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Abstract: Automotive radars are able to guarantee high performances at the expenses of a relatively
low cost, and recently their application has been extended to several fields in addition to the original
one. In this paper we consider the use of this kind of radars to discriminate different types of
people’s movements in a real context. To this end, we exploit two different maps obtained from
radar, that is, a spectrogram and a range-Doppler map. Through the application of dimensionality
reduction methods, such as principal component analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE) algorithm, and the use of machine learning techniques we prove that is possible
to classify with a very good precision people’s way of walking even employing commercial devices
specifically designed for other purposes.

Keywords: automotive radar; machine learning; walking analysis

1. Introduction

Recognition of a person’s type of movement has implications for many aspects of daily life, from
security applications to monitoring for assisted living. Discriminating whether a person is running or
walking normally in airports or shopping centers, for example, may help video surveillance to detect
possible dangerous situations [1–3]. Tools designed for this purpose involve the use of contactless
devices, and radar technology is particularly suitable for the mentioned scenario.

Besides its ability to detect the presence of targets of all kinds, sometimes even at considerable
distances, radar technology has attracted a large attention thanks to its versatility and usefulness in
several fields, from medical applications [4] to traffic surveillance monitoring [5].

In this paper we consider the use of an automotive radar to classify different types of monitored
actions. With respect to the work described in Reference [6], the examined activities present less
evident differences, since our goal is to distinguish people’s way of walking on the basis of their
speed. Moreover, the radar here considered works with a higher frequency range and therefore a
smaller wavelength, thus allowing a better interaction with objects and improved performance in
the micro-Doppler extraction. In addition, the millimeter wave technology exploited allows us to
discriminate with a good accuracy also the position of the hands during the walk, whether they are
in free movement or hold in pockets. Speed and hands movement classification is performed by
using Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE)
methods for feature extraction and supervised learning for the classification task. Different algorithms
have been tested, obtaining the best performance in terms of accuracy by using the Nearest Neighbor
(NN) and the Support Vector Machine (SVM).
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Related Work

Automotive radars with Frequency Modulated Continuous Wave (FMCW) transmission find
many applications beyond their original purpose. Recent studies revealed how radars can be exploited
to improve road safety and autonomous driving by recognizing the presence of pedestrians starting
from micro-Doppler tracks, focusing in particular on the recognition of different parts of the human
body [7–9], sometimes applying classification algorithms able to distinguish whether the detected
target is a pedestrian or not with a very high accuracy [10]. Through the micro-Doppler components it
is also possible to characterize a person’s movement or to identify a fall [11]. Moreover, micro-Doppler
features have been often exploited in several aspects of human recognition, such as arm motion
analysis [12], identification of target human motions [13], or to distinguish people walking in a
noisy background [14]. Low power Frequency Modulated Continuous Wave (FMCW) radar and
micro-Doppler tracks have been recently used with various scopes, such as discriminating armed
from unarmed people [15], identifying people on the basis of their gait characteristics [16–18] or their
movements [19], and for gestures recognition [20]. Moreover, radar technology has been successfully
applied to the medical field [21,22], for example to remotely monitor the cardiac and respiratory
frequency [23]. Principal Component Analysis (PCA) has been often exploited in radar applications,
as an instrument to reduce the dimensionality of the available feature space and to automatize the
feature extraction and selection procedure [24,25], together with deep learning algorithms for fall
detection [26] and human activity recognition [27]. Recent works considered the application of deep
learning techniques for gait classification, using smart sensors [28] and radar-based techniques [29] to
discriminate aided from unaided motion.

From the year 2022 the 24 GHz bandwidth will no longer be available because of new regulations
and ETSI and FCC standards, making it necessary to move towards other frequencies [30]. As regards
radar applications, the only available bandwidth will be the ISM bandwidth that have only 250 MHz
available, with a performance loss in distance. This explains the presence on the radar market of sensor
for industrial and automotive applications working at frequencies over 76 GHz.

