the user experience by each user from the same workload differ among
individuals. This is because the development of mental fatigue is associated with gender, age, physical
differences, and physical fitness [43]. Even for the same person, the physiological and psychological
conditions vary from day to day. This could be affected by muscle injuries, nerve injury, pressure, and
other factors [44]. Therefore, the smooth control strategy of MRS and the auxiliary mode should be
planned according to the user’s physiological condition. Through the above method, the purpose of
reducing mental fatigue is finally achieved.

In the present study, the proposed method is only applicable to the rising transfer task. This is
because the impact of the multi-transfer task and physical recovery was ignored at the current research
stage to reduce the complexity of the model. However, human tasks are mostly performed in a dynamic
condition which involves continuous behavior in integrated multiple behavior transfers. Meanwhile,
in a real scenario, transfer times, transfer complexity, and the special physical condition of the patient
would produce a greater physical and psychological burden for different user groups. However, we
do not need to consider all the conditions to calculate the precise division of mental fatigue. We
investigated which assisted approach had the least impact on the user’s mental fatigue based on the
value of different degrees. Then, we held that this auxiliary strategy of rising transfer was suitable for
the user. Otherwise, we would re-optimize the MRS and control strategy based on the preferences of
different users. Therefore, in the case of a simplification, continuous transfers are used to simulate the
behavior of multi-behavior integration in daily life. The influence of each behavior transfer on mental
fatigue should be identified before the proposed method is applied to the real-world environment.

In this paper, we used the multiple robot system and follow-up control strategy to effectively
relieve the mental pressure caused by workload and lack of motion capability. Finally, the mental fatigue
would be fed back to MRS and the control strategy for the purpose of reducing the fluctuation of mental
state and stress. This gives effective feedback to the mental fatigue of the users when implementing
autonomous behavior, auxiliary behavior, or derivative behavior. From the viewpoint of the smooth
interaction process, several studies have shown that the mental information during HRI performs
significant roles, such as behavior selection, which makes the robot more attractive and optimizes the
approach of the cognitive information [45,46]. Our proposed approach provides a sound theoretical
basis for the optimization of MRS and the improvement of user experience. However, in fNIRS-based
BCI studies, 7–12 persons are usually considered enough for data acquisition [47,48]. However, using
more subjects might be desirable to validate the findings. In future research, more subjects and various
difficulty-level auxiliary strategies by MRS will be investigated based on our method.

6. Conclusions

In this study, we investigated the optimal feature combination (mean-peak) for the LDA
classification of fNIRS of transfer tasks. Then, through a comprehensive error analysis, we established
a comprehensive mental fatigue model based on the classification accuracy for autonomous behavior
and auxiliary behavior with the increase of workload. The differentiated model for a comprehensive
discriminant evaluation (based on the classification results) combined two significant features and fully
amplified the mental difference between the various workload tasks. The proposed model directly
reflects the difference in the mental fatigue of the user at that time. It is also strong evidence for judging
and optimizing the current auxiliary approach based on MRS and the control strategy according to
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users with different physical conditions and motion capabilities. Our proposed method provides a
sound theoretical basis for quantifying the estimation of mental states and guiding the control strategy
of multiple robots for the ultimate purpose of a rising transfer with safety and comfort. It could also be
applied to similar scenarios, for example for standing transfer, seating transfer, and excretion transfer.
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