As an alternative to radar systems, different contactless technologies have been proposed for gait
analysis and walking classification, based on the processing of video (RGB) or video+depth (RGBD)
signals. Generally, the main purpose of these research activities is for medical purposes or related to
safety issues. In Reference [31], a system able to perform an automatic detection and classification
of gait impairments, based on the analysis of a single 2D video, is presented. The main drawback
related to the use of video signal is related to privacy issues. To solve this problem, in Reference [32], a
representation of gait appearance, with the aim of person identification and classification, is described,
based on simple features such as moments extracted from orthogonal view video silhouettes of
human walking motion. The availability of a low cost, marker-free, and portable device as Microsoft
Kinect Camera allows to develop methods that can respond to the changes in the gait features during
the swing stage, tracking the skeletal positional data of body joints to assess and evaluate the gait
performance [33]. While being a low cost sensor, Microsoft Kinect is able to track human motion
without using wearable sensors and with acceptable reliability. In Reference [34], the standard error of
measurement and minimal detectable change sing Kinect is evaluated, confirming the validity of this
sensor with standardized clinical tests in individuals with stroke.

The rest of the paper is organized as follows. Section 2 describes the radar used, along
with the composition of the transmitted signals and the devices configuration. In Section 3 we
outline the signal processing applied to extract spectrograms and maps from the data obtained.
Section 4 the dimensionality reduction techniques and classification algorithms applied are introduced.
Experimental results are shown in Section 5. Finally Section 6 concludes the paper.
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2. Radar System Description

2.1. Used Devices

The radar used in this paper is the Texas Instruments AWR 1642 [35], originally developed for the
automotive market [36]. Being designed for industrial applications, it has reduced costs with respect
to other types of radar, and its use in the context of interest of this work allows to verify if it is possible
to classify people movements with a good accuracy also exploiting commercial devices. It exploits
two bandwidths, in the frequency ranges of 76–77 GHz and 77–81 GHz with 1 and 4 GHz bandwidth,
respectively. The former is used for long range applications (up to 150 metres) and the latter for short
range applications (up to 30 metres). The radar considered in Reference [6] is an Ankortek SDR-Kit
2400AD, a Software Defined Radio (SDR) working in the frequency range 24–26 GHz, with a maximum
bandwidth of 2 GHz and a chirp time and maximum ramp slope of 15.625 MHz/µs [37]. With respect
to radar used in Reference [6], the higher frequency, the larger bandwidth and the steeper ramp allow
to achieve an increase of twenty time in range performance and three times in speed.

An additional characteristic of AWR 1642 is the presence of multiple-input multiple output
(MIMO) technology in the sensor [38], which, in case of radar systems, has the goal of improving
performance in angular detection.

2.2. Transmitted Signals

Signals are transmitted using Frequency Modulated Continuous Wave (FMCW) modulation, this
requires that the transmission frequency varies linearly from a minimum value to a maximum value
in a time interval, called chirp time. The transmitted chirps are grouped into frames. Inside each
frame, which has a time duration called periodicity, the radar transmits a certain number of chirps, as
schematized in Figure 1.
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Figure 1. RADAR frame periodicity.

Each chirp is built as shown in Figure 2. We have an Idle Time, needed because the ramp generator
requires some time to restart the ramp and generate a new chirp. Then a guard time, or analog-to-digital
converter (ADC) Valid Start Time, is considered in the first part of the ramp, which is not linear and
may lead to a performance reduction, as described in Reference [39].
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Figure 2. Chirps timing.

Then we have the effective ADC Sampling Time, which represents the time duration of the ramp
acquired by the radar. Within this interval analog-to-digital converters (ADCs) samples of the IF
signals are collected. As easily observable in Figure 2, a time shorter than the total ramp time tramp is
used, so the used radar bandwidth B is smaller than the maximum possible TB, and is calculated as

B = ADCSamplingTime · S ≤ TB = tramp · S, (1)

where S represents the slope of the ramp and ADCSamplingTime is given by the product between the
the number of samples nsamples acquired for each chirp and the sampling period tsampling. The devices
configuration must take in account these parameters in order to avoid as much as possible the non
linear effects of the sensor.

The importance of avoiding the first part of the ramp is evident from the analysis of the
intermediate frequency (IF) signal during time and on the complex plane. As briefly described
in Reference [40], it is possible to see this effect on the IQ plot. Using different calibrations, the first
with analog-to-digital converter (ADC) Valid Start Time equal to zero, and the second with time equal
to 6 µs it is possible to observe how this imperfection can be avoided without the need of using an
algorithm. Figure 3a shows 500 samples of IF signal across two different chirps. If the guard time is not
used, there is a spike at the beginning of the first chirp. In Figure 3b the case of the same segment of IF
signal, with an analog-to-digital converter (ADC) Valid Start Time of 6 µs is depicted, not showing the
same effect. The spike disappears with a minimum value of 3 µs.
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Figure 3. IF signal (a) without guard interval, highlighting the presence of a spike, and (b) with guard
interval.
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3. Radar Signal Processing

On the basis of the used configuration we have four available receiving lines. To perform
our analysis we need just one of them, so we can sum the complex samples coming from the
analog-to-digital converters in order to improve the signal-to-noise ratio. We thus obtain a vector of
complex samples which can be reorganized in the form of matrix, as shown in Figure 4. Along the
rows of the matrix, also called fast time, we have samples from single chirps, while on the columns, or
slow time, we samples from different chirps.

Fast Time
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e

Figure 4. Slow Time and Fast Time Matrix.

From this raw matrix we can extract two types of map to classify different types of movement. The
first one contains information about distance and speed of the subject and it is obtained by applying
a Fourier transform to columns and then to rows; this map is defined as Range-Doppler Map. Each
element of the map is a complex number and it is built considering the total acquisition, as shown
in Figure 5. Besides distance and speed, this allows to extract also the micro-Doppler components
characterizing the movement.
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Figure 5. Range-Doppler Map data processing.

Since our subjects are moving during the acquisitions, we can extract the spectrogram from each
Range bin and hence characterize their micro-Dopplers along the entire activity.

During each acquisition all the objects are stationary with the exception of the subject under exam,
therefore the only significant micro-Doppler components are related to her/him. The presence of
stationary objects does not influence either the Range-Doppler map, but only the zero Doppler. As
described in Reference [19], from this map is possible to identify the kind of movement carried out by
the subject.

The second type of map can be extracted through spectrograms and is denoted as Doppler-Time
Map. A spectrogram is the most common time-frequency representation [41], and it is derived from
the Short Time Fourier Transform (STFT) according to the following equation

STFTx[k, n] =
+∞

∑
r=−∞

x[r]w[n− r]e−j2πrk/N , k = 0, 1, · · · , N − 1, (2)
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where n represents a discrete index of time, k is a discrete index of frequency and w[·] is a window
function. The Short Time Fourier Transform (STFT) can in fact be considered as the Fourier transform
of a signal multiplied by a window sliding over time. A trade-off between resolution in time and in
frequency must be found, and overlapping frequencies can help in this sense [42].

Starting from the range matrix, the second matrix in Figure 5, and applying the Short Time Fourier
Transform (STFT) along the rows, we obtain the Doppler-Time map. This function uses windows of
512 samples, with an overlap of 98% and an Hann window is applied. Figure 6 depicts this process.
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Figure 6. Doppler-Time Spectrograms.

By using both the mentioned maps it is possible to classify different kinds of movements, as will
be explained in the next section.

4. Movements Classification

In this section we briefly describe the dimensionality reduction techniques and the classification
algorithms used in the following section to discriminate the kinds of activities under consideration.
As regards features extraction, we resort to two different methods to reduce data dimensionality, the
Principal Component Analysis (PCA) and the t-distributed Stochastic Neighbor Embedding (t-SNE) .

Both the maps obtained through the radar signal processing, that is, the Range-Doppler map and
Time-Doppler map, are considered as images. Vectors resulting from the application of dimensionality
reduction techniques to these images, that is, the principal components extracted from Principal
Component Analysis (PCA) and the main dimensions given by the t-distributed Stochastic Neighbor
Embedding (t-SNE) , will serve as features vectors. We have a set of N images In of dimension [l ×m],
with n = 1, · · · , N. Images are initially vectorized row-wise and grouped in order to form a training set
X = [x(1), · · · , x(N)]T , where T denotes the transpose operator; rows of X correspond to observations
and columns correspond to variables.

4.1. Principal Component Analysis

Principal Component Analysis (PCA) [43] is a non supervised transform also known as
Karhunen-Loeve transform (KLT). It aims at finding suitable linear transformations y of the observed
variables that are easily interpreted and capable of highlighting and summarizing the information
inherent in the initial matrix I. This tool is especially useful when dealing with a considerable number
of variables from which you want to extract the greatest possible information while working with a
smaller set of variables.

Principal Component Analysis (PCA) can hence be described as a transformation of a given set
of N vectors into inputs (variables) of the same length K placed in a vector N-dimensional X, which
allows to transform this vector into a second vector y, built in such a way that the first element of y
includes the greatest possible variability (and therefore more information) of the original variables,
that the second represents the greater variability of the xi after the first component, and so up to y(N)

which takes into account the smallest fraction of the original variance. Therefore the main components
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are those linear combinations of the random variables x(N) according to the unit norm which make the
variance maximum and which are uncorrelated.

The resulting vector y form the feature vector which can be used for classification. Moreover,
Principal Component Analysis (PCA) algorithm is invertible, so original data can be easily recovered.

4.2. t-distributed Stochastic Neighbor Embedding

t-distributed Stochastic Neighbor Embedding (t-SNE) [44] is a non linear and non supervised
transform, specifically designed to reduce dimensionality to 2 or 3 dimensions in order to display
multidimensional data.

The t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm consists of two main steps.
Given our set of N vectorized images x(1), · · · , x(N) with length l · m, t-SNE first computes the
conditional probability pj|i, which represents the similarity of datapoint xj to datapoint xi. In other
words, it evaluates the probability that xi would pick xj as its neighbor if neighbors were picked in
proportion to their probability density under a Gaussian centered at xi. In formulas,

pj|i =
exp (−‖xi − xj‖2/2σ2

i )

∑k 6=i exp (−‖xi − xj‖2/2σ2
i )

. (3)

t-distributed Stochastic Neighbor Embedding (t-SNE) then defines a similar probability
distribution over the points in the low-dimensional map, and it minimizes the Kullback-Leibler
(KL) divergence between the two distributions with respect to the locations of the points in the map.

4.3. Classification Algorithms

As regards the classification task, we consider the use of k-Nearest Neighbor (NN) and Support
Vector Machines (SVMs). They are both supervised and non parametric algorithms.

k-Nearest Neighbor (NN) is an instance-based algorithm, meaning that it does not explicitly
learn a model. Instead, it chooses to memorize the training instances which are subsequently used as
“knowledge” for the forecasting phase. In concrete terms, this means that only when a query is made
in the database (i.e., when asked to provide a label with an input), the algorithm will use the training
instances to send a response. As a drawback, this algorithm presents both a storage cost during the
training phase, since it is necessary to store a potentially huge dataset, and a computational cost during
the prediction phase since the classification of a given observation requires the vision and/or analysis
of the entire dataset. In the context of classification, the k-Nearest Neighbor (NN) algorithm essentially
boils down to determine a majority vote among the k closest neighbors to a given unknown instance.
The proximity is defined by a distance metric, usually the Euclidean distance, between two data points.

Support Vector Machine (SVM) algorithm classifies data by creating a linear of non-linear decision
boundary to separate different classes. It projects the data through a non-linear function to a space
with a higher dimension, lifting them from their original space to a feature space, which can be of
unlimited dimension. To perform this operation, Support Vector Machine (SVM) makes use of kernels,
among which one of the most used is the Gaussian kernel.

5. Experimental Results

5.1. Experimental Setup

In our experiments we consider a data set composed by nineteen subjects who repeated each
activity for three times, for a total of 168 different acquisitions. Three different activities were examined:

• Slow walk;
• Fast walk;
• Slow walk with hands in pockets.
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Note that we do not consider a data set built ad hoc: each subject was simply asked to walk in
a “slow” or in a “fast” way, without specifying the number of steps or the time required to complete
the activity, in order to generate data as realistic as possible. In addition acquisitions belonging to
subjects of different height and weight were collected to provide a set comprehensive of a large variety
of characteristics. Walking speed difference is subtle and depends on the person examined, who
interpreted it subjectively. In general, the average speed measured for the fast walk is around 2 m/s,
while for the slow walk, with both free hands or hands in pockets is about 1.2 m/s. Differences in
subjects’ speed, including the “holding the arm” case (which is similar to our “hands in pockets”),
have been considered in References [45,46], although their datasets were composed by 8 and 3 subjects,
respectively.

The radar configuration parameters are chosen according to the measurement area selected and
to the kind of activity required to the subjects. Some parameters are chosen according to the following
range R equation

R =
fbeat · c
2 · S , (4)

where fbeat is the beat frequency and c is the speed of light. We can evaluate the maximum speed of
the target as

vtarget =
λ

4 · tchirp
, (5)

where λ represents the wavelength of the transmitted signal and tchirp is the time duration of the
chirp. The measurement area is an hallway, about 12 meters long, and is free of furniture. During
each activity the subject goes from the starting point in front of the RADAR to a distance of about 9
meters, and then comes back. Due the fact that the measurement time is of 16 seconds, it is possible
that the acquisition ends before the subject returns to the initial position. The parameters used for the
measurements are reported in Table 1.

A first analysis has been made on the background without any subject, which is depicted in
Figure 7. Only one measurement has been performed, since the test area is the same for all the subjects.
From this analysis is possible to see that the background does not affect the measurements, thus we
can neglect its effect in the movements classification.

(a) (b)

Figure 7. Analysis on the background in absence of subjects using (a) Range-Doppler map and (b)
Doppler-Time map.

In Figure 8 we show an example a subject walking in different ways, displaying both
Range-Doppler maps (on the left) and Doppler-time maps (on the right). It is possible to observe that
slow and fast walk are easily recognizable in the maps. As expected, maps related to slow walk with
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hands in pockets present a slightly less evident Doppler with respect to free hands, but this effect is
scarcely noticeable.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Example of a person walking slowly (a,b), slowly with hands in pockets (c,d) and fast (e,f).
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Table 1. RADAR parameters.

Parameter Value

fstart 77 GHz

S 60.012 MHz/µs

tidle 100 µs

ADC Valid Start Time 6 µs

fs 10 Msps

tramp 60 µs

nsamples 512

n f rame 400

no. of chirps per frame 128

Periodicity 40 ms

Used Radar Bandwidth 3.6 GHz

5.2. Classification

Data obtained after the processing of the radar signal are treated as images. Since their original
size cannot be easily handled, all matrices have been reshaped to the same dimension [195× 119].
In order to further reduce dimensionality and to extract features from images, Principal Component
Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm have been then
applied separately to data.

In Figure 9a,b we show the classification accuracy resulting from exploiting a different number
of principal components, by using a Nearest Neighbor (NN) classifier and a Support Vector Machine
(SVM) algorithm. We choose to use a Gaussian kernel for the Support Vector Machine (SVM).The
value of k for the k-Nearest Neighbor (NN) and the kernel used for Support Vector Machine (SVM)
have been chosen by using a leave-one-out cross-validation algorithm, which aims at minimizing the
validation error. Each sample of the dataset is alternatively selected as a validation set, whilst the
remaining part represents the training set. In this way all samples are used only one time both for
training, both for validation. Results obtained by the algorithm for odd values of k between 1 and
49 are shown in Figure 10, where k equal to 1 leads to an error of about 2.4%. The validation error
obtained by different kernels in percentage is reported in Table 2, thus directing the choice to the use
of linear kernel in our scenario.

Table 2. Results of the leave-one-out cross validation for support vector machine (SVM) with
different kernels.

Kernel Linear Gaussian Polynomial

Error validation (%) 4.46 17.26 33.33

Sixty percent of the acquisitions are used for training, while the remainder is used for testing.
Results have been averaged over 100 classification results obtained choosing training and test sets at
random. We consider here only two classes, corresponding to the slow and fast walk. Interestingly,
it is possible to observe that the number of principal components (or number of dimension in case
of t-distributed Stochastic Neighbor Embedding (t-SNE) ) that here corresponds to the number of
features, has a small impact on the classification performance. The application of Principal Component
Analysis (PCA) or t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm to extract features
from images leads to very similar results, although t-distributed Stochastic Neighbor Embedding
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(t-SNE) was originally designed to reduce data to two or three dimensions, and becomes very slow for
higher values. In addition, we obtain the same results using both Range-Doppler and Doppler-Time
maps.
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Figure 9. Comparison of classification accuracy achieved by SVM and kNN considering 2 and 3 classes,
applying (a) Principal Component Analysis (PCA) and (b) t-distributed stochastic neighbor embedding
(t-SNE).
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Figure 10. Results of the leave-one-out cross-validation for the k-Nearest Neighbor (kNN).

In Tables 3 and 4 we show the confusion matrices obtained by applying classification on two and
three different classes. In the first table, measurements of slow walk and slow walk with hands in
pockets have been incorporated into a single class, while in the second table they have been split into
two separate classes. As predictable, distinguishing free hands from hands in pockets is a much more
complicated task than identify different ways of walking. In the first case in fact the best accuracy
obtained is about 72% and red boxes highlight the presence of a number of misclassified examples,
although the fast walk is recognized from the other activities with a high precision (87.5%); SVM
methods seem to achieve better performance than KNN algorithms. In the latter case we have instead
an excellent accuracy of more than 93%. In both Tables 3 and 4 we highlighted a high presence of
correct detections in green, while a high number of misclassified samples is marked in red.
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Table 3. Confusion matrix obtained applying SVM and kNN (into parentheses) on two classes,
considering 5 principal components, acc = 93.5%.

True/Predicted S F
Slow Walk (S) 110 (109) 2 (3)
Fast Walk (F) 9 (8) 47 (48)

Table 4. Confusion matrix obtained applying SVM and kNN (into parentheses) on three different
classes, considering 9 principal components, accSVM = 72%, accKNN = 66.7%.

True/Predicted S F SH
Slow Walk (S) 33 (32) 2 (1) 21 (23)
Fast Walk (F) 4 (5) 49 (48) 3 (3)

Slow Walk with Hands in Pockets (SH) 16 (22) 1 (2) 39 (32)

In Table 5, we give an overview of the results obtained by other works focused on the classification
of walking activities through radar measurements, showing the best accuracies achieved. [*] denotes
the present work. In Reference [45] 7 types of activities are considered, that is, walking backwards,
limping, depressed, elderly, excited, holding the arm and walking in a zigzag, and the radar used is an
Ultra-Wide Band; Reference [46] considers a Frequency Modulated Continuous Wave (FMCW) radar,
and the examined activities are crawl, creep on hands and knees, walk, jog and run. Although the
difference between walking slowly or quickly is less evident than the other activities, we prove that
our system is able to achieve a better accuracy. Moreover, we consider a larger number of subjects that
move differently from each other, thus confirming the validity of our method in a realistic context.
The activity of holding the arm while walking [45], which is in some way comparable to our case of
walking slowly with hands in pockets, could not be differentiated from the others at all, with a specific
accuracy of 42.42% (see Reference [45], Table 2).

Table 5. Comparison of different radar based methods for human walking classification.

Radar Type No. of Activities Dataset Dimension Algorithm Best Accuracy
[*] FMCW mmWave 2 19 subjects, 168 acquisitions PCA/t-SNE + k-NN/SVM 93.5%
[*] FMCW mmWave 3 19 subjects, 168 acquisitions PCA/t-SNE + k-NN/SVM 72%

[45] Ultra Wide Band 7 8 subjects, 280 acquisitions PCA + SVM 89.1%
[46] FMCW mmWave 5 3 subjects, 95 acquisitions CV/TV + SVM 91%

The subjectivity and the personal speed interpretation of the conducted tests represents the
major error source for our classification model. A standardized time or number of steps during the
experiment should probably improve the system performance, but this would not represent a realistic
scenario and it is out of the scope of this work.

6. Conclusions and Future Works

We have assessed the performance of an automotive radar to classify different types of movements,
focusing our attention to the distinction of people’s way of walking. The dataset was not built ad
hoc, but we have collected acquisitions of subjects with different characteristics free to walk in a
given indoor environment. We have considered the use of PCA and t-SNE techniques to reduce data
dimensionality and to extract features, and then we have applied different classification algorithms.
From the obtained results it is possible to state that movement classification of human targets is a much
more complex task with respect to the discrimination of people from other objects. However, we have
shown that, by exploiting the micro-Doppler components of the radar signal, we are able to identify
with a high accuracy slow and fast walking. We have also characterized the presence or absence of
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movement of the arms with more than 72% of precision, which represents a good starting point for a
future work. A possible future direction may also include the investigation of deep learning methods
in our scenario in order to better distinguish small movements.
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25. Jokanović, B.; Amin, M.; Ahmad, F.; Boashash, B. Radar fall detection using principal component analysis.
In Proceedings of the Radar Sensor Technology XX, Baltimore, MD, USA, 17–21 April 2016; Volume 9829,
p. 982916.

26. Jokanovic, B.; Amin, M.; Ahmad, F. Radar fall motion detection using deep learning. In Proceedings of the
2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–6. [CrossRef]

27. Li, X.; He, Y.; Jing, X. A Survey of Deep Learning-Based Human Activity Recognition in Radar. Remote Sens.
2019, 11, 1068. [CrossRef]

28. Lee, S.S.; Choi, S.T.; Choi, S.I. Classification of gait type based on deep learning using various sensors with
smart insole. Sensors 2019, 19, 1757. [CrossRef]
